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ŜεN , the set of ε-optimal solutions of the

SAA problem, 181
ϑ̂N , optimal value of the SAA problem,

156
f̂N (x), sample average function, 155
1A(·), characteristic function of setA, 334
int(C), interior of set C, 336
�a�, integer part of a ∈ R, 219
lscf , lower semicontinuous hull of func-

tion f , 333

xi



SPbook
2009/8/20
page xii

�

�

�

�

�

�

�

�

xii List of Notations

RC , radial cone to set C, 337
TC , tangent cone to set C, 337
∇2f (x), Hessian matrix of second order

partial derivatives, 179
∂ , subdifferential, 338
∂◦, Clarke generalized gradient, 336
∂ε, epsilon subdifferential, 380
posW , positive hull of matrix W , 29
Pr(A), probability of event A, 360
ri, relative interior, 337
σ+p , upper semideviation, 255
σ−p , lower semideviation, 255
V@Rα , Value-at-Risk, 256
Var[X], variance of X, 14
ϑ∗, optimal value of the true problem, 156
ξ[t] = (ξ1, . . . , ξt ), history of the process,

63
a ∨ b = max{a, b}, 186
f ∗, conjugate of function f , 338
f ◦(x, d), generalized directional deriva-

tive, 336
g′(x, h), directional derivative, 334
op(·), term, 382
p-efficient point, 116
iid, independently identically distributed,

156



SPbook
2009/8/20
page xiii

�

�

�

�

�

�

�

�

Preface

The main topic of this book is optimization problems involving uncertain parameters,
for which stochastic models are available. Although many ways have been proposed to
model uncertain quantities, stochastic models have proved their flexibility and usefulness
in diverse areas of science. This is mainly due to solid mathematical foundations and
theoretical richness of the theory of probability and stochastic processes, and to sound
statistical techniques of using real data.

Optimization problems involving stochastic models occur in almost all areas of science
and engineering, from telecommunication and medicine to finance. This stimulates interest
in rigorous ways of formulating, analyzing, and solving such problems. Due to the presence
of random parameters in the model, the theory combines concepts of the optimization theory,
the theory of probability and statistics, and functional analysis. Moreover, in recent years the
theory and methods of stochastic programming have undergone major advances. All these
factors motivated us to present in an accessible and rigorous form contemporary models and
ideas of stochastic programming. We hope that the book will encourage other researchers
to apply stochastic programming models and to undertake further studies of this fascinating
and rapidly developing area.

We do not try to provide a comprehensive presentation of all aspects of stochastic
programming, but we rather concentrate on theoretical foundations and recent advances in
selected areas. The book is organized into seven chapters. The first chapter addresses mod-
eling issues. The basic concepts, such as recourse actions, chance (probabilistic) constraints,
and the nonanticipativity principle, are introduced in the context of specific models. The
discussion is aimed at providing motivation for the theoretical developments in the book,
rather than practical recommendations.

Chapters 2 and 3 present detailed development of the theory of two-stage and multi-
stage stochastic programming problems. We analyze properties of the models and develop
optimality conditions and duality theory in a rather general setting. Our analysis covers
general distributions of uncertain parameters and provides special results for discrete distri-
butions, which are relevant for numerical methods. Due to specific properties of two- and
multistage stochastic programming problems, we were able to derive many of these results
without resorting to methods of functional analysis.

The basic assumption in the modeling and technical developments is that the proba-
bility distribution of the random data is not influenced by our actions (decisions). In some
applications, this assumption could be unjustified. However, dependence of probability dis-
tribution on decisions typically destroys the convex structure of the optimization problems
considered, and our analysis exploits convexity in a significant way.

xiii
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xiv Preface

Chapter 4 deals with chance (probabilistic) constraints, which appear naturally in
many applications. The chapter presents the current state of the theory, focusing on the
structure of the problems, optimality theory, and duality. We present generalized convexity
of functions and measures, differentiability, and approximations of probability functions.
Much attention is devoted to problems with separable chance constraints and problems
with discrete distributions. We also analyze problems with first order stochastic dominance
constraints, which can be viewed as problems with continuum of probabilistic constraints.
Many of the presented results are relatively new and were not previously available in standard
textbooks.

Chapter 5 is devoted to statistical inference in stochastic programming. The starting
point of the analysis is that the probability distribution of the random data vector is ap-
proximated by an empirical probability measure. Consequently, the “true” (expected value)
optimization problem is replaced by its sample average approximation (SAA). Origins of
this statistical inference are in the classical theory of the maximum likelihood method rou-
tinely used in statistics. Our motivation and applications are somewhat different, because
we aim at solving stochastic programming problems by Monte Carlo sampling techniques.
That is, the sample is generated in the computer and its size is constrained only by the com-
putational resources needed to solve the constructed SAA problem. One of the byproducts
of this theory is the complexity analysis of two-stage and multistage stochastic program-
ming. Already in the case of two-stage stochastic programming, the number of scenarios
(discretization points) grows exponentially with an increase in the number of random pa-
rameters. Furthermore, for multistage problems, the computational complexity also grows
exponentially with the increase of the number of stages.

In Chapter 6 we outline the modern theory of risk averse approaches to stochastic
programming. We focus on the analysis of the models, optimality theory, and duality.
Static and two-stage risk averse models are analyzed in much detail. We also outline a risk
averse approach to multistage problems, using conditional risk mappings and the principle
of “time consistency.”

Chapter 7 contains formulations of technical results used in the other parts of the book.
For some of these less-known results we give proofs, while others refer to the literature.
The subject index can help the reader quickly find a required definition or formulation of a
needed technical result.

Several important aspects of stochastic programming have been left out. We do
not discuss numerical methods for solving stochastic programming problems, except in
section 5.9, where the stochastic approximation method and its relation to complexity esti-
mates are considered. Of course, numerical methods is an important topic which deserves
careful analysis. This, however, is a vast and separate area which should be considered in a
more general framework of modern optimization methods and to a large extent would lead
outside the scope of this book.

We also decided not to include a thorough discussion of stochastic integer program-
ming. The theory and methods of solving stochastic integer programming problems draw
heavily from the theory of general integer programming. Their comprehensive presentation
would entail discussion of many concepts and methods of this vast field, which would have
little connection with the rest of the book.

At the beginning of each chapter, we indicate the authors who were primarily respon-
sible for writing the material, but the book is the creation of all three of us, and we share
equal responsibility for errors and inaccuracies that escaped our attention.
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Chapter 1

Stochastic Programming
Models

Andrzej Ruszczyński and Alexander Shapiro

1.1 Introduction
Readers familiar with the area of optimization can easily name several classes of optimiza-
tion problems, for which advanced theoretical results exist and efficient numerical methods
have been found. We can mention linear programming, quadratic programming, convex
optimization, and nonlinear optimization. Stochastic programming sounds similar, but no
specific formulation plays the role of the generic stochastic programming problem. The
presence of random quantities in the model under consideration opens the door to a wealth
of different problem settings, reflecting different aspects of the applied problem at hand.
This chapter illustrates the main approaches that can be followed when developing a suitable
stochastic optimization model. For the purpose of presentation, these are very simplified
versions of problems encountered in practice, but we hope that they help us to convey our
main message.

1.2 Inventory

1.2.1 The News Vendor Problem

Suppose that a company has to decide about order quantity x of a certain product to satisfy
demand d . The cost of ordering is c > 0 per unit. If the demand d is larger than x, then
the company makes an additional order for the unit price b ≥ 0. The cost of this is equal to
b(d − x) if d > x and is 0 otherwise. On the other hand, if d < x, then a holding cost of

1
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2 Chapter 1. Stochastic Programming Models

h(x − d) ≥ 0 is incurred. The total cost is then equal to1

F(x, d) = cx + b[d − x]+ + h[x − d]+. (1.1)

We assume that b > c, i.e., the backorder penalty cost is larger than the ordering cost.
The objective is to minimize the total cost F(x, d). Here x is the decision variable

and the demand d is a parameter. Therefore, if the demand is known, the corresponding
optimization problem can be formulated as

Min
x≥0

F(x, d). (1.2)

The objective function F(x, d) can be rewritten as

F(x, d) = max
{
(c − b)x + bd, (c + h)x − hd}, (1.3)

which is a piecewise linear function with a minimum attained at x̄ = d. That is, if the
demand d is known, then (as expected) the best decision is to order exactly the demand
quantity d .

Consider now the case when the ordering decision should be made before a realization
of the demand becomes known. One possible way to proceed in such a situation is to view
the demand D as a random variable. By capital D, we denote the demand when viewed
as a random variable in order to distinguish it from its particular realization d. We assume,
further, that the probability distribution of D is known. This makes sense in situations
where the ordering procedure repeats itself and the distribution ofD can be estimated from
historical data. Then it makes sense to talk about the expected value, denoted E[F(x,D)],
of the total cost viewed as a function of the order quantity x. Consequently, we can write
the corresponding optimization problem

Min
x≥0

{
f (x) := E[F(x,D)]}. (1.4)

The above formulation approaches the problem by optimizing (minimizing) the total
cost on average. What would be a possible justification of such approach? If the process
repeats itself, then by the Law of Large Numbers, for a given (fixed) x, the average of
the total cost, over many repetitions, will converge (with probability one) to the expecta-
tion E[F(x,D)], and, indeed, in that case the solution of problem (1.4) will be optimal
on average.

The above problem gives a very simple example of a two-stage problem or a problem
with a recourse action. At the first stage, before a realization of the demandD is known, one
has to make a decision about the ordering quantity x. At the second stage, after a realization
d of demandD becomes known, it may happen that d > x. In that case, the company takes
the recourse action of ordering the required quantity d − x at the higher cost of b > c.

The next question is how to solve the expected value problem (1.4). In the present
case it can be solved in a closed form. Consider the cumulative distribution function (cdf)
H(x) := Pr(D ≤ x) of the random variable D. Note that H(x) = 0 for all x < 0, because
the demand cannot be negative. The expectation E[F(x,D)] can be written in the following
form:

E[F(x,D)] = bE[D] + (c − b)x + (b + h)
∫ x

0
H(z)dz. (1.5)

1For a number a ∈ R, [a]+ denotes the maximum max{a, 0}.
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1.2. Inventory 3

Indeed, the expectation function f (x) = E[F(x,D)] is a convex function. Moreover,
since it is assumed that f (x) is well defined and finite values, it is continuous. Consequently,
for x ≥ 0 we have

f (x) = f (0)+
∫ x

0
f ′(z)dz,

where at nondifferentiable points the derivative f ′(z) is understood as the right-side deriva-
tive. Since D ≥ 0, we have that f (0) = bE[D]. Also, we have that

f ′(z) = c + E

[
∂

∂z
(b[D − z]+ + h[z−D]+)

]
= c − b Pr(D ≥ z)+ hPr(D ≤ z)
= c − b(1−H(z))+ hH(z)
= c − b + (b + h)H(z).

Formula (1.5) then follows.
We have that d

dx

∫ x
0 H(z)dz = H(x), provided that H(·) is continuous at x. In this

case, we can take the derivative of the right-hand side of (1.5) with respect to x and equate it
to zero. We conclude that the optimal solutions of problem (1.4) are defined by the equation
(b + h)H(x) + c − b = 0, and hence an optimal solution of problem (1.4) is equal to the
quantile

x̄ = H−1 (κ) with κ = b − c
b + h. (1.6)

Remark 1. Recall that for κ ∈ (0, 1) the left-side κ-quantile of the cdf H(·) is defined
as H−1(κ) := inf {t : H(t) ≥ κ}. In a similar way, the right-side κ-quantile is defined as
sup{t : H(t) ≤ κ}. If the left and right κ-quantiles are the same, then problem (1.4) has
unique optimal solution x̄ = H−1 (κ). Otherwise, the set of optimal solutions of problem
(1.4) is given by the whole interval of κ-quantiles.

Suppose for the moment that the random variable D has a finitely supported dis-
tribution, i.e., it takes values d1, . . . , dK (called scenarios) with respective probabilities
p1, . . . , pK . In that case, its cdf H(·) is a step function with jumps of size pk at each dk ,
k = 1, . . . , K . Formula (1.6) for an optimal solution still holds with the corresponding
left-side (right-side) κ-quantile, coinciding with one of the points dk , k = 1, . . . , K . For
example, the scenarios may represent historical data collected over a period of time. In
such a case, the corresponding cdf is viewed as the empirical cdf, giving an approximation
(estimation) of the true cdf, and the associated κ-quantile is viewed as the sample estimate
of the κ-quantile associated with the true distribution.

It is instructive to compare the quantile solution x̄ with a solution corresponding to
one specific demand value d := d̄, where d̄ is, say, the mean (expected value) of D. As
mentioned earlier, the optimal solution of such (deterministic) problem is d̄. The mean d̄ can
be very different from the κ-quantile x̄ = H−1 (κ). It is also worth mentioning that sample
quantiles typically are much less sensitive than sample mean to random perturbations of the
empirical data.

In applications, closed-form solutions for stochastic programming problems such as
(1.4) are rarely available. In the case of finitely many scenarios, it is possible to model
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the stochastic program as a deterministic optimization problem by writing the expected
value E[F(x,D)] as the weighted sum:

E[F(x,D)] =
K∑
k=1

pkF (x, dk).

The deterministic formulation (1.2) corresponds to one scenario d taken with probability 1.
By using the representation (1.3), we can write problem (1.2) as the linear programming
problem

Min
x≥0, v

v

s.t. v ≥ (c − b)x + bd,
v ≥ (c + h)x − hd.

(1.7)

Indeed, for fixed x, the optimal value of (1.7) is equal to max{(c−b)x+bd, (c+h)x−hd},
which is equal to F(x, d). Similarly, the expected value problem (1.4), with scenarios
d1, . . . , dK , can be written as the linear programming problem:

Min
x≥0, v1,...,vK

K∑
k=1

pkvk

s.t. vk ≥ (c − b)x + bdk, k = 1, . . . , K,

vk ≥ (c + h)x − hdk, k = 1, . . . , K.

(1.8)

It is worth noting here the almost separable structure of problem (1.8). For a fixed x,
problem (1.8) separates into the sum of optimal values of problems of the form (1.7) with
d = dk . As we shall see later, such a decomposable structure is typical for two-stage
stochastic programming problems.

Worst-Case Approach

One can also consider the worst-case approach. That is, suppose that there are known lower
and upper bounds for the demand, i.e., it is unknown that d ∈ [l, u], where l ≤ u are given
(nonnegative) numbers. Then the worst-case formulation is

Min
x≥0

max
d∈[l,u]F(x, d). (1.9)

That is, while making decision x, one is prepared for the worst possible outcome of the
maximal cost. By (1.3) we have that

max
d∈[l,u]F(x, d) = max{F(x, l), F (x, u)}.

Clearly we should look at the optimal solution in the interval [l, u], and hence problem (1.9)
can be written as

Min
x∈[l,u]

{
ψ(x) := max

{
cx + h[x − l]+, cx + b[u− x]+

}}
.

The function ψ(x) is a piecewise linear convex function. Assuming that b > c, we
have that the optimal solution of problem (1.9) is attained at the point where h(x − l) =
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1.2. Inventory 5

b(u− x). That is, the optimal solution of problem (1.9) is

x∗ = hl + bu
h+ b .

The worst-case solution x∗ can be quite different from the solution x̄, which is optimal on
average (given in (1.6)) and could be overall conservative. For instance, if h = 0, i.e., the
holding cost is zero, then x∗ = u. On the other hand, the optimal on average solution x̄
depends on the distribution of the demand D which could be unavailable.

Suppose now that in addition to the lower and upper bounds of the demand, we know
its mean (expected value) d̄ = E[D]. Of course, we have that d̄ ∈ [l, u]. Then we can
consider the following worst-case formulation:

Min
x≥0

sup
H∈M

EH [F(x,D)], (1.10)

where M denotes the set of probability measures supported on the interval [l, u] and having
mean d̄ , and the notation EH [F(x,D)] emphasizes that the expectation is taken with respect
to the cumulative distribution function (probability measure)H(·) ofD. We study minimax
problems of the form (1.10) in section 6.6 (see also problem 6.8 on p. 330).

1.2.2 Chance Constraints

We have already observed that for a particular realization of the demandD, the costF(x̄,D)
can be quite different from the optimal-on-average cost E[F(x̄,D)]. Therefore, a natural
question is whether we can control the risk of the cost F(x,D) to be not “too high.” For
example, for a chosen value (threshold) τ > 0, we may add to problem (1.4) the constraint
F(x,D) ≤ τ to be satisfied for all possible realizations of the demand D. That is, we
want to make sure that the total cost will not be larger than τ in all possible circumstances.
Assuming that the demand can vary in a specified uncertainty set D ⊂ R, this means that
the inequalities (c − b)x + bd ≤ τ and (c + h)x − hd ≤ τ should hold for all possible
realizations d ∈ D of the demand. That is, the ordering quantity x should satisfy the
following inequalities:

bd − τ
b − c ≤ x ≤

hd + τ
c + h ∀d ∈ D. (1.11)

This could be quite restrictive if the uncertainty set D is large. In particular, if there is at
least one realization d ∈ D greater than τ/c, then the system (1.11) is inconsistent, i.e., the
corresponding problem has no feasible solution.

In such situations it makes sense to introduce the constraint that the probability of
F(x,D) being larger than τ is less than a specified value (significance level) α ∈ (0, 1).
This leads to a chance (also called probabilistic) constraint which can be written in the form

Pr{F(x,D) > τ } ≤ α (1.12)

or equivalently,

Pr{F(x,D) ≤ τ } ≥ 1− α. (1.13)
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6 Chapter 1. Stochastic Programming Models

By adding the chance constraint (1.13) to the optimization problem (1.4), we want to min-
imize the total cost on average while making sure that the risk of the cost to be excessive
(i.e., the probability that the cost is larger than τ ) is small (i.e., less than α). We have that

Pr{F(x,D) ≤ τ } = Pr
{
(c+h)x−τ

h
≤ D ≤ (b−c)x+τ

b

}
. (1.14)

For x ≤ τ/c, the inequalities on the right-hand side of (1.14) are consistent, and hence for
such x,

Pr{F(x,D) ≤ τ } = H
(
(b−c)x+τ

b

)
−H

(
(c+h)x−τ

h

)
. (1.15)

The chance constraint (1.13) becomes

H
(
(b−c)x+τ

b

)
−H

(
(c+h)x−τ

h

)
≥ 1− α. (1.16)

Even for small (but positive) values of α, it can be a significant relaxation of the correspond-
ing worst-case constraints (1.11).

1.2.3 Multistage Models

Suppose now that the company has a planning horizon of T periods. We model the demand
as a random processDt indexed by the time t = 1, . . . , T . At the beginning, at t = 1, there
is (known) inventory level y1. At each period t = 1, . . . , T , the company first observes the
current inventory level yt and then places an order to replenish the inventory level to xt .
This results in order quantity xt − yt , which clearly should be nonnegative, i.e., xt ≥ yt .
After the inventory is replenished, demand dt is realized,2 and hence the next inventory
level, at the beginning of period t + 1, becomes yt+1 = xt − dt . We allow backlogging, and
the inventory level yt may become negative. The total cost incurred in period t is

ct (xt − yt )+ bt [dt − xt ]+ + ht [xt − dt ]+,
where ct , bt , ht are the ordering, backorder penalty, and holding costs per unit, respectively,
at time t . We assume that bt > ct > 0 and ht ≥ 0, t = 1, . . . , T . The objective is to
minimize the expected value of the total cost over the planning horizon. This can be written
as the following optimization problem:

Min
xt≥yt

T∑
t=1

E
{
ct (xt − yt )+ bt [Dt − xt ]+ + ht [xt −Dt ]+

}
s.t. yt+1 = xt −Dt, t = 1, . . . , T − 1.

(1.17)

For T = 1, problem (1.17) is essentially the same as the (static) problem (1.4).
(The only difference is the assumption here of the initial inventory level y1.) However,
for T > 1, the situation is more subtle. It is not even clear what is the exact meaning of
the formulation (1.17). There are several equivalent ways to give precise meaning to the
above problem. One possible way is to write equations describing the dynamics of the
corresponding optimization process. That is what we discuss next.

2As before, we denote by dt a particular realization of the random variable Dt .
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Consider the demand process Dt , t = 1, . . . , T . We denote by D[t] := (D1, . . . , Dt )

the history of the demand process up to time t , and by d[t] := (d1, . . . , dt ) its particular
realization. At each period (stage) t , our decision about the inventory level xt should depend
only on information available at the time of the decision, i.e., on an observed realization
d[t−1] of the demand process, and not on future observations. This principle is called the
nonanticipativity constraint. We assume, however, that the probability distribution of the
demand process is known. That is, the conditional probability distribution of Dt , given
D[t−1] = d[t−1], is assumed to be known.

At the last stage t = T , for observed inventory level yT , we need to solve the problem

Min
xT≥yT

cT (xT − yT )+ E
{
bT [DT − xT ]+ + hT [xT −DT ]+

∣∣D[T−1] = d[T−1]
}
. (1.18)

The expectation in (1.18) is conditional on the realization d[T−1] of the demand process prior
to the considered time T . The optimal value (and the set of optimal solutions) of problem
(1.18) depends on yT and d[T−1] and is denoted QT (yT , d[T−1]). At stage t = T − 1 we
solve the problem

Min
xT−1≥yT−1

cT−1(xT−1 − yT−1)

+ E

{
bT−1[DT−1 − xT−1]+ + hT−1[xT−1 −DT−1]+
+QT

(
xT−1 −DT−1,D[T−1]

) ∣∣D[T−2] = d[T−2]
}
.

(1.19)

Its optimal value is denotedQT−1(yT−1, d[T−2]). Proceeding in this way backward in time,
we write the following dynamic programming equations:

Qt(yt , d[t−1]) =min
xt≥yt

ct (xt − yt )+ E

{
bt [Dt − xt ]+

+ ht [xt −Dt ]+ +Qt+1
(
xt −Dt,D[t]

) ∣∣D[t−1] = d[t−1]
}
,

(1.20)

t = T − 1, . . . , 2. Finally, at the first stage we need to solve the problem

Min
x1≥y1

c1(x1 − y1)+ E
{
b1[D1 − x1]+ + h1[x1 −D1]+ +Q2 (x1 −D1,D1)

}
. (1.21)

Let us take a closer look at the above decision process. We need to understand how
the dynamic programming equations (1.19)–(1.21) could be solved and what is the meaning
of the solutions. Starting with the last stage, t = T , we need to calculate the value func-
tionsQt(yt , d[t−1]) going backward in time. In the present case, the value functions cannot
be calculated in a closed form and should be approximated numerically. For a generally
distributed demand process, this could be very difficult or even impossible. The situation
simplifies dramatically if we assume that the random process Dt is stagewise independent,
that is, if Dt is independent of D[t−1], t = 2, . . . , T . Then the conditional expectations
in equations (1.18)–(1.19) become the corresponding unconditional expectations. Con-
sequently, the value functions Qt(yt ) do not depend on demand realizations and become
functions of the respective univariate variables yt only. In that case, by discretization of yt
and the (one-dimensional) distribution of Dt , these value functions can be calculated in a
recursive way.
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8 Chapter 1. Stochastic Programming Models

Suppose now that somehow we can solve the dynamic programming equations (1.19)–
(1.21). Let x̄t be a corresponding optimal solution, i.e., x̄T is an optimal solution of (1.18),
x̄t is an optimal solution of the right-hand side of (1.20) for t = T − 1, . . . , 2, and x̄1 is an
optimal solution of (1.21). We see that x̄t is a function of yt and d[t−1] for t = 2, . . . , T ,
while the first stage (optimal) decision x̄1 is independent of the data. Under the assumption
of stagewise independence, x̄t = x̄t (yt ) becomes a function of yt alone. Note that yt , in
itself, is a function of d[t−1] = (d1, . . . , dt−1) and decisions (x1, . . . , xt−1). Therefore,
we may think about a sequence of possible decisions xt = xt (d[t−1]), t = 1, . . . , T , as
functions of realizations of the demand process available at the time of the decision (with
the convention that x1 is independent of the data). Such a sequence of decisions xt (d[t−1])
is called an implementable policy, or simply a policy. That is, an implementable policy is
a rule which specifies our decisions, based on information available at the current stage,
for any possible realization of the demand process. By definition, an implementable policy
xt = xt (d[t−1]) satisfies the nonanticipativity constraint. A policy is said to be feasible if
it satisfies other constraints with probability one (w.p. 1). In the present case, a policy is
feasible if xt ≥ yt , t = 1, . . . , T , for almost every realization of the demand process.

We can now formulate the optimization problem (1.17) as the problem of minimization
of the expectation in (1.17) with respect to all implementable feasible policies. An optimal
solution of such problem will give us an optimal policy. We have that a policy x̄t is
optimal if it is given by optimal solutions of the respective dynamic programming equations.
Note again that under the assumption of stagewise independence, an optimal policy x̄t =
x̄t (yt ) is a function of yt alone. Moreover, in that case it is possible to give the following
characterization of the optimal policy. Let x∗t be an (unconstrained) minimizer of

ctxt + E
{
bt [Dt − xt ]+ + ht [xt −Dt ]+ +Qt+1 (xt −Dt)

}
, t = T , . . . , 1, (1.22)

with the convention thatQT+1(·) = 0. SinceQt+1(·) is nonnegative valued and ct+ht > 0,
we have that the function in (1.22) tends to +∞ if xt →+∞. Similarly, as bt > ct , it also
tends to +∞ if xt →−∞. Moreover, this function is convex and continuous (as long as it
is real valued) and hence attains its minimal value. Then by using convexity of the value
functions, it is not difficult to show that x̄t = max{yt , x∗t } is an optimal policy. Such policy
is called the basestock policy. A similar result holds without the assumption of stagewise
independence, but then the critical values x∗t depend on realizations of the demand process
up to time t − 1.

As mentioned above, if the stagewise independence condition is satisfied, then each
value function Qt(yt ) is a function of the variable yt . In that case, we can accurately
represent Qt(·) by discretization, i.e., by specifying its values at a finite number of points
on the real line. Consequently, the corresponding dynamic programming equations can
be accurately solved recursively going backward in time. The situation starts to change
dramatically with an increase of the number of variables on which the value functions
depend, like in the example discussed in the next section. The discretization approach
may still work with several state variables, but it quickly becomes impractical when the
dimension of the state vector increases. This is called the “curse of dimensionality.” As we
shall see it later, stochastic programming approaches the problem in a different way, by
exploring convexity of the underlying problem and thus attempting to solve problems with
a state vector of high dimension. This is achieved by means of discretization of the random
process Dt in a form of a scenario tree, which may also become prohibitively large.
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1.3 Multiproduct Assembly

1.3.1 Two-Stage Model

Consider a situation where a manufacturer produces n products. There are in total m
different parts (or subassemblies) which have to be ordered from third-party suppliers. A
unit of product i requires aij units of part j , where i = 1, . . . , n and j = 1, . . . , m. Of
course, aij may be zero for some combinations of i and j . The demand for the products
is modeled as a random vector D = (D1, . . . , Dn). Before the demand is known, the
manufacturer may preorder the parts from outside suppliers at a cost of cj per unit of part j .
After the demandD is observed, the manufacturer may decide which portion of the demand
is to be satisfied, so that the available numbers of parts are not exceeded. It costs additionally
li to satisfy a unit of demand for product i, and the unit selling price of this product is qi .
The parts not used are assessed salvage values sj < cj . The unsatisfied demand is lost.

Suppose the numbers of parts ordered are equal to xj , j = 1, . . . , m. After the
demand D becomes known, we need to determine how much of each product to make. Let
us denote the numbers of units produced by zi , i = 1, . . . , n, and the numbers of parts left
in inventory by yj , j = 1, . . . , m. For an observed value (a realization) d = (d1, . . . , dn) of
the random demand vectorD, we can find the best production plan by solving the following
linear programming problem:

Min
z,y

n∑
i=1

(li − qi)zi −
n∑
j=1

sj yj

s.t. yj = xj −
n∑
i=1

aij zi, j = 1, . . . , m,

0 ≤ zi ≤ di, i = 1, . . . , n, yj ≥ 0, j = 1, . . . , m.

Introducing the matrix A with entries aij , where i = 1, . . . , n and j = 1, . . . , m, we can
write this problem compactly as follows:

Min
z,y

(l − q)Tz− sTy

s.t. y = x − ATz,

0 ≤ z ≤ d, y ≥ 0.

(1.23)

Observe that the solution of this problem, that is, the vectors z and y, depend on realization
d of the demand vectorD as well as on x. LetQ(x, d) denote the optimal value of problem
(1.23). The quantities xj of parts to be ordered can be determined from the optimization
problem

Min
x≥0

cTx + E[Q(x,D)], (1.24)

where the expectation is taken with respect to the probability distribution of the random
demand vectorD. The first part of the objective function represents the ordering cost, while
the second part represents the expected cost of the optimal production plan, given ordered
quantities x. Clearly, for realistic data with qi > li , the second part will be negative, so that
some profit will be expected.
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10 Chapter 1. Stochastic Programming Models

Problem (1.23)–(1.24) is an example of a two-stage stochastic programming problem,
where (1.23) is called the second-stage problem and (1.24) is called the first-stage prob-
lem. As the second-stage problem contains random data (random demand D), its optimal
value Q(x,D) is a random variable. The distribution of this random variable depends on
the first-stage decisions x, and therefore the first-stage problem cannot be solved without
understanding of the properties of the second-stage problem.

In the special case of finitely many demand scenarios d1, . . . , dK occurring with
positive probabilities p1, . . . , pK , with

∑K
k=1 pk = 1, the two-stage problem (1.23)–(1.24)

can be written as one large-scale linear programming problem:

Min cTx +
K∑
k=1

pk
[
(l − q)Tzk − sTyk

]
s.t. yk = x − ATzk, k = 1, . . . , K,

0 ≤ zk ≤ dk, yk ≥ 0, k = 1, . . . , K,

x ≥ 0,

(1.25)

where the minimization is performed over vector variables x and zk, yk , k = 1, . . . , K . We
have integrated the second-stage problem (1.23) into this formulation, but we had to allow
for its solution (zk, yk) to depend on the scenario k, because the demand realization dk is
different in each scenario. Because of that, problem (1.25) has the numbers of variables
and constraints roughly proportional to the number of scenarios K .

It is worth noticing the following. There are three types of decision variables here:
the numbers of ordered parts (vector x), the numbers of produced units (vector z), and the
numbers of parts left in the inventory (vector y). These decision variables are naturally clas-
sified as the first- and the second-stage decision variables. That is, the first-stage decisions x
should be made before a realization of the random data becomes available and hence should
be independent of the random data, while the second-stage decision variables z and y are
made after observing the random data and are functions of the data. The first-stage deci-
sion variables are often referred to as here-and-now decisions (solution), and second-stage
decisions are referred to as wait-and-see decisions (solution). It can also be noticed that the
second-stage problem (1.23) is feasible for every possible realization of the random data;
for example, take z = 0 and y = x. In such a situation we say that the problem has relatively
complete recourse.

1.3.2 Chance Constrained Model

Suppose now that the manufacturer is concerned with the possibility of losing demand. The
manufacturer would like the probability that all demand be satisfied to be larger than some
fixed service level 1− α, where α ∈ (0, 1) is small. In this case the problem changes in a
significant way.

Observe that if we want to satisfy demand D = (D1, . . . , Dn), we need to have
x ≥ ATD. If we have the parts needed, there is no need for the production planning stage,
as in problem (1.23). We simply produce zi = Di , i = 1, . . . , n, whenever it is feasible.
Also, the production costs and salvage values do not affect our problem. Consequently, the
requirement of satisfying the demand with probability at least 1− α leads to the following



SPbook
2009/8/20
page 11

�

�

�

�

�

�

�

�
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formulation of the corresponding problem:

Min
x≥0

cTx

s.t. Pr
{
ATD ≤ x} ≥ 1− α.

(1.26)

The chance (also called probabilistic) constraint in the above model is more difficult than in
the case of the news vendor model considered in section 1.2.2, because it involves a random
vector W = ATD rather than a univariate random variable.

Owing to the separable nature of the chance constraint in (1.26), we can rewrite this
constraint as

HW(x) ≥ 1− α, (1.27)

where HW(x) := Pr(W ≤ x) is the cumulative distribution function of the n-dimensional
random vector W = ATD. Observe that if n = 1 and c > 0, then an optimal solution x̄
of (1.27) is given by the left-side (1− α)-quantile of W , that is, x̄ = H−1

W (1− α). On the
other hand, in the case of multidimensional vector W , its distribution has many “smallest
(left-side) (1−α)-quantiles,” and the choice of x̄ will depend on the relative proportions of
the cost coefficients cj . It is also worth mentioning that even when the coordinates of the
demand vector D are independent, the coordinates of the vector W can be dependent, and
thus the chance constraint of (1.27) cannot be replaced by a simpler expression featuring
one-dimensional marginal distributions.

The feasible set {
x ∈ R

m
+ : Pr

(
ATD ≤ x) ≥ 1− α}

of problem (1.26) can be written in the following equivalent form:{
x ∈ R

m
+ : ATd ≤ x, d ∈ D, Pr(D) ≥ 1− α}. (1.28)

In the formulation (1.28), the set D can be any measurable subset of R
n such that probability

of D ∈ D is at least 1 − α. A considerable simplification can be achieved by choosing a
fixed set Dα in such a way that Pr(Dα) ≥ 1− α. In that way we obtain a simplified version
of problem (1.26):

Min
x≥0

cTx

s.t. ATd ≤ x, ∀ d ∈ Dα.
(1.29)

The set Dα in this formulation is sometimes referred to as the uncertainty set and the whole
formulation as the robust optimization problem. Observe that in our case we can solve this
problem in the following way. For each part type j we determine xj to be the minimum
number of units necessary to satisfy every demand d ∈ Dα , that is,

xj = max
d∈Dα

n∑
i=1

aij di, j = 1, . . . , n.

In this case the solution is completely determined by the uncertainty set Dα and it does not
depend on the cost coefficients cj .

The choice of the uncertainty set, satisfying the corresponding chance constraint, is
not unique and often is governed by computational convenience. In this book we shall be
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12 Chapter 1. Stochastic Programming Models

mainly concerned with stochastic models, and we shall not discuss models and methods of
robust optimization.

1.3.3 Multistage Model

Consider now the situation when the manufacturer has a planning horizon of T periods.
The demand is modeled as a stochastic process Dt , t = 1, . . . , T , where each Dt =(
Dt1, . . . , Dtn

)
is a random vector of demands for the products. The unused parts can be

stored from one period to the next, and holding one unit of part j in inventory costs hj . For
simplicity, we assume that all costs and prices are the same in all periods.

It would not be reasonable to plan specific order quantities for the entire plan-
ning horizon T . Instead, one has to make orders and production decisions at succes-
sive stages, depending on the information available at the current stage. We use symbol
D[t] :=

(
D1, . . . , Dt

)
to denote the history of the demand process in periods 1, . . . , t . In

every multistage decision problem it is very important to specify which of the decision
variables may depend on which part of the past information.

Let us denote by xt−1 =
(
xt−1,1, . . . , xt−1,n

)
the vector of quantities ordered at the

beginning of stage t , before the demand vector Dt becomes known. The numbers of units
produced in stage t will be denoted by zt and the inventory level of parts at the end of stage
t by yt for t = 1, . . . , T . We use the subscript t − 1 for the order quantity to stress that
it may depend on the past demand realizations D[t−1] but not on Dt , while the production
and storage variables at stage t may depend on D[t], which includes Dt . In the special
case of T = 1, we have the two-stage problem discussed in section 1.3.1; the variable x0

corresponds to the first stage decision vector x, while z1 and y1 correspond to the second-
stage decision vectors z and y, respectively.

Suppose T > 1 and consider the last stage t = T , after the demand DT has been
observed. At this time, all inventory levels yT−1 of the parts, as well as the last order
quantities xT−1, are known. The problem at stage T is therefore identical to the second-
stage problem (1.23) of the two-stage formulation:

Min
zT ,yT

(l − q)TzT − sTyT

s.t. yT = yT−1 + xT−1 − ATzT ,

0 ≤ zT ≤ dT , yT ≥ 0,

(1.30)

where dT is the observed realization of DT . Denote by QT (xT−1, yT−1, dT ) the optimal
value of (1.30). This optimal value depends on the latest inventory levels, order quantities,
and the present demand. At stage T − 1 we know realization d[T−1] of D[T−1], and thus we
are concerned with the conditional expectation of the last stage cost, that is, the function

QT (xT−1, yT−1, d[T−1]) := E
{
QT (xT−1, yT−1,DT )

∣∣ D[T−1] = d[T−1]
}
.

At stage T − 1 we solve the problem

Min
zT−1,yT−1,xT−1

(l − q)TzT−1 + hTyT−1 + cTxT−1 +QT (xT−1, yT−1, d[T−1])

s.t. yT−1 = yT−2 + xT−2 − ATzT−1,

0 ≤ zT−1 ≤ dT−1, yT−1 ≥ 0.

(1.31)
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1.4. Portfolio Selection 13

Its optimal value is denoted by QT−1(xT−2, yT−2, d[T−1]). Generally, the problem at stage
t = T − 1, . . . , 1 has the form

Min
zt ,yt ,xt

(l − q)Tzt + hTyt + cTxt +Qt+1(xt , yt , d[t])

s.t. yt = yt−1 + xt−1 − ATzt ,

0 ≤ zt ≤ dt , yt ≥ 0,

(1.32)

with
Qt+1(xt , yt , d[t]) := E

{
Qt+1(xt , yt ,D[t+1])

∣∣ D[t] = d[t]}.
The optimal value of problem (1.32) is denoted by Qt(xt−1, yt−1, d[t]), and the backward
recursion continues. At stage t = 1, the symbol y0 represents the initial inventory levels
of the parts, and the optimal value function Q1(x0, d1) depends only on the initial order x0

and realization d1 of the first demand D1.
The initial problem is to determine the first order quantities x0. It can be written as

Min
x0≥0

cTx0 + E[Q1(x0,D1)]. (1.33)

Although the first-stage problem (1.33) looks similar to the first-stage problem (1.24) of the
two-stage formulation, it is essentially different since the function Q1(x0, d1) is not given
in a computationally accessible form but in itself is a result of recursive optimization.

1.4 Portfolio Selection

1.4.1 Static Model

Suppose that we want to invest capital W0 in n assets, by investing an amount xi in asset i
for i = 1, . . . , n. Suppose, further, that each asset has a respective return rate Ri (per one
period of time), which is unknown (uncertain) at the time we need to make our decision.
We address now a question of how to distribute our wealthW0 in an optimal way. The total
wealth resulting from our investment after one period of time equals

W1 =
n∑
i=1

ξixi,

where ξi := 1+Ri . We have here the balance constraint
∑n

i=1 xi ≤ W0. Suppose, further,
that one possible investment is cash, so that we can write this balance condition as the
equation

∑n
i=1 xi = W0. Viewing returns Ri as random variables, one can try to maximize

the expected return on an investment. This leads to the following optimization problem:

Max
x≥0

E[W1] s.t.
n∑
i=1

xi = W0. (1.34)

We have here that

E[W1] =
n∑
i=1

E[ξi]xi =
n∑
i=1

µixi,
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14 Chapter 1. Stochastic Programming Models

where µi := E[ξi] = 1 + E[Ri] and x = (x1, . . . , xn) ∈ R
n. Therefore, problem (1.34)

has a simple optimal solution of investing everything into an asset with the largest expected
return rate and has the optimal value of µ∗W0, where µ∗ := max1≤i≤n µi . Of course, from
the practical point of view, such a solution is not very appealing. Putting everything into
one asset can be very dangerous, because if its realized return rate is bad, one can lose much
money.

An alternative approach is to maximize expected utility of the wealth represented by a
concave nondecreasing function U(W1). This leads to the following optimization problem:

Max
x≥0

E[U(W1)] s.t.
n∑
i=1

xi = W0. (1.35)

This approach requires specification of the utility function. For instance, let U(W) be
defined as

U(W) :=
{
(1+ q)(W − a) if W ≥ a,
(1+ r)(W − a) if W ≤ a (1.36)

with r > q > 0 and a > 0. We can view the involved parameters as follows: a is the
amount that we have to pay after return on the investment, q is the interest rate at which we
can invest the additional wealth W − a, provided that W > a, and r is the interest rate at
which we will have to borrow if W is less than a. For the above utility function, problem
(1.35) can be formulated as the following two-stage stochastic linear program:

Max
x≥0

E[Q(x, ξ)] s.t.
n∑
i=1

xi = W0, (1.37)

where Q(x, ξ) is the optimal value of the problem

Max
y,z∈R+

(1+ q)y − (1+ r)z s.t.
n∑
i=1

ξixi = a + y − z. (1.38)

We can view the above problem (1.38) as the second-stage program. Given a realization
ξ = (ξ1, . . . , ξn) of random data, we make an optimal decision by solving the corresponding
optimization problem. Of course, in the present case the optimal valueQ(x, ξ) is a function
of W1 =∑n

i=1 ξixi and can be written explicitly as U(W1).
Yet another possible approach is to maximize the expected return while controlling

the involved risk of the investment. There are several ways in which the concept of risk
can be formalized. For instance, we can evaluate risk by variability of W measured by
its variance Var[W ] = E[W 2] − (E[W ])2. Since W1 is a linear function of the random
variables ξi , we have that

Var[W1] = xTΣx =
n∑

i,j=1

σij xixj ,

whereΣ = [σij ] is the covariance matrix of the random vector ξ . (Note that the covariance
matrices of the random vectors ξ = (ξ1, . . . , ξn) and R = (R1, . . . , Rn) are identical.)
This leads to the optimization problem of maximizing the expected return subject to the
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1.4. Portfolio Selection 15

additional constraint Var[W1] ≤ ν, where ν > 0 is a specified constant. This problem can
be written as

Max
x≥0

n∑
i=1

µixi s.t.
n∑
i=1

xi = W0, xTΣx ≤ ν. (1.39)

Since the covariance matrix Σ is positive semidefinite, the constraint xTΣx ≤ ν is convex
quadratic, and hence (1.39) is a convex problem. Note that problem (1.39) has at least one
feasible solution of investing everything in cash, in which case Var[W1] = 0, and since
its feasible set is compact, the problem has an optimal solution. Moreover, since problem
(1.39) is convex and satisfies the Slater condition, there is no duality gap between this
problem and its dual:

Min
λ≥0

Max∑n
i=1 xi=W0
x≥0

{
n∑
i=1

µixi − λ
(
xTΣx − ν)} . (1.40)

Consequently, there exists the Lagrange multiplier λ̄ ≥ 0 such that problem (1.39) is equiv-
alent to the problem

Max
x≥0

n∑
i=1

µixi − λ̄xTΣx s.t.
n∑
i=1

xi = W0. (1.41)

The equivalence here means that the optimal value of problem (1.39) is equal to the optimal
value of problem (1.41) plus the constant λ̄ν and that any optimal solution of problem (1.39)
is also an optimal solution of problem (1.41). In particular, if problem (1.41) has unique
optimal solution x̄, then x̄ is also the optimal solution of problem (1.39). The corresponding
Lagrange multiplier λ̄ is given by an optimal solution of the dual problem (1.40). We can
view the objective function of the above problem as a compromise between the expected
return and its variability measured by its variance.

Another possible formulation is to minimize Var[W1], keeping the expected return
E[W1] above a specified value τ . That is,

Min
x≥0

xTΣx s.t.
n∑
i=1

xi = W0,

n∑
i=1

µixi ≥ τ. (1.42)

For appropriately chosen constants ν, λ̄, and τ , problems (1.39)–(1.42) are equivalent to
each other. Problems (1.41) and (1.42) are quadratic programming problems, while problem
(1.39) can be formulated as a conic quadratic problem. These optimization problems can
be efficiently solved. Note finally that these optimization problems are based on the first
and second order moments of random data ξ and do not require complete knowledge of the
probability distribution of ξ .

We can also approach risk control by imposing chance constraints. Consider the
problem

Max
x≥0

n∑
i=1

µixi s.t.
n∑
i=1

xi = W0, Pr

{
n∑
i=1

ξixi ≥ b
}
≥ 1− α. (1.43)

That is, we impose the constraint that with probability at least 1 − α our wealth W1 =∑n
i=1 ξixi should not fall below a chosen amount b. Suppose the random vector ξ has a
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16 Chapter 1. Stochastic Programming Models

multivariate normal distribution with mean vector µ and covariance matrixΣ , written ξ ∼
N (µ,Σ). ThenW1 has normal distribution with mean

∑n
i=1 µixi and variance xTΣx, and

Pr{W1 ≥ b} = Pr
{
Z ≥ b −∑n

i=1 µixi√
xTΣx

}
= �

(∑n
i=1 µixi − b√
xTΣx

)
, (1.44)

where Z ∼ N (0, 1) has the standard normal distribution and �(z) = Pr(Z ≤ z) is the cdf
of Z.

Therefore, we can write the chance constraint of problem (1.43) in the form3

b −
n∑
i=1

µixi + zα
√
xTΣx ≤ 0, (1.45)

where zα := �−1(1− α) is the (1− α)-quantile of the standard normal distribution. Note
that since matrix Σ is positive semidefinite,

√
xTΣx defines a seminorm on R

n and is a
convex function. Consequently, if 0 < α ≤ 1/2, then zα ≥ 0 and the constraint (1.45)
is convex. Therefore, provided that problem (1.43) is feasible, there exists a Lagrange
multiplier γ ≥ 0 such that problem (1.43) is equivalent to the problem

Max
x≥0

n∑
i=1

µixi − η
√
xTΣx s.t.

n∑
i=1

xi = W0, (1.46)

where η = γ zα/(1+ γ ).
In financial engineering the (left-side) (1− α)-quantile of a random variable Y (rep-

resenting losses) is called Value-at-Risk, i.e.,

V@Rα(Y ) := H−1(1− α), (1.47)

where H(·) is the cdf of Y . The chance constraint of problem (1.43) can be written in the
form of a Value-at-Risk constraint

V@Rα

(
b −

n∑
i=1

ξixi

)
≤ 0. (1.48)

It is possible to write a chance (Value-at-Risk) constraint here in a closed form because
of the assumption of joint normal distribution. Note that in the present case the random
variables ξi cannot be negative, which indicates that the assumption of normal distribution
is not very realistic.

1.4.2 Multistage Portfolio Selection

Suppose we are allowed to rebalance our portfolio in time periods t = 1, . . . , T − 1 but
without injecting additional cash into it. At each period t we need to make a decision about
distribution of our current wealth Wt among n assets. Let x0 = (x10, . . . , xn0) be initial

3Note that if xTΣx = 0, i.e., Var(W1) = 0, then the chance constraint of problem (1.43) holds iff∑n
i=1 µixi ≥ b. In that case equivalence to the constraint (1.45) obviously holds.
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1.4. Portfolio Selection 17

amounts invested in the assets. Recall that each xi0 is nonnegative and that the balance
equation

∑n
i=1 xi0 = W0 should hold.

We assume now that respective return rates R1t , . . . , Rnt , at periods t = 1, . . . , T ,
form a random process with a known distribution. Actually, we will work with the (vector
valued) random process ξ1, . . . , ξT , where ξt = (ξ1t , . . . , ξnt ) and ξit := 1 + Rit , i =
1, . . . , n, t = 1, . . . , T . At time period t = 1 we can rebalance the portfolio by specifying
the amounts x1 = (x11, . . . , xn1) invested in the respective assets. At that time, we already
know the actual returns in the first period, so it is reasonable to use this information in
the rebalancing decisions. Thus, our second-stage decisions, at time t = 1, are actually
functions of realizations of the random data vector ξ1, i.e., x1 = x1(ξ1). Similarly, at time
t our decision xt = (x1t , . . . , xnt ) is a function xt = xt (ξ[t]) of the available information
given by realization ξ[t] = (ξ1, . . . , ξt ) of the data process up to time t . A sequence of
specific functions xt = xt (ξ[t]), t = 0, 1, . . . , T − 1, with x0 being constant, defines an
implementable policy of the decision process. It is said that such policy is feasible if
it satisfies w.p. 1 the model constraints, i.e., the nonnegativity constraints xit (ξ[t]) ≥ 0,
i = 1, . . . , n, t = 0, . . . , T − 1, and the balance of wealth constraints

n∑
i=1

xit (ξ[t]) = Wt.

At period t = 1, . . . , T , our wealth Wt depends on the realization of the random data
process and our decisions up to time t and is equal to

Wt =
n∑
i=1

ξitxi,t−1(ξ[t−1]).

Suppose our objective is to maximize the expected utility of this wealth at the last period,
that is, we consider the problem

Max E[U(WT )]. (1.49)

It is a multistage stochastic programming problem, where stages are numbered from t = 0
to t = T − 1. Optimization is performed over all implementable and feasible policies.

Of course, in order to complete the description of the problem, we need to define
the probability distribution of the random process R1, . . . , RT . This can be done in many
different ways. For example, one can construct a particular scenario tree defining time
evolution of the process. If at every stage the random return of each asset is allowed to have
just two continuations, independent of other assets, then the total number of scenarios is
2nT . It also should be ensured that 1+Rit ≥ 0, i = 1, . . . , n, t = 1, . . . , T , for all possible
realizations of the random data.

In order to write dynamic programming equations, let us consider the above multistage
problem backward in time. At the last stage t = T −1, a realization ξ[T−1] = (ξ1, . . . , ξT−1)

of the random process is known and xT−2 has been chosen. Therefore, we have to solve the
problem

Max
xT−1≥0,WT

E

{
U [WT ]

∣∣ξ[T−1]
}

s.t. WT =
n∑
i=1

ξiT xi,T−1,

n∑
i=1

xi,T−1 = WT−1,

(1.50)
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18 Chapter 1. Stochastic Programming Models

where E{U [WT ]|ξ[T−1]} denotes the conditional expectation of U [WT ] given ξ[T−1]. The
optimal value of the above problem (1.50) depends on WT−1 and ξ[T−1] and is denoted
QT−1(WT−1, ξ[T−1]).

Continuing in this way, at stage t = T − 2, . . . , 1, we consider the problem

Max
xt≥0,Wt+1

E

{
Qt+1(Wt+1, ξ[t+1])

∣∣ξ[t]}
s.t. Wt+1 =

n∑
i=1

ξi,t+1xi,t ,

n∑
i=1

xi,t = Wt,

(1.51)

whose optimal value is denoted Qt(Wt, ξ[t]). Finally, at stage t = 0 we solve the problem

Max
x0≥0,W1

E[Q1(W1, ξ1)]

s.t. W1 =
n∑
i=1

ξi1xi0,

n∑
i=1

xi0 = W0.
(1.52)

For a general distribution of the data process ξt , it may be hard to solve these dynamic
programming equations. The situation simplifies dramatically if the process ξt is stagewise
independent, i.e., ξt is (stochastically) independent of ξ1, . . . , ξt−1 for t = 2, . . . , T . Of
course, the assumption of stagewise independence is not very realistic in financial models,
but it is instructive to see the dramatic simplifications it allows. In that case, the correspond-
ing conditional expectations become unconditional expectations, and the cost-to-go (value)
function Qt(Wt), t = 1, . . . , T − 1, does not depend on ξ[t]. That is, QT−1(WT−1) is the
optimal value of the problem

Max
xT−1≥0,WT

E {U [WT ]}

s.t. WT =
n∑
i=1

ξiT xi,T−1,

n∑
i=1

xi,T−1 = WT−1,

and Qt(Wt) is the optimal value of

Max
xt≥0,Wt+1

E{Qt+1(Wt+1)}

s.t. Wt+1 =
n∑
i=1

ξi,t+1xi,t ,

n∑
i=1

xi,t = Wt

for t = T − 2, . . . , 1.
The other relevant question is what utility function to use. Let us consider the loga-

rithmic utility function U(W) := lnW . Note that this utility function is defined forW > 0.
For positive numbers a and w and for WT−1 = w and WT−1 = aw, there is a one-to-one
correspondence xT−1 ↔ axT−1 between the feasible sets of the corresponding problem
(1.50). For the logarithmic utility function, this implies the following relation between the
optimal values of these problems:

QT−1(aw, ξ[T−1]) = QT−1(w, ξ[T−1])+ ln a. (1.53)
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1.4. Portfolio Selection 19

That is, at stage t = T − 1 we solve the problem

Max
xT−1≥0

E

{
ln

(
n∑
i=1

ξi,T xi,T−1

) ∣∣∣ξ[T−1]

}
s.t.

n∑
i=1

xi,T−1 = WT−1. (1.54)

By (1.53) its optimal value is

QT−1
(
WT−1, ξ[T−1]

) = νT−1
(
ξ[T−1]

)+ lnWT−1,

where νT−1
(
ξ[T−1]

)
denotes the optimal value of (1.54) for WT−1 = 1. At stage t = T − 2

we solve the problem

Max
xT−2≥0

E

{
νT−1

(
ξ[T−1]

)+ ln

(
n∑
i=1

ξi,T−1xi,T−2

) ∣∣∣ξ[T−2]

}

s.t.
n∑
i=1

xi,T−2 = WT−2.

(1.55)

Of course, we have that

E

{
νT−1

(
ξ[T−1]

)+ ln

(
n∑
i=1

ξi,T−1xi,T−2

) ∣∣∣ξ[T−2]

}

= E

{
νT−1

(
ξ[T−1]

) ∣∣∣ξ[T−2]
}
+ E

{
ln

(
n∑
i=1

ξi,T−1xi,T−2

) ∣∣∣ξ[T−2]

}
,

and hence by arguments similar to (1.53), the optimal value of (1.55) can be written as

QT−2
(
WT−2, ξ[T−2]

) = E
{
νT−1

(
ξ[T−1]

) ∣∣ξ[T−2]
}+ νT−2

(
ξ[T−2]

)+ lnWT−2,

where νT−2
(
ξ[T−2]

)
is the optimal value of the problem

Max
xT−2≥0

E

{
ln

(
n∑
i=1

ξi,T−1xi,T−2

) ∣∣∣ξ[T−2]

}
s.t.

n∑
i=1

xi,T−2 = 1.

An identical argument applies at earlier stages. Therefore, it suffices to solve at each stage
t = T − 1, . . . , 1, 0, the corresponding optimization problem

Max
xt≥0

E

{
ln

(
n∑
i=1

ξi,t+1xi,t

) ∣∣∣ξ[t]} s.t.
n∑
i=1

xi,t = Wt (1.56)

in a completely myopic fashion.
By definition, we set ξ0 to be constant, so that for the first-stage problem, at t = 0,

the corresponding expectation is unconditional. An optimal solution x̄t = x̄t (Wt , ξ[t]) of
problem (1.56) gives an optimal policy. In particular, the first-stage optimal solution x̄0 is
given by an optimal solution of the problem

Max
x0≥0

E

{
ln

(
n∑
i=1

ξi1xi0

)}
s.t.

n∑
i=1

xi0 = W0. (1.57)
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20 Chapter 1. Stochastic Programming Models

We also have here that the optimal value, denoted ϑ∗, of the optimization problem (1.49)
can be written as

ϑ∗ = lnW0 + ν0 +
T−1∑
t=1

E
[
νt (ξ[t])

]
, (1.58)

where νt (ξ[t]) is the optimal value of problem (1.56) forWt = 1. Note that ν0+ lnW0 is the
optimal value of problem (1.57) with ν0 being the (deterministic) optimal value of (1.57)
for W0 = 1.

If the random process ξt is stagewise independent, then conditional expectations in
(1.56) are the same as the corresponding unconditional expectations, and hence optimal
values νt (ξ[t]) = νt do not depend on ξ[t] and are given by the optimal value of the problem

Max
xt≥0

E

{
ln

(
n∑
i=1

ξi,t+1xi,t

)}
s.t.

n∑
i=1

xi,t = 1. (1.59)

Also in the stagewise independent case, the optimal policy can be described as follows. Let
x∗t = (x∗1t , . . . , x

∗
nt ) be the optimal solution of (1.59), t = 0, . . . , T − 1. Such optimal

solution is unique by strict concavity of the logarithm function. Then

x̄t (Wt) := Wtx
∗
t , t = 0, . . . , T − 1,

defines the optimal policy.
Consider now the power utility function U(W) := Wγ with 1 ≥ γ > 0, defined for

W ≥ 0. Suppose again that the random process ξt is stagewise independent. Recall that
this condition implies that the cost-to-go functionQt(Wt), t = 1, . . . , T − 1, depends only
on Wt . By using arguments similar to the analysis for the logarithmic utility function, it is
not difficult to show that QT−1(WT−1) = W

γ

T−1QT−1(1), and so on. The optimal policy
x̄t = x̄t (Wt) is obtained in a myopic way as an optimal solution of the problem

Max
xt≥0

E

{(
n∑
i=1

ξi,t+1xit

)γ}
s.t.

n∑
i=1

xit = Wt. (1.60)

That is, x̄t (Wt) = Wtx
∗
t , where x∗t is an optimal solution of problem (1.60) for Wt = 1,

t = 0, . . . , T − 1. In particular, the first-stage optimal solution x̄0 is obtained in a myopic
way by solving the problem

Max
x0≥0

E

{(
n∑
i=1

ξi1xi0

)γ}
s.t.

n∑
i=1

xi0 = W0.

The optimal value ϑ∗ of the corresponding multistage problem (1.49) is

ϑ∗ = Wγ

0

T−1∏
t=0

ηt , (1.61)

where ηt is the optimal value of problem (1.60) for Wt = 1.
The above myopic behavior of multistage stochastic programs is rather exceptional. A

more realistic situation occurs in the presence of transaction costs. These are costs associated
with the changes in the numbers of units (stocks, bonds) held. Introduction of transaction
costs will destroy such myopic behavior of optimal policies.
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1.4.3 Decision Rules

Consider the following policy. Let x∗t = (x∗1t , . . . , x∗nt ), t = 0, . . . , T − 1, be vectors such
that x∗t ≥ 0 and

∑n
i=1 x

∗
it = 1. Define the fixed mix policy

xt (Wt) := Wtx
∗
t , t = 0, . . . , T − 1. (1.62)

As discussed above, under the assumption of stagewise independence, such policies are
optimal for the logarithmic and power utility functions provided that x∗t are optimal solutions
of the respective problems (problem (1.59) for the logarithmic utility function and problem
(1.60) withWt = 1 for the power utility function). In other problems, a policy of form (1.62)
may be nonoptimal. However, it is readily implementable, once the current wealth Wt is
observed. As mentioned, rules for calculating decisions as functions of the observations
gathered up to time t , similar to (1.62), are called policies or alternatively decision rules.

We analyze now properties of the decision rule (1.62) under the simplifying assump-
tion of stagewise independence. We have

Wt+1 =
n∑
i=1

ξi,t+1xit (Wt) = Wt

n∑
i=1

ξi,t+1x
∗
it . (1.63)

Since the random process ξ1, . . . , ξT is stagewise independent, by independence of ξt+1 and
Wt we have

E[Wt+1] = E[Wt ]E
(

n∑
i=1

ξi,t+1x
∗
it

)
= E[Wt ]

n∑
i=1

µi,t+1x
∗
it︸ ︷︷ ︸

x∗Tt µt+1

, (1.64)

where µt := E[ξt ]. Consequently, by induction,

E[Wt ] =
t∏

τ=1

(
n∑
i=1

µiτ x
∗
i,τ−1

)
=

t∏
τ=1

(
x∗Tτ−1µτ

)
.

In order to calculate the variance of Wt we use the formula

Var(Y ) = E(E[(Y − E(Y |X))2|X]︸ ︷︷ ︸
Var(Y |X)

)+ E([E(Y |X)− EY ]2)︸ ︷︷ ︸
Var[E(Y |X)]

, (1.65)

where X and Y are random variables. Applying (1.65) to (1.63) with Y := Wt+1 and
X := Wt we obtain

Var[Wt+1] = E[W 2
t ]Var

(
n∑
i=1

ξi,t+1x
∗
it

)
+ Var[Wt ]

(
n∑
i=1

µi,t+1x
∗
it

)2

. (1.66)

Recall that E[W 2
t ] = Var[Wt ] + (E[Wt ])2 and Var

(∑n
i=1 ξi,t+1x

∗
it

) = x∗Tt Σt+1x
∗
t , where

Σt+1 is the covariance matrix of ξt+1.
It follows from (1.64) and (1.66) that

Var[Wt+1]
(E[Wt+1])2 =

x∗Tt Σt+1x
∗
t

(x∗Tt µt+1)2
+ Var[Wt ]
(E[Wt ])2 (1.67)
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and hence

Var[Wt ]
(E[Wt ])2 =

t∑
τ=1

Var
(∑n

i=1 ξi,τ x
∗
i,τ−1

)(∑n
i=1 µiτ x

∗
i,τ−1

)2 =
t∑

τ=1

x∗Tτ−1Στx
∗
τ−1

(x∗Tτ−1µτ )
2
, t = 1, . . . , T . (1.68)

This shows that if the terms x∗Tτ−1Στx
∗
τ−1/(x

∗T
τ−1µτ )

2 are of the same order for τ = 1, . . . , T ,
then the ratio of the standard deviation

√
Var[WT ] to the expected wealth E[WT ] is of order

O(
√
T ) with an increase in the number of stages T .

1.5 Supply Chain Network Design
In this section we discuss a stochastic programming approach to modeling a supply chain
network design. A supply chain is a network of suppliers, manufacturing plants, ware-
houses, and distribution channels organized to acquire raw materials, convert these raw
materials to finished products, and distribute these products to customers. We first describe
a deterministic mathematical formulation for the supply chain design problem.

Denote by S,P , and C the respective (finite) sets of suppliers, processing facilities,
and customers. The union N := S ∪P ∪ C of these sets is viewed as the set of nodes of a
directed graph (N ,A), where A is a set of arcs (directed links) connecting these nodes in
a way representing flow of the products. The processing facilities include manufacturing
centers M, finishing facilities F , and warehouses W , i.e., P = M ∪ F ∪W . Further, a
manufacturing center i ∈M or a finishing facility i ∈ F consists of a set of manufacturing
or finishing machines Hi . Thus the set P includes the processing centers as well as the
machines in these centers. Let K be the set of products flowing through the supply chain.

The supply chain configuration decisions consist of deciding which of the processing
centers to build (major configuration decisions) and which processing and finishing ma-
chines to procure (minor configuration decisions). We assign a binary variable xi = 1 if a
processing facility i is built or machine i is procured, and xi = 0 otherwise. The operational
decisions consist of routing the flow of product k ∈ K from the supplier to the customers.
By ykij we denote the flow of product k from a node i to a node j of the network, where
(i, j) ∈ A. A deterministic mathematical model for the supply chain design problem can
be written as follows:

Min
x,y

∑
i∈P

cixi +
∑
k∈K

∑
(i,j)∈A

qkij y
k
ij (1.69)

s.t.
∑
i∈N

ykij −
∑
�∈N

ykj� = 0, j ∈ P , k ∈K, (1.70)∑
i∈N

ykij ≥ dkj , j ∈ C, k ∈K, (1.71)
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∑
i∈N

ykij ≤ skj , j ∈ S, k ∈K, (1.72)

∑
k∈K

rkj

(∑
i∈N

ykij

)
≤ mjxj , j ∈ P , (1.73)

x ∈ X, y ≥ 0. (1.74)

Here ci denotes the investment cost for building facility i or procuring machine i, qkij denotes
the per-unit cost of processing product k at facility i and/or transporting product k on arc
(i, j) ∈ A, dkj denotes the demand of product k at node j , skj denotes the supply of product
k at node j , rkj denotes per-unit processing requirement for product k at node j ,mj denotes
capacity of facility j , X ⊂ {0, 1}|P | is a set of binary variables, and y ∈ R

|A|×|K| is a vector
with components ykij . All cost components are annualized.

The objective function (1.69) is aimed at minimizing total investment and operational
costs. Of course, a similar model can be constructed for maximizing profits. The set X
represents logical dependencies and restrictions, such as xi ≤ xj for all i ∈ Hj and j ∈ P or
j ∈ F , i.e., machine i ∈ Hj should be procured only if facility j is built (since xi are binary,
the constraint xi ≤ xj means that xi = 0 if xj = 0). Constraints (1.70) enforce the flow
conservation of product k across each processing node j . Constraints (1.71) require that
the total flow of product k to a customer node j should exceed the demand dkj at that node.
Constraints (1.72) require that the total flow of product k from a supplier node j should be
less than the supply skj at that node. Constraints (1.73) enforce capacity constraints of the
processing nodes. The capacity constraints then require that the total processing requirement
of all products flowing into a processing node j should be smaller than the capacity mj of
facility j if it is built (xj = 1). If facility j is not built (xj = 0), the constraint will force all
flow variables ykij = 0 for all i ∈ N . Finally, constraint (1.74) enforces feasibility constraint
x ∈ X and the nonnegativity of the flow variables corresponding to an arc (ij) ∈ A and
product k ∈K .

It will be convenient to write problem (1.69)–(1.74) in the following compact form:

Min
x∈X, y≥0

cTx + qTy (1.75)

s.t. Ny = 0, (1.76)

Cy ≥ d, (1.77)

Sy ≤ s, (1.78)

Ry ≤ Mx, (1.79)

where vectors c, q, d , and s correspond to investment costs, processing/transportation
costs, demands, and supplies, respectively; matrices N , C, and S are appropriate matrices
corresponding to the summations on the left-hand side of the respective expressions. The
notation R corresponds to a matrix of rkj , and the notation M corresponds to a matrix with
mj along the diagonal.

It is realistic to assume that at the time at which a decision about vector x ∈ X should
be made, i.e., which facilities to built and machines to procure, there is an uncertainty
about parameters involved in operational decisions represented by vector y ∈ R

|A|×|K|.
This naturally classifies decision variables x as the first-stage decision variables and y as
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the second-stage decision variables. Note that problem (1.75)–(1.79) can be written in the
following equivalent form as a two-stage program:

Min
x∈X c

Tx +Q(x, ξ), (1.80)

where Q(x, ξ) is the optimal value of the second-stage problem

Min
y≥0

qTy (1.81)

s.t. Ny = 0, (1.82)

Cy ≥ d, (1.83)

Sy ≤ s, (1.84)

Ry ≤ Mx (1.85)

with ξ = (q, d, s, R,M) being the vector of the involved parameters. Of course, the above
optimization problem depends on the data vector ξ . If some of the data parameters are
uncertain, then the deterministic problem (1.80) does not make much sense since it depends
on unknown parameters.

Suppose now that we can model uncertain components of the data vector ξ as random
variables with a specified joint probability distribution. Then we can formulate the stochastic
programming problem

Min
x∈X c

Tx + E[Q(x, ξ)], (1.86)

where the expectation is taken with respect to the probability distribution of the random
vector ξ . That is, the cost of the second-stage problem enters the objective of the first-stage
problem on average. A distinctive feature of the stochastic programming problem (1.86) is
that the first-stage problem here is a combinatorial problem with binary decision variables
and finite feasible set X. On the other hand, the second-stage problem (1.81)–(1.85) is a
linear programming problem and its optimal value Q(x, ξ) is convex in x (if x is viewed
as a vector in R

|P |).
It could happen that for some x ∈ X and some realizations of the data ξ , the corre-

sponding second-stage problem (1.81)–(1.85) is infeasible, i.e., the constraints (1.82)–(1.85)
define an empty set. In that case, by definition, Q(x, ξ) = +∞, i.e., we apply an infinite
penalization for infeasibility of the second-stage problem. For example, it could happen that
demand d is not satisfied, i.e.,Cy ≤ d with some inequalities strict, for any y ≥ 0 satisfying
constraints (1.82), (1.84), and (1.85). Sometimes this can be resolved by a recourse action.
That is, if demand is not satisfied, then there is a possibility of supplying the deficit d −Cy
at a penalty cost. This can be modeled by writing the second-stage problem in the form

Min
y≥0,z≥0

qTy + hTz (1.87)

s.t. Ny = 0, (1.88)

Cy + z ≥ d, (1.89)

Sy ≤ s, (1.90)

Ry ≤ Mx, (1.91)

where h represents the vector of (positive) recourse costs. Note that the above problem
(1.87)–(1.91) is always feasible, for example, y = 0 and z ≥ d clearly satisfy the constraints
of this problem.
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Exercises
1.1. Consider the expected value function f (x) := E[F(x,D)], where function F(x, d)

is defined in (1.1). (i) Show that function F(x, d) is convex in x and hence that f (x)
is also convex. (ii) Show that f (·) is differentiable at a point x > 0 iff the cdf H(·)
of D is continuous at x.

1.2. LetH(z) be the cdf of a random variable Z and κ ∈ (0, 1). Show that the minimum
in the definition H−1(κ) = inf {t : H(t) ≥ κ} of the left-side quantile is always
attained.

1.3. Consider the chance constrained problem discussed in section 1.2.2. (i) Show that
system (1.11) has no feasible solution if there is a realization of d greater than τ/c. (ii)
Verify equation (1.15). (iii) Assume that the probability distribution of the demand
D is supported on an interval [l, u] with 0 ≤ l ≤ u < +∞. Show that if the
significance level α = 0, then the constraint (1.16) becomes

bu− τ
b − c ≤ x ≤

hl + τ
c + h

and hence is equivalent to (1.11) for D = [l, u].
1.4. Show that the optimal value functions Qt(yt , d[t−1]), defined in (1.20), are convex

in yt .
1.5. Assuming the stagewise independence condition, show that the basestock policy

x̄t = max{yt , x∗t }, for the inventory model, is optimal (recall that x∗t denotes a
minimizer of (1.22)).

1.6. Consider the assembly problem discussed in section 1.3.1 in the case when all demand
has to be satisfied, by making additional orders of the missing parts. In this case,
the cost of each additionally ordered part j is rj > cj . Formulate the problem as a
linear two-stage stochastic programming problem.

1.7. Consider the assembly problem discussed in section 1.3.3 in the case when all demand
has to be satisfied, by backlogging the excessive demand, if necessary. In this case,
it costs bi to delay delivery of a unit of product i by one period. Additional orders of
the missing parts can be made after the last demandDT becomes known. Formulate
the problem as a linear multistage stochastic programming problem.

1.8. Show that for utility functionU(W), of the form (1.36), problems (1.35) and (1.37)–
(1.38) are equivalent.

1.9. Show that variance of the random return W1 = ξTx is given by formula Var[W1] =
xTΣx, where Σ = E

[
(ξ − µ)(ξ − µ)T] is the covariance matrix of the random

vector ξ and µ = E[ξ ].
1.10. Show that the optimal value functionQt(Wt, ξ[t]), defined in (1.51), is convex inWt .
1.11. Let D be a random variable with cdf H(t) = Pr(D ≤ t) and D1, . . . , DN be an iid

random sample of D with the corresponding empirical cdf ĤN(·). Let a = H−1(κ)

and b = sup{t : H(t) ≤ κ} be respective left- and right-side κ-quantiles of H(·).
Show that min{|Ĥ−1

N (κ)− a∣∣, ∣∣Ĥ−1
N (κ)− b|} tends w.p. 1 to 0 as N →∞.
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Chapter 2

Two-Stage Problems

Andrzej Ruszczyński and Alexander Shapiro

2.1 Linear Two-Stage Problems

2.1.1 Basic Properties

In this section we discuss two-stage stochastic linear programming problems of the form

Min
x∈Rn

cTx + E[Q(x, ξ)]
s.t. Ax = b, x ≥ 0,

(2.1)

where Q(x, ξ) is the optimal value of the second-stage problem

Min
y∈Rm

qTy

s.t. T x +Wy = h, y ≥ 0.
(2.2)

Here ξ := (q, h, T ,W) are the data of the second-stage problem. We view some or all
elements of vector ξ as random, and the expectation operator at the first-stage problem (2.1)
is taken with respect to the probability distribution of ξ . Often, we use the same notation ξ
to denote a random vector and its particular realization. Which of these two meanings will
be used in a particular situation will usually be clear from the context. If there is doubt,
then we write ξ = ξ(ω) to emphasize that ξ is a random vector defined on a corresponding
probability space. We denote by � ⊂ R

d the support of the probability distribution of ξ .
If for some x and ξ ∈ � the second-stage problem (2.2) is infeasible, then by definition

Q(x, ξ) = +∞. It could also happen that the second-stage problem is unbounded from
below and henceQ(x, ξ) = −∞. This is somewhat pathological situation, meaning that for
some value of the first-stage decision vector and a realization of the random data, the value of

27
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28 Chapter 2. Two-Stage Problems

the second-stage problem can be improved indefinitely. Models exhibiting such properties
should be avoided. (We discuss this later.)

The second-stage problem (2.2) is a linear programming problem. Its dual problem
can be written in the form

Max
π
πT(h− T x)

s.t. W Tπ ≤ q.
(2.3)

By the theory of linear programming, the optimal values of problems (2.2) and (2.3) are
equal to each other, unless both problems are infeasible. Moreover, if their common optimal
value is finite, then each problem has a nonempty set of optimal solutions.

Consider the function

sq(χ) := inf
{
qTy : Wy = χ, y ≥ 0

}
. (2.4)

Clearly, Q(x, ξ) = sq(h− T x). By the duality theory of linear programming, if the set

�(q) := {π : W Tπ ≤ q} (2.5)

is nonempty, then
sq(χ) = sup

π∈�(q)
πTχ, (2.6)

i.e., sq(·) is the support function of the set �(q). The set �(q) is convex, closed, and
polyhedral. Hence, it has a finite number of extreme points. (If, moreover,�(q) is bounded,
then it coincides with the convex hull of its extreme points.) It follows that if �(q) is
nonempty, then sq(·) is a positively homogeneous polyhedral function. If the set �(q) is
empty, then the infimum on the right-hand side of (2.4) may take only two values: +∞ or
−∞. In any case it is not difficult to verify directly that the function sq(·) is convex.

Proposition 2.1. For any given ξ , the function Q(·, ξ) is convex. Moreover, if the set
{π : W Tπ ≤ q} is nonempty and problem (2.2) is feasible for at least one x, then the
function Q(·, ξ) is polyhedral.

Proof. Since Q(x, ξ) = sq(h − T x), the above properties of Q(·, ξ) follow from the
corresponding properties of the function sq(·).

Differentiability properties of the function Q(·, ξ) can be described as follows.

Proposition 2.2. Suppose that for given x = x0 and ξ ∈ �, the value Q(x0, ξ) is finite.
Then Q(·, ξ) is subdifferentiable at x0 and

∂Q(x0, ξ) = −T T
D(x0, ξ), (2.7)

where

D(x, ξ) := arg max
π∈�(q)

πT(h− T x)

is the set of optimal solutions of the dual problem (2.3).
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Proof. Since Q(x0, ξ) is finite, the set �(q) defined in (2.5) is nonempty, and hence sq(χ)
is its support function. It is straightforward to see from the definitions that the support
function sq(·) is the conjugate function of the indicator function

Iq(π) :=
{

0 if π ∈ �(q),
+∞ otherwise.

Since the set �(q) is convex and closed, the function Iq(·) is convex and lower semicon-
tinuous. It follows then by the Fenchel–Moreau theorem (Theorem 7.5) that the conjugate
of sq(·) is Iq(·). Therefore, for χ0 := h− T x0, we have (see (7.24))

∂sq(χ0) = arg max
π

{
πTχ0 − Iq(π)

} = arg max
π∈�(q)

πTχ0. (2.8)

Since the set �(q) is polyhedral and sq(χ0) is finite, it follows that ∂sq(χ0) is nonempty.
Moreover, the function s0(·) is piecewise linear, and hence formula (2.7) follows from (2.8)
by the chain rule of subdifferentiation.

It follows that if the function Q(·, ξ) has a finite value in at least one point, then it is
subdifferentiable at that point and hence is proper. Its domain can be described in a more
explicit way.

The positive hull of a matrix W is defined as

posW := {χ : χ = Wy, y ≥ 0} . (2.9)

It is a convex polyhedral cone generated by the columns ofW . Directly from the definition
(2.4) we see that dom sq = posW. Therefore,

domQ(·, ξ) = {x : h− T x ∈ posW }.
Suppose that x is such that χ = h − T x ∈ posW , and let us analyze formula (2.7). The
recession cone of �(q) is equal to

�0 := �(0) =
{
π : W Tπ ≤ 0

}
. (2.10)

Then it follows from (2.6) that sq(χ) is finite iff πTχ ≤ 0 for every π ∈ �0, that is, iff χ
is an element of the polar cone to �0. This polar cone is nothing else but posW , i.e.,

�∗0 = posW. (2.11)

If χ0 ∈ int(posW), then the set of maximizers in (2.6) must be bounded. Indeed, if it was
unbounded, there would exist an element π0 ∈ �0 such that πT

0 χ0 = 0. By perturbing χ0

a little to some χ , we would be able to keep χ within posW and get πT
0 χ > 0, which is a

contradiction, because posW is the polar of �0. Therefore the set of maximizers in (2.6)
is the convex hull of the vertices v of �(q) for which vTχ = sq(χ). Note that �(q) must
have vertices in this case, because otherwise the polar to �0 would have no interior.

If χ0 is a boundary point of posW , then the set of maximizers in (2.6) is unbounded.
Its recession cone is the intersection of the recession cone �0 of �(q) and of the subspace
{π : πTχ0 = 0}. This intersection is nonempty for boundary points χ0 and is equal to the
normal cone to posW at χ0. Indeed, let π0 be normal to posW at χ0. Since both χ0 and
−χ0 are feasible directions at χ0, we must have πT

0 χ0 = 0. Next, for every χ ∈ posW we
have πT

0 χ = πT
0 (χ − χ0) ≤ 0, so π0 ∈ �0. The converse argument is similar.
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2.1.2 The Expected Recourse Cost for Discrete Distributions

Let us consider now the expected value function

φ(x) := E[Q(x, ξ)]. (2.12)

As before, the expectation here is taken with respect to the probability distribution of the
random vector ξ . Suppose that the distribution of ξ has finite support. That is, ξ has a finite
number of realizations (called scenarios) ξk = (qk, hk, Tk,Wk) with respective (positive)
probabilities pk , k = 1, . . . , K , i.e., � = {ξ1, . . . , ξK}. Then

E[Q(x, ξ)] =
K∑
k=1

pkQ(x, ξk). (2.13)

For a given x, the expectation E[Q(x, ξ)] is equal to the optimal value of the linear pro-
gramming problem

Min
y1,...,yK

K∑
k=1

pkq
T
k yk

s.t. Tkx +Wkyk = hk,
yk ≥ 0, k = 1, . . . , K.

(2.14)

If for at least one k ∈ {1, . . . , K} the system Tkx +Wkyk = hk , yk ≥ 0, has no solution,
i.e., the corresponding second-stage problem is infeasible, then problem (2.14) is infeasible,
and hence its optimal value is +∞. From that point of view, the sum in the right-hand side
of (2.13) equals +∞ if at least one of Q(x, ξk) = +∞. That is, we assume here that
+∞+ (−∞) = +∞.

The whole two stage-problem is equivalent to the following large-scale linear pro-
gramming problem:

Min
x,y1,...,yK

cTx +
K∑
k=1

pkq
T
k yk

s.t. Tkx +Wkyk = hk, k = 1, . . . , K,

Ax = b,
x ≥ 0, yk ≥ 0, k = 1, . . . , K.

(2.15)

Properties of the expected recourse cost follow directly from properties of parametric linear
programming problems.

Proposition 2.3. Suppose that the probability distribution of ξ has finite support � =
{ξ1, . . . , ξK} and that the expected recourse cost φ(·) has a finite value in at least one point
x̄ ∈ R

n. Then the function φ(·) is polyhedral, and for any x0 ∈ dom φ,

∂φ(x0) =
K∑
k=1

pk∂Q(x0, ξk). (2.16)
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Proof. Since φ(x̄) is finite, all values Q(x̄, ξk), k = 1, . . . , K , are finite. Consequently, by
Proposition 2.2, every function Q(·, ξk) is polyhedral. It is not difficult to see that a linear
combination of polyhedral functions with positive weights is also polyhedral. Therefore, it
follows that φ(·) is polyhedral. We also have that dom φ =⋂K

k=1 domQk, whereQk(·) :=
Q(·, ξk), and for any h ∈ R

n, the directional derivatives Q′k(x0, h) > −∞ and

φ′(x0, h) =
K∑
k=1

pkQ
′
k(x0, h). (2.17)

Formula (2.16) then follows from (2.17) by duality arguments. Note that equation (2.16)
is a particular case of the Moreau–Rockafellar theorem (Theorem 7.4). Since the functions
Qk are polyhedral, there is no need here for an additional regularity condition for (2.16) to
hold true.

The subdifferential ∂Q(x0, ξk) of the second-stage optimal value function is described
in Proposition 2.2. That is, if Q(x0, ξk) is finite, then

∂Q(x0, ξk) = −T T
k arg max

{
πT(hk − Tkx0) : W T

k π ≤ qk
}
. (2.18)

It follows that the expectation function φ is differentiable at x0 iff for every ξ = ξk , k =
1, . . . , K , the maximum in the right-hand side of (2.18) is attained at a unique point, i.e.,
the corresponding second-stage dual problem has a unique optimal solution.

Example 2.4 (Capacity Expansion). We have a directed graph with node set N and arc
set A. With each arc a ∈ A, we associate a decision variable xa and call it the capacity of
a. There is a cost ca for each unit of capacity of arc a. The vector x constitutes the vector
of first-stage variables. They are restricted to satisfy the inequalities x ≥ xmin, where xmin

are the existing capacities.
At each node n of the graph, we have a random demand ξn for shipments to n. (If ξn

is negative, its absolute value represents shipments from n and we have
∑

n∈N ξn = 0.)
These shipments have to be sent through the network, and they can be arbitrarily split into
pieces taking different paths. We denote by ya the amount of the shipment sent through
arc a. There is a unit cost qa for shipments on each arc a.

Our objective is to assign the arc capacities and to organize the shipments in such
a way that the expected total cost, comprising the capacity cost and the shipping cost,
is minimized. The condition is that the capacities have to be assigned before the actual
demands ξn become known, while the shipments can be arranged after that.

Let us define the second-stage problem. For each node n, denote by A+(n) and A−(n)
the sets of arcs entering and leaving node i. The second-stage problem is the network flow
problem

Min
∑
a∈A

qaya (2.19)

s.t.
∑

a∈A+(n)
ya −

∑
a∈A−(n)

ya = ξn, n ∈ N , (2.20)

0 ≤ ya ≤ xa, a ∈ A. (2.21)
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32 Chapter 2. Two-Stage Problems

This problem depends on the random demand vector ξ and on the arc capacities, x. Its
optimal value is denoted by Q(x, ξ).

Suppose that for a given x = x0 the second-stage problem (2.19)–(2.21) is feasible.
Denote by µn, n ∈ N , the optimal Lagrange multipliers (node potentials) associated with
the node balance equations (2.20), and denote by πa , a ∈ A, the (nonnegative) Lagrange
multipliers associated with the constraints (2.21). The dual problem has the form

Max −
∑
n∈N

ξnµn −
∑

(i,j)∈A
xijπij

s.t. − πij + µi − µj ≤ qij , (i, j) ∈ A,
π ≥ 0.

As
∑

n∈N ξn = 0, the values ofµn can be translated by a constant without any change in the
objective function, and thus without any loss of generality we can assume that µn0 = 0 for
some fixed node n0. For each arc a = (i, j), the multiplier πij associated with the constraint
(2.21) has the form

πij = max{0, µi − µj − qij }.
Roughly, if the difference of node potentialsµi−µj is greater thanqij , the arc is saturated and
the capacity constraint yij ≤ xij becomes relevant. The dual problem becomes equivalent to

Max −
∑
n∈N

ξnµn −
∑

(i,j)∈A
xij max{0, µi − µj − qij }. (2.22)

Let us denote by M(x0, ξ) the set of optimal solutions of this problem satisfying the condition
µn0 = 0. Since T T = [0 − I ] in this case, formula (2.18) provides the description of the
subdifferential of Q(·, ξ) at x0:

∂Q(x0, ξ) = −
{(

max{0, µi − µj − qij }
)
(i,j)∈A : µ ∈M(x0, ξ)

}
.

The first-stage problem has the form

Min
x≥xmin

∑
(i,j)∈A

cij xij + E[Q(x, ξ)]. (2.23)

If ξ has finitely many realizations ξk attained with probabilities pk , k = 1, . . . , K , the
subdifferential of the overall objective can be calculated by (2.16):

∂f (x0) = c +
K∑
k=1

pk∂Q(x0, ξ
k).

2.1.3 The Expected Recourse Cost for General Distributions

Let us discuss now the case of a general distribution of the random vector ξ ∈ R
d . The

recourse cost Q(·, ·) is the minimum value of the integrand which is a random lower semi-
continuous function (see section 7.2.3). Therefore, it follows by Theorem 7.37 that Q(·, ·)
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is measurable with respect to the Borel sigma algebra of R
n × R

d . Also for every ξ the
function Q(·, ξ) is lower semicontinuous. It follows that Q(x, ξ) is a random lower semi-
continuous function. Recall that in order to ensure that the expectation φ(x) is well defined,
we have to verify two conditions:

(i) Q(x, ·) is measurable (with respect to the Borel sigma algebra of R
d );

(ii) either E[Q(x, ξ)+] or E[(−Q(x, ξ))+] is finite.

The function Q(x, ·) is measurable as the optimal value of a linear programming problem.
We only need to verify condition (ii). We describe below some important particular situations
where this condition is satisfied.

The two-stage problem (2.1)–(2.2) is said to have fixed recourse if the matrix W is
fixed (not random). Moreover, we say that the recourse is complete if the system Wy = χ
and y ≥ 0 has a solution for every χ . In other words, the positive hull of W is equal to the
corresponding vector space. By duality arguments, the fixed recourse is complete iff the
feasible set �(q) of the dual problem (2.3) is bounded (in particular, it may be empty) for
every q. Then its recession cone, �0 = �(0), must contain only the point 0, provided that
�(q) is nonempty. Therefore, another equivalent condition for complete recourse is that
π = 0 is the only solution of the system W Tπ ≤ 0.

A particular class of problems with fixed and complete recourse are simple recourse
problems, in which W = [I ;−I ], the matrix T and the vector q are deterministic, and the
components of q are positive.

It is said that the recourse is relatively complete if for every x in the set

X = {x : Ax = b, x ≥ 0},
the feasible set of the second-stage problem (2.2) is nonempty for almost everywhere (a.e.)
ω ∈ �. That is, the recourse is relatively complete if for every feasible first-stage point x the
inequality Q(x, ξ) < +∞ holds true for a.e. ξ ∈ �, or in other words, Q(x, ξ(ω)) < +∞
w.p. 1. This definition is in accordance with the general principle that an event which
happens with zero probability is irrelevant for the calculation of the corresponding expected
value. For example, the capacity expansion problem of Example 2.4 is not a problem with
relatively complete recourse, unless xmin is so large that every demand ξ ∈ � can be shipped
over the network with capacities xmin.

The following condition is sufficient for relatively complete recourse:

for every x ∈ X the inequality Q(x, ξ) < +∞ holds true for all ξ ∈ �. (2.24)

In general, condition (2.24) is not necessary for relatively complete recourse. It becomes
necessary and sufficient in the following two cases:

(i) the random vector ξ has a finite support, or

(ii) the recourse is fixed.

Indeed, sufficiency is clear. If ξ has a finite support, i.e., the set � is finite, then the
necessity is also clear. To show the necessity in the case of fixed recourse, suppose the
recourse is relatively complete. This means that if x ∈ X, then Q(x, ξ) < +∞ for all ξ in
�, except possibly for a subset of � of probability zero. We have that Q(x, ξ) < +∞ iff
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34 Chapter 2. Two-Stage Problems

h − T x ∈ posW . Let �0(x) = {(h, T , q) : h − T x ∈ posW }. The set posW is convex
and closed and thus�0(x) is convex and closed as well. By assumption, P [�0(x)] = 1 for
every x ∈ X. Thus

⋂
x∈X �0(x) is convex, closed, and has probability 1. The support of ξ

must be its subset.

Example 2.5. Consider

Q(x, ξ) := inf {y : ξy = x, y ≥ 0}
with x ∈ [0, 1] and ξ being a random variable whose probability density function is p(z) :=
2z, 0 ≤ z ≤ 1. For all ξ > 0 and x ∈ [0, 1], Q(x, ξ) = x/ξ , and hence

E[Q(x, ξ)] =
∫ 1

0

(
x

z

)
2zdz = 2x.

That is, the recourse here is relatively complete and the expectation ofQ(x, ξ) is finite. On
the other hand, the support of ξ(ω) is the interval [0, 1], and for ξ = 0 and x > 0 the value
ofQ(x, ξ) is+∞, because the corresponding problem is infeasible. Of course, probability
of the event “ξ = 0” is zero, and from the mathematical point of view the expected value
function E[Q(x, ξ)] is well defined and finite for all x ∈ [0, 1]. Note, however, that arbitrary
small perturbation of the probability distribution of ξ may change that. Take, for example,
some discretization of the distribution of ξ with the first discretization point t = 0. Then,
no matter how small the assigned (positive) probability at t = 0 is, Q(x, ξ) = +∞ with
positive probability. Therefore, E[Q(x, ξ)] = +∞ for all x > 0. That is, the above
problem is extremely unstable and is not well posed. As discussed above, such behavior
cannot occur if the recourse is fixed.

Let us consider the support function sq(·) of the set �(q). We want to find sufficient
conditions for the existence of the expectation E[sq(h−T x)]. By Hoffman’s lemma (Theo-
rem 7.11), there exists a constant κ , depending onW , such that if for some q0 the set�(q0)

is nonempty, then for every q the following inclusion is satisfied:

�(q) ⊂ �(q0)+ κ‖q − q0‖B, (2.25)

where B := {π : ‖π‖ ≤ 1} and ‖ · ‖ denotes the Euclidean norm. This inclusion allows us
to derive an upper bound for the support function sq(·). Since the support function of the
unit ball B is the norm ‖ · ‖, it follows from (2.25) that if the set �(q0) is nonempty, then

sq(·) ≤ sq0(·)+ κ‖q − q0‖ ‖ · ‖. (2.26)

Consider q0 = 0. The support function s0(·) of the cone �0 has the form

s0(χ) =
{

0 if χ ∈ posW,
+∞ otherwise.

Therefore, (2.26) with q0 = 0 implies that if �(q) is nonempty, then sq(χ) ≤ κ‖q‖ ‖χ‖
for all χ ∈ posW , and sq(χ) = +∞ for all χ �∈ posW . Since �(q) is polyhedral, if it is
nonempty, then sq(·) is piecewise linear on its domain, which coincides with posW , and∣∣sq(χ1)− sq(χ2)

∣∣ ≤ κ‖q‖ ‖χ1 − χ2‖, ∀χ1, χ2 ∈ posW. (2.27)
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Proposition 2.6. Suppose that the recourse is fixed and

E
[‖q‖ ‖h‖] < +∞ and E

[‖q‖ ‖T ‖] < +∞. (2.28)

Consider a point x ∈ R
n. Then E[Q(x, ξ)+] is finite iff the following condition holds w.p. 1:

h− T x ∈ posW. (2.29)

Proof. We have that Q(x, ξ) < +∞ iff condition (2.29) holds. Therefore, if condition
(2.29) does not hold w.p. 1, then Q(x, ξ) = +∞ with positive probability, and hence
E[Q(x, ξ)+] = +∞.

Conversely, suppose that condition (2.29) holds w.p. 1. Then Q(x, ξ) = sq(h− T x)
with sq(·) being the support function of the set �(q). By (2.26) there exists a constant κ
such that for any χ ,

sq(χ) ≤ s0(χ)+ κ‖q‖ ‖χ‖.
Also for any χ ∈ posW we have that s0(χ) = 0, and hence w.p. 1,

sq(h− T x) ≤ κ‖q‖ ‖h− T x‖ ≤ κ‖q‖
(‖h‖ + ‖T ‖ ‖x‖).

It follows then by (2.28) that E
[
sq(h− T x)+

]
< +∞.

Remark 2. If q and (h, T ) are independent and have finite first moments,4 then

E
[‖q‖ ‖h‖] = E

[‖q‖]E[‖h‖] and E
[‖q‖ ‖T ‖] = E

[‖q‖]E[‖T ‖],
and hence condition (2.28) follows. Also condition (2.28) holds if (h, T , q) has finite second
moments.

We obtain that, under the assumptions of Proposition 2.6, the expectation φ(x) is well
defined and φ(x) < +∞ iff condition (2.29) holds w.p. 1. If, moreover, the recourse is
complete, then (2.29) holds for any x and ξ , and hence φ(·) is well defined and is less than
+∞. Since the function φ(·) is convex, we have that if φ(·) is less than +∞ on R

n and is
finite valued in at least one point, then φ(·) is finite valued on the entire space R

n.

Proposition 2.7. Suppose that (i) the recourse is fixed, (ii) for a.e.q the set�(q) is nonempty,
and (iii) condition (2.28) holds.

Then the expectation function φ(x) is well defined and φ(x) > −∞ for all x ∈ R
n.

Moreover, φ is convex, lower semicontinuous and Lipschitz continuous on dom φ, and its
domain is a convex closed subset of R

n given by

dom φ = {x ∈ R
n : h− T x ∈ posW w.p.1

}
. (2.30)

Proof. By assumption (ii), the feasible set �(q) of the dual problem is nonempty w.p. 1.
Thus Q(x, ξ) is equal to sq(h− T x) w.p. 1 for every x, where sq(·) is the support function
of the set �(q). Let π(q) be the element of the set �(q) that is closest to 0. It exists

4We say that a random variable Z = Z(ω) has a finite rth moment if E [|Z|r ] < +∞. It is said that ξ(ω)
has finite rth moments if each component of ξ(ω) has a finite rth moment.
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because �(q) is closed. By Hoffman’s lemma (see (2.25)) there is a constant κ such that
‖π(q)‖ ≤ κ‖q‖. Then for every x the following holds w.p. 1:

sq(h− T x) ≥ π(q)T(h− T x) ≥ −κ‖q‖
(‖h‖ + ‖T ‖ ‖x‖). (2.31)

Owing to condition (2.28), it follows from (2.31) that φ(·) is well defined and φ(x) > −∞
for all x ∈ R

n. Moreover, since sq(·) is lower semicontinuous, the lower semicontinuity
of φ(·) follows by Fatou’s lemma. Convexity and closedness of dom φ follow from the
convexity and lower semicontinuity of φ. We have by Proposition 2.6 that φ(x) < +∞ iff
condition (2.29) holds w.p. 1. This implies (2.30).

Consider two points x, x ′ ∈ dom φ. Then by (2.30) the following holds true w.p. 1:

h− T x ∈ posW and h− T x ′ ∈ posW. (2.32)

By (2.27), if the set �(q) is nonempty and (2.32) holds, then∣∣sq(h− T x)− sq(h− T x ′)∣∣ ≤ κ‖q‖ ‖T ‖ ‖x − x ′‖.
It follows that

|φ(x)− φ(x ′)| ≤ κ E
[‖q‖ ‖T ‖] ‖x − x ′‖.

With condition (2.28) this implies the Lipschitz continuity of φ on its domain.

Denote byΣ the support5 of the probability distribution (measure) of (h, T ). Formula
(2.30) means that a pointx belongs to dom φ iff the probability of the event {h−T x ∈ posW }
is one. Note that the set {(h, T ) : h − T x ∈ posW } is convex and polyhedral and hence
is closed. Consequently x belongs to dom φ iff for every (h, T ) ∈ Σ it follows that
h− T x ∈ posW . Therefore, we can write formula (2.30) in the form

dom φ =
⋂

(h,T )∈Σ
{x : h− T x ∈ posW } . (2.33)

It should be noted that we assume that the recourse is fixed.
Let us observe that for any set H of vectors h, the set ∩h∈H (−h+ posW) is convex

and polyhedral. Indeed, we have that posW is a convex polyhedral cone and hence can
be represented as the intersection of a finite number of half spaces Ai = {χ : aT

i χ ≤ 0},
i = 1, . . . , �. Since the intersection of any number of half spaces of the form b + Ai , with
b ∈ B, is still a half space of the same form (provided that this intersection is nonempty),
we have that the set∩h∈H (−h+posW) can be represented as the intersection of half spaces
of the form bi + Ai , i = 1, . . . , �, and hence is polyhedral. It follows that if T and W are
fixed, then the set at the right-hand side of (2.33) is convex and polyhedral.

Let us discuss now the differentiability properties of the expectation function φ(x).
By Theorem 7.47 and formula (2.7) of Proposition 2.2 we have the following result.

5Recall that the support of the probability measure is the smallest closed set such that the probability
(measure) of its complement is zero.
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Proposition 2.8. Suppose that the expectation function φ(·) is proper and its domain has a
nonempty interior. Then for any x0 ∈ dom φ,

∂φ(x0) = −E
[
T T

D(x0, ξ)
]+Ndom φ(x0), (2.34)

where

D(x, ξ) := arg max
π∈�(q)

πT(h− T x).

Moreover, φ is differentiable at x0 iff x0 belongs to the interior of dom φ and the set D(x0, ξ)

is a singleton w.p. 1.

As discussed earlier, when the distribution of ξ has a finite support (i.e., there is a
finite number of scenarios), the expectation function φ is piecewise linear on its domain and
is differentiable everywhere only in the trivial case if it is linear.6 In the case of a continuous
distribution of ξ , the expectation operator smoothes the piecewise linear function Q(·, ξ).

Proposition 2.9. Suppose the assumptions of Proposition 2.7 are satisfied and the condi-
tional distribution of h, given (T , q), is absolutely continuous for almost all (T , q). Then
φ is continuously differentiable on the interior of its domain.

Proof. By Proposition 2.7, the expectation function φ(·) is well defined and greater than
−∞. Let x be a point in the interior of dom φ. For fixed T and q, consider the multifunction

Z(h) := arg max
π∈�(q)

πT(h− T x).

Conditional on (T , q), the set D(x, ξ) coincides with Z(h). Since x ∈ dom φ, relation
(2.30) implies that h − T x ∈ posW w.p. 1. For every h − T x ∈ posW , the set Z(h) is
nonempty and forms a face of the polyhedral set�(q). Moreover, there exists a setA given
by the union of a finite number of linear subspaces of R

m (where m is the dimension of
h), which are perpendicular to the faces of sets �(q), such that if h − T x ∈ (posW) \ A,
then Z(h) is a singleton. Since an affine subspace of R

m has Lebesgue measure zero,
it follows that the Lebesgue measure of A is zero. As the conditional distribution of h,
given (T , q), is absolutely continuous, the probability that Z(h) is not a singleton is zero.
By integrating this probability over the marginal distribution of (T , q), we obtain that
probability of the event “D(x, ξ) is not a singleton” is zero. By Proposition 2.8, this implies
the differentiability of φ(·). Since φ(·) is convex, it follows that for every x ∈ int(dom φ)

the gradient ∇φ(x) coincides with the (unique) subgradient of φ at x and that ∇φ(·) is
continuous at x.

Of course, if h and (T , q) are independent, then the conditional distribution of h given
(T , q) is the same as the unconditional (marginal) distribution of h. Therefore, if h and
(T , q) are independent, then it suffices to assume in the above proposition that the (marginal)
distribution of h is absolutely continuous.

6By linear, we mean here that it is of the form aTx + b. It is more accurate to call such a function affine.
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2.1.4 Optimality Conditions

We can now formulate optimality conditions and duality relations for linear two-stage prob-
lems. Let us start from the problem with discrete distributions of the random data in
(2.1)–(2.2). The problem takes on the form

Min
x
cTx +

K∑
k=1

pkQ(x, ξk)

s.t. Ax = b, x ≥ 0,

(2.35)

where Q(x, ξ) is the optimal value of the second-stage problem, given by (2.2).
Suppose the expectation function φ(·) := E[Q(·, ξ)] has a finite value in at least one

point x̄ ∈ R
n. It follows from Propositions 2.2 and 2.3 that for every x0 ∈ dom φ,

∂φ(x0) = −
K∑
k=1

pkT
T
k D(x0, ξk), (2.36)

where

D(x0, ξk) := arg max
{
πT(hk − Tkx0) : W T

k π ≤ qk
}
.

As before, we denote X := {x : Ax = b, x ≥ 0}.

Theorem 2.10. Let x̄ be a feasible solution of problem (2.1)–(2.2), i.e., x̄ ∈ X and φ(x̄)
is finite. Then x̄ is an optimal solution of problem (2.1)–(2.2) iff there exist πk ∈ D(x̄, ξk),
k = 1, . . . , K , and µ ∈ R

m such that

K∑
k=1

pkT
T
k πk + ATµ ≤ c,

x̄T

(
c −

K∑
k=1

pkT
T
k πk − ATµ

)
= 0.

(2.37)

Proof. Necessary and sufficient optimality conditions for minimizing cTx + φ(x) over
x ∈ X can be written as

0 ∈ c + ∂φ(x̄)+NX(x̄), (2.38)

where NX(x̄) is the normal cone to the feasible set X. Note that condition (2.38) implies
that the sets NX(x̄) and ∂φ(x̄) are nonempty and hence x̄ ∈ X and φ(x̄) is finite. Note also
that there is no need here for additional regularity conditions since φ(·) and X are convex
and polyhedral. Using the characterization of the subgradients of φ(·), given in (2.36), we
conclude that (2.38) is equivalent to existence of πk ∈ D(x̄, ξk) such that

0 ∈ c −
K∑
k=1

pkT
T
k πk +NX(x̄).
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Observe that

NX(x̄) = {ATµ− h : h ≥ 0, hTx̄ = 0}. (2.39)

The last two relations are equivalent to conditions (2.37).

Conditions (2.37) can also be obtained directly from the optimality conditions for the
large-scale linear programming formulation

Min
x,y1,...,yK

cTx +
K∑
k=1

pkq
T
k yk

s.t. Tkx +Wkyk = hk, k = 1, . . . , K,

Ax = b,
x ≥ 0,

yk ≥ 0, k = 1, . . . , K.

(2.40)

By minimizing, with respect to x ≥ 0 and yk ≥ 0, k = 1, . . . , K , the Lagrangian

cTx +
K∑
k=1

pkq
T
k yk − µT(Ax − b)−

K∑
k=1

pkπ
T
k (Tkx +Wkyk − hk)

=
(
c − ATµ−

K∑
k=1

pkT
T
k πk

)T

x +
K∑
k=1

pk
(
qk −W T

k πk
)T
yk + bTµ+

K∑
k=1

pkh
T
kπk,

we obtain the following dual of the linear programming problem (2.40):

Max
µ,π1,...,πK

bTµ+
K∑
k=1

pkh
T
kπk

s.t. c − ATµ−
K∑
k=1

pkT
T
k πk ≥ 0,

qk −W T
k πk ≥ 0, k = 1, . . . , K.

Therefore, optimality conditions of Theorem 2.10 can be written in the following equivalent
form:

K∑
k=1

pkT
T
k πk + ATµ ≤ c,

x̄T

(
c −

K∑
k=1

pkT
T
k πk − ATµ

)
= 0,

qk −W T
k πk ≥ 0, k = 1, . . . , K,

ȳT
k

(
qk −W T

k πk
) = 0, k = 1, . . . , K.
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The last two of the above conditions correspond to feasibility and optimality of multipliers
πk as solutions of the dual problems.

If we deal with general distributions of the problem’s data, additional conditions are
needed to ensure the subdifferentiability of the expected recourse cost and the existence of
Lagrange multipliers.

Theorem 2.11. Let x̄ be a feasible solution of problem (2.1)–(2.2). Suppose that the expected
recourse cost function φ(·) is proper, int(dom φ)∩X is nonempty, and Ndom φ(x̄) ⊂ NX(x̄).
Then x̄ is an optimal solution of problem (2.1)–(2.2) iff there exist a measurable function
π(ω) ∈ D(x, ξ(ω)), ω ∈ �, and a vector µ ∈ R

m such that

E
[
T Tπ
]+ ATµ ≤ c,

x̄T (c − E
[
T Tπ
]− ATµ

) = 0.

Proof. Since int(dom φ) ∩ X is nonempty, we have by the Moreau–Rockafellar theorem
that

∂
(
cTx̄ + φ(x̄)+ IX(x̄)

) = c + ∂φ(x̄)+ ∂IX(x̄).
Also, ∂IX(x̄) = NX(x̄). Therefore, we have here that (2.38) is necessary and sufficient
optimality conditions for minimizing cTx+φ(x) over x ∈ X. Using the characterization of
the subdifferential of φ(·) given in (2.8), we conclude that (2.38) is equivalent to existence
of a measurable function π(ω) ∈ D(x0, ξ(ω)) such that

0 ∈ c − E
[
T Tπ
]+Ndom φ(x̄)+NX(x̄). (2.41)

Moreover, because of the condition Ndom φ(x̄) ⊂ NX(x̄), the term Ndom φ(x̄) can be omitted.
The proof can be completed now by using (2.41) together with formula (2.39) for the normal
cone NX(x̄).

The additional technical condition Ndom φ(x̄) ⊂ NX(x̄) was needed in the above
derivations in order to eliminate the term Ndom φ(x̄) in (2.41). In particular, this condition
holds if x̄ ∈ int(dom φ), in which case Ndom φ(x̄) = {0}, or in the case of relatively
complete recourse, i.e., when X ⊂ dom φ. If the condition of relatively complete recourse
is not satisfied, we may need to take into account the normal cone to the domain of φ(·). In
general, this requires application of techniques of functional analysis, which are beyond the
scope of this book. However, in the special case of a deterministic matrix T we can carry
out the analysis directly.

Theorem 2.12. Let x̄ be a feasible solution of problem (2.1)–(2.2). Suppose that the
assumptions of Proposition 2.7 are satisfied, int(dom φ) ∩ X is nonempty, and the matrix
T is deterministic. Then x̄ is an optimal solution of problem (2.1)–(2.2) iff there exist a
measurable function π(ω) ∈ D(x, ξ(ω)), ω ∈ �, and a vector µ ∈ R

m such that

T T
E[π ] + ATµ ≤ c,

x̄T(c − T T
E[π ] − ATµ

) = 0.
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Proof. Since T is deterministic, we have that E[T Tπ ] = T T
E[π ], and hence the optimality

conditions (2.41) can be written as

0 ∈ c − T T
E[π ] +Ndom φ(x̄)+NX(x̄).

Now we need to calculate the cone Ndom φ(x̄). Recall that under the assumptions of Propo-
sition 2.7 (in particular, that the recourse is fixed and �(q) is nonempty w.p. 1), we have
that φ(·) > −∞ and formula (2.30) holds true. We have here that only q and h are random
while both matrices W and T are deterministic, and (2.30) simplifies to

dom φ =
{
x : −T x ∈

⋂
h∈Σ

(− h+ posW
)}
,

where Σ is the support of the distribution of the random vector h. The tangent cone to
dom φ at x̄ has the form

Tdom φ(x̄) =
{
d : −T d ∈

⋂
h∈Σ

(
posW + lin(−h+ T x̄))}

=
{
d : −T d ∈ posW +

⋂
h∈Σ

lin(−h+ T x̄)
}
.

Defining the linear subspace

L :=
⋂
h∈Σ

lin(−h+ T x̄),

we can write the tangent cone as

Tdom φ(x̄) = {d : −T d ∈ posW + L}.
Therefore the normal cone equals

Ndom φ(x̄) =
{− T Tv : v ∈ (posW + L)∗} = −T T[(posW)∗ ∩ L⊥].

Here we used the fact that posW is polyhedral and no interior condition is needed for
calculating (posW + L)∗. Recalling equation (2.11) we conclude that

Ndom φ(x̄) = −T T(�0 ∩ L⊥
)
.

Observe that if ν ∈ �0 ∩ L⊥, then ν is an element of the recession cone of the set D(x̄, ξ)

for all ξ ∈ �. Thus π(ω)+ ν is also an element of the set D(x, ξ(ω)) for almost all ω ∈ �.
Consequently,

−T T
E
[
D(x̄, ξ)

]+Ndom φ(x̄) = −T T
E
[
D(x̄, ξ)

]− T T(�0 ∩ L⊥
)

= −T T
E
[
D(x̄, ξ)

]
,

and the result follows.
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Example 2.13 (Capacity Expansion, continued). Let us return to Example 2.13 and sup-
pose the support � of the random demand vector ξ is compact. Only the right-hand side
ξ in the second-stage problem (2.19)–(2.21) is random, and for a sufficiently large x the
second-stage problem is feasible for all ξ ∈ �. Thus conditions of Theorem 2.11 are satis-
fied. It follows from Theorem 2.11 that x̄ is an optimal solution of problem (2.23) iff there
exist measurable functions µn(ξ), n ∈ N , such that for all ξ ∈ �we have µ(ξ) ∈M(x̄, ξ),
and for all (i, j) ∈ A the following conditions are satisfied:

cij ≥
∫
�

max{0, µi(ξ)− µj(ξ)− qij }P(dξ), (2.42)

(
x̄ij − xmin

ij

) (
cij −

∫
�

max{0, µi(ξ)− µj(ξ)− qij }P(dξ)
)
= 0. (2.43)

In particular, for every (i, j) ∈ A such that x̄ij > xmin
ij we have equality in (2.42). Each

function µn(ξ) can be interpreted as a random potential of node n ∈ N .

2.2 Polyhedral Two-Stage Problems

2.2.1 General Properties

Let us consider a slightly more general formulation of a two-stage stochastic programming
problem,

Min
x

f1(x)+ E[Q(x, ω)], (2.44)

where Q(x, ω) is the optimal value of the second-stage problem

Min
y
f2(y, ω)

s.t. T (ω)x +W(ω)y = h(ω).
(2.45)

We assume in this section that the above two-stage problem is polyhedral. That is, the
following holds:

• The function f1(·) is polyhedral (compare with Definition 7.1). This means that
there exist vectors cj and scalars αj , j = 1, . . . , J1, vectors ak and scalars bk , k =
1, . . . , K1, such that f1(x) can be represented as follows:

f1(x) =
{

max
1≤j≤J1

αj + cT
j x if aT

k x ≤ bk, k = 1, . . . , K1,

+∞ otherwise,

and its domain dom f1 =
{
x : aT

k x ≤ bk, k = 1, . . . , K1
}

is nonempty. (Note that
any polyhedral function is convex and lower semicontinuous.)

• The function f2 is random polyhedral. That is, there exist random vectors qj = qj (ω)
and random scalars γj = γj (ω), j = 1, . . . , J2, random vectors dk = dk(ω), and
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random scalars rk = rk(ω), k = 1, . . . , K2, such that f2(y, ω) can be represented
as follows:

f2(y, ω) =
{

max
1≤j≤J2

γj (ω)+ qj (ω)Ty if dk(ω)Ty ≤ rk(ω), k = 1, . . . , K2,

+∞ otherwise,

and for a.e. ω the domain of f2(·, ω) is nonempty.

Note that (linear) constraints of the second-stage problem which are independent of
x, for example, y ≥ 0, can be absorbed into the objective function f2(y, ω). Clearly, the
linear two-stage model (2.1)–(2.2) is a special case of a polyhedral two-stage problem. The
converse is also true, that is, every polyhedral two-stage model can be reformulated as a
linear two-stage model. For example, the second-stage problem (2.45) can be written as
follows:

Min
y,v

v

s.t. T (ω)x +W(ω)y = h(ω),
γj (ω)+ qj (ω)Ty ≤ v, j = 1, . . . , J2,

dk(ω)
Ty ≤ rk(ω), k = 1, . . . , K2.

Here, both v and y play the role of the second stage variables, and the data (q, T ,W, h) in
(2.2) have to be redefined in an appropriate way. In order to avoid all these manipulations and
unnecessary notational complications that come with such a conversion, we shall address
polyhedral problems in a more abstract way. This will also help us to deal with multistage
problems and general convex problems.

Consider the Lagrangian of the second-stage problem (2.45):

L(y, π; x, ω) := f2(y, ω)+ πT(h(ω)− T (ω)x −W(ω)y).
We have

inf
y
L(y, π; x, ω) = πT(h(ω)− T (ω)x)+ inf

y

[
f2(y, ω)− πTW(ω)y

]
= πT(h(ω)− T (ω)x)− f ∗2 (W(ω)Tπ,ω),

where f ∗2 (·, ω) is the conjugate7 of f2(·, ω). We obtain that the dual of problem (2.45) can
be written as

Max
π

[
πT(h(ω)− T (ω)x)− f ∗2 (W(ω)Tπ,ω)]. (2.46)

By the duality theory of linear programming, if, for some (x, ω), the optimal valueQ(x, ω)
of problem (2.45) is less than +∞ (i.e., problem (2.45) is feasible), then it is equal to the
optimal value of the dual problem (2.46).

Let us denote, as before, by D(x, ω) the set of optimal solutions of the dual problem
(2.46). We then have an analogue of Proposition 2.2.

7Note that since f2(·, ω) is polyhedral, so is f ∗2 (·, ω).
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Proposition 2.14. Let ω ∈ � be given and suppose that Q(·, ω) is finite in at least one
point x̄. Then the function Q(·, ω) is polyhedral (and hence convex). Moreover, Q(·, ω) is
subdifferentiable at every x at which the value Q(x, ω) is finite, and

∂Q(x, ω) = −T (ω)TD(x, ω). (2.47)

Proof. Let us define the function ψ(π) := f ∗2 (W
Tπ). (For simplicity we suppress the

argument ω.) We have that if Q(x, ω) is finite, then it is equal to the optimal value of
problem (2.46), and hence Q(x, ω) = ψ∗(h − T x). Therefore, Q(·, ω) is a polyhedral
function. Moreover, it follows by the Fenchel–Moreau theorem that

∂ψ∗(h− T x) = D(x, ω),

and the chain rule for subdifferentiation yields formula (2.47). Note that we do not
need here additional regularity conditions because of the polyhedricity of the considered
case.

If Q(x, ω) is finite, then the set D(x, ω) of optimal solutions of problem (2.46) is a
nonempty convex closed polyhedron. If, moreover, D(x, ω) is bounded, then it is the convex
hull of its finitely many vertices (extreme points), and Q(·, ω) is finite in a neighborhood
of x. If D(x, ω) is unbounded, then its recession cone (which is polyhedral) is the normal
cone to the domain of Q(·, ω) at the point x.

2.2.2 Expected Recourse Cost

Let us consider the expected value function φ(x) := E[Q(x, ω)]. Suppose that the proba-
bility measure P has a finite support, i.e., there exists a finite number of scenarios ωk with
respective (positive) probabilities pk , k = 1, . . . , K . Then

E[Q(x, ω)] =
K∑
k=1

pkQ(x, ωk).

For a given x, the expectation E[Q(x, ω)] is equal to the optimal value of the problem

Min
y1,...,yK

K∑
k=1

pkf2(yk, ωk)

s.t. Tkx +Wkyk = hk, k = 1, . . . , K,

(2.48)

where (hk, Tk,Wk) := (h(ωk), T (ωk),W(ωk)). Similarly to the linear case, if for at least
one k ∈ {1, . . . , K} the set

dom f2(·, ωk) ∩ {y : Tkx +Wky = hk}
is empty, i.e., the corresponding second-stage problem is infeasible, then problem (2.48) is
infeasible, and hence its optimal value is +∞.

Proposition 2.15. Suppose that the probability measure P has a finite support and that the
expectation function φ(·) := E[Q(·, ω)] has a finite value in at least one point x ∈ R

n.
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Then the function φ(·) is polyhedral, and for any x0 ∈ dom φ,

∂φ(x0) =
K∑
k=1

pk∂Q(x0, ωk). (2.49)

The proof is identical to the proof of Proposition 2.3. Since the functions Q(·, ωk)
are polyhedral, formula (2.49) follows by the Moreau–Rockafellar theorem.

The subdifferential ∂Q(x0, ωk) of the second-stage optimal value function is described
in Proposition 2.14. That is, if Q(x0, ωk) is finite, then

∂Q(x0, ωk) = −T T
k arg max

{
πT(hk − Tkx0

)− f ∗2 (W T
k π, ωk)

}
. (2.50)

It follows that the expectation function φ is differentiable at x0 iff for every ωk , k =
1, . . . , K , the maximum at the right-hand side of (2.50) is attained at a unique point, i.e.,
the corresponding second-stage dual problem has a unique optimal solution.

Let us now consider the case of a general probability distributionP . We need to ensure
that the expectation function φ(x) := E[Q(x, ω)] is well defined. General conditions are
complicated, so we resort again to the case of fixed recourse.

We say that the two-stage polyhedral problem has fixed recourse if the matrix W and
the set8 Y := dom f2(·, ω) are fixed, i.e., do not depend on ω. In that case,

f2(y, ω) =
{

max
1≤j≤J2

γj (ω)+ qj (ω)Ty if y ∈ Y,

+∞ otherwise.

Denote W(Y) := {Wy : y ∈ Y}. Let x be such that

h(ω)− T (ω)x ∈ W(Y) w.p. 1. (2.51)

This means that for a.e. ω the system

y ∈ Y, Wy = h(ω)− T (ω)x (2.52)

has a solution. Let for some ω0 ∈ �, y0 be a solution of the above system, i.e., y0 ∈ Y
and h(ω0)− T (ω0)x = Wy0. Since system (2.52) is defined by linear constraints, we have
by Hoffman’s lemma that there exists a constant κ such that for almost all ω we can find a
solution ȳ(ω) of the system (2.52) with

‖ȳ(ω)− y0‖ ≤ κ‖(h(ω)− T (ω)x)− (h(ω0)− T (ω0)x)‖.
Therefore the optimal value of the second-stage problem can be bounded from above as
follows:

Q(x, ω) ≤ max
1≤j≤J2

{
γj (ω)+ qj (ω)Tȳ(ω)

}
≤ Q(x, ω0)+

J2∑
j=1

|γj (ω)− γj (ω0)|

+ κ
J2∑
j=1

‖qj (ω)‖
(‖h(ω)− h(ω0)‖ + ‖x‖ ‖T (ω)− T (ω0)‖

)
. (2.53)

8Note that since it is assumed that f2(·, ω) is polyhedral, it follows that the set Y is nonempty and
polyhedral.
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Proposition 2.16. Suppose that the recourse is fixed and

E|γj | < +∞, E
[‖qj‖ ‖h‖] < +∞ and E

[‖qj‖ ‖T ‖] < +∞, j = 1, . . . , J2. (2.54)

Consider a point x ∈ R
n. Then E[Q(x, ω)+] is finite iff condition (2.51) holds.

Proof. The proof uses (2.53), similar to the proof of Proposition 2.6.

Let us now formulate conditions under which the expected recourse cost is bounded
from below. Let C be the recession cone of Y and let C∗ be its polar. Consider the conjugate
function f ∗2 (·, ω). It can be verified that

domf ∗2 (·, ω) = conv
{
qj (ω), j = 1, . . . , J2

}+ C∗. (2.55)

Indeed, by the definition of the function f2(·, ω) and its conjugate, we have that f ∗2 (z, ω)
is equal to the optimal value of the

Max
y,v

v

s.t. zTy − γj (ω)− qj (ω)Ty ≥ v, j = 1, . . . , J2, y ∈ Y.

Since it is assumed that the set Y is nonempty, the above problem is feasible, and since Y is
polyhedral, it is linear. Therefore, its optimal value is equal to the optimal value of its dual.
In particular, its optimal value is less than +∞ iff the dual problem is feasible. Now the
dual problem is feasible iff there exist πj ≥ 0, j = 1, . . . , J2, such that

∑J2
j=1 πj = 1 and

sup
y∈Y

yT

z− J2∑
j=1

πjqj (ω)

 < +∞.
The last condition holds iff z−∑J2

j=1 πjqj (ω) ∈ C∗, which completes the argument.
Let us define the set

�(ω) := {π : W Tπ ∈ conv
{
qj (ω), j = 1, . . . , J2

}+ C∗
}
.

We may remark that in the case of a linear two-stage problem, the above set coincides with
the one defined in (2.5).

Proposition 2.17. Suppose that (i) the recourse is fixed, (ii) the set�(ω) is nonempty w.p. 1,
and (iii) condition (2.54) holds.

Then the expectation function φ(x) is well defined and φ(x) > −∞ for all x ∈ R
n.

Moreover, φ is convex, lower semicontinuous and Lipschitz continuous on dom φ, its domain
dom φ is a convex closed subset of R

n, and

dom φ = {x ∈ R
n : h− T x ∈ W(Y) w.p.1

}
. (2.56)

Furthermore, for any x0 ∈ dom φ,

∂φ(x0) = −E
[
T T

D(x0, ω)
]+Ndom φ(x0), (2.57)
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Proof. Note that the dual problem (2.46) is feasible iff W Tπ ∈ dom f ∗2 (·, ω). By formula
(2.55), assumption (ii) means that problem (2.46) is feasible, and henceQ(x, ω) is equal to
the optimal value of (2.46) for a.e. ω. The remainder of the proof is similar to the linear
case (Propositions 2.7 and 2.8).

2.2.3 Optimality Conditions

The optimality conditions for polyhedral two-stage problems are similar to those for linear
problems. For completeness we provide the appropriate formulations. Let us start from
the problem with finitely many elementary events ωk occurring with probabilities pk , k =
1, . . . , K .

Theorem 2.18. Suppose that the probability measure P has a finite support. Then a point
x̄ is an optimal solution of the first-stage problem (2.44) iff there exist πk ∈ D(x̄, ωk),
k = 1, . . . , K , such that

0 ∈ ∂f1(x̄)−
K∑
k=1

pkT
T
k πk. (2.58)

Proof. Since f1(x) and φ(x) = E[Q(x, ω)] are convex functions, a necessary and sufficient
condition for a point x̄ to be a minimizer of f1(x)+ φ(x) reads

0 ∈ ∂[f1(x̄)+ φ(x̄)
]
. (2.59)

In particular, the above condition requires f1(x̄) and φ(x̄) to be finite valued. By the
Moreau–Rockafellar theorem we have that ∂

[
f1(x̄)+ φ(x̄)

] = ∂f1(x̄)+ ∂φ(x̄). Note that
there is no need here for additional regularity conditions because of the polyhedricity of
functions f1 and φ. The proof can be completed now by using the formula for ∂φ(x̄) given
in Proposition 2.15.

In the case of general distributions, the derivation of optimality conditions requires
additional assumptions.

Theorem 2.19. Suppose that (i) the recourse is fixed and relatively complete, (ii) the set
�(ω) is nonempty w.p. 1, and (iii) condition (2.54) holds.

Then a point x̄ is an optimal solution of problem (2.44)–(2.45) iff there exists a
measurable function π(ω) ∈ D(x̄, ω), ω ∈ �, such that

0 ∈ ∂f1(x̄)− E
[
T Tπ
]
. (2.60)

Proof. The result follows immediately from the optimality condition (2.59) and formula
(2.57). Since the recourse is relatively complete, we can omit the normal cone to the domain
of φ(·).

If the recourse is not relatively complete, the analysis becomes complicated. The
normal cone to the domain ofφ(·) enters the optimality conditions. For the domain described
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in (2.56), this cone is rather difficult to describe in a closed form. Some simplification can
be achieved when T is deterministic. The analysis then mirrors the linear case, as in
Theorem 2.12.

2.3 General Two-Stage Problems

2.3.1 Problem Formulation, Interchangeability

In a general way, two-stage stochastic programming problems can be written in the follow-
ing form:

Min
x∈X
{
f (x) := E[F(x, ω)]}, (2.61)

where F(x, ω) is the optimal value of the second-stage problem

Min
y∈G(x,ω)

g(x, y, ω). (2.62)

Here X ⊂ R
n, g : R

n × R
m × � → R, and G : R

n × � ⇒ R
m is a multifunction. In

particular, the linear two-stage problem (2.1)–(2.2) can be formulated in the above form
with g(x, y, ω) := cTx + q(ω)Ty and

G(x, ω) := {y : T (ω)x +W(ω)y = h(ω), y ≥ 0}.

We also use the notation gω(x, y) = g(x, y, ω) and Gω(x) = G(x, ω).
Of course, the second-stage problem (2.62) also can be written in the following equiv-

alent form:

Min
y∈Rm

ḡ(x, y, ω), (2.63)

where

ḡ(x, y, ω) :=
{
g(x, y, ω) if y ∈ G(x, ω),

+∞ otherwise.
(2.64)

We assume that the function ḡ(x, y, ω) is random lower semicontinuous. Recall that if
g(x, y, ·) is measurable for every (x, y) ∈ R

n × R
m and g(·, ·, ω) is continuous for a.e.

ω ∈ �, i.e., g(x, y, ω) is a Carathéodory function, then g(x, y, ω) is random lower semicon-
tinuous. Random lower semicontinuity of ḡ(x, y, ω) implies that the optimal value function
F(x, ·) is measuarable (see Theorem 7.37). Moreover, if for a.e. ω ∈ � function F(·, ω)
is continuous, then F(x, ω) is a Carathéodory function and hence is random lower semi-
continuous. The indicator function IGω(x)(y) is random lower semicontinuous if for every
ω ∈ � the multifunction Gω(·) is closed and G(x, ω) is measurable with respect to the sigma
algebra of R

n × � (see Theorem 7.36). Of course, if g(x, y, ω) and IGω(x)(y) are random
lower semicontinuous, then their sum ḡ(x, y, ω) is also random lower semicontinuous.
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Now let Y be a linear decomposable space of measurable mappings from � to R
m.

For example, we can take Y := Lp(�,F , P ;Rm) with p ∈ [1,+∞]. Then by the
interchangeability principle we have

E

[
inf
y∈Rm

ḡ(x, y, ω)

]
︸ ︷︷ ︸

F(x,ω)

= inf
y∈Y

E
[
ḡ(x, y(ω), ω)

]
, (2.65)

provided that the right-hand side of (2.65) is less than+∞ (see Theorem 7.80). This implies
the following interchangeability principle for two-stage programming.

Theorem 2.20. The two-stage problem (2.61)–(2.62) is equivalent to the following problem:

Min
x∈Rn,y∈Y

E [g(x, y(ω), ω)]

s.t. x ∈ X, y(ω) ∈ G(x, ω) a.e. ω ∈ �.
(2.66)

The equivalence is understood in the sense that optimal values of problems (2.61) and (2.66)
are equal to each other, provided that the optimal value of problem (2.66) is less than+∞.
Moreover, assuming that the common optimal value of problems (2.61) and (2.66) is finite,
we have that if (x̄, ȳ) is an optimal solution of problem (2.66), then x̄ is an optimal solution
of the first-stage problem (2.61) and ȳ = ȳ(ω) is an optimal solution of the second-stage
problem (2.62) for x = x̄ and a.e. ω ∈ �; conversely, if x̄ is an optimal solution of the
first-stage problem (2.61) and for x = x̄ and a.e. ω ∈ � the second-stage problem (2.62)
has an optimal solution ȳ = ȳ(ω) such that ȳ ∈ Y, then (x̄, ȳ) is an optimal solution of
problem (2.66).

Note that optimization in the right-hand side of (2.65) and in (2.66) is performed over
mappings y : � → R

m belonging to the space Y. In particular, if � = {ω1, . . . , ωK} is
finite, then by setting yk := y(ωk), k = 1, . . . , K , every such mapping can be identified
with a vector (y1, . . . , yK) and the space Y with the finite dimensional space R

mK . In that
case, problem (2.66) takes the form (compare with (2.15))

Min
x,y1,...,yK

K∑
k=1

pkg(x, yk, ωk)

s.t. x ∈ X, yk ∈ G(x, ωk), k = 1, . . . , K.

(2.67)

2.3.2 Convex Two-Stage Problems

We say that the two-stage problem (2.61)–(2.62) is convex if the setX is convex (and closed)
and for everyω ∈ � the function ḡ(x, y, ω), defined in (2.64), is convex in (x, y) ∈ R

n×R
m.

We leave this as an exercise to show that in such case the optimal value function F(·, ω)
is convex, and hence (2.61) is a convex problem. It could be useful to understand what
conditions will guarantee convexity of the function ḡω(x, y) = ḡ(x, y, ω). We have that
ḡω(x, y) = gω(x, y) + IGω(x)(y). Therefore ḡω(x, y) is convex if gω(x, y) is convex and
the indicator function IGω(x)(y) is convex in (x, y). It is not difficult to see that the indicator
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function IGω(x)(y) is convex iff the following condition holds for any t ∈ [0, 1]:
y ∈ Gω(x), y

′ ∈ Gω(x
′) ⇒ ty + (1− t)y ′ ∈ Gω(tx + (1− t)x ′). (2.68)

Equivalently this condition can be written as

tGω(x)+ (1− t)Gω(x ′) ⊂ Gω(tx + (1− t)x ′), ∀x, x ′ ∈ R
n, ∀t ∈ [0, 1]. (2.69)

The multifunction Gω satisfying the above condition (2.69) is called convex. By taking
x = x ′ we obtain that if the multifunction Gω is convex, then it is convex valued, i.e., the
set Gω(x) is convex for every x ∈ R

n.
In the remainder of this section we assume that the multifunction G(x, ω) is defined

in the form

G(x, ω) := {y ∈ Y : T (x, ω)+W(y, ω) ∈ −C}, (2.70)

where Y is a nonempty convex closed subset of R
m and T = (t1, . . . , t�) : Rn ×�→ R

�,
W = (w1, . . . , w�) : Rm×�→ R

�, and C ⊂ R
� is a closed convex cone. Cone C defines

a partial order, denoted “�
C
”, on the space R

�. That is, a �
C
b iff b − a ∈ C. In that

notation the constraint T (x, ω)+W(y, ω) ∈ −C can be written as T (x, ω)+W(y, ω) �
C

0. For example, if C := R
�+, then the constraint T (x, ω) + W(y, ω) �

C
0 means that

ti(x, ω)+wi(y, ω) ≤ 0, i = 1, . . . , �. We assume that ti(x, ω) andwi(y, ω), i = 1, . . . , �,
are Carathéodory functions and that for every ω ∈ �, mappings Tω(·) = T (·, ω) and
Wω(·) = W(·, ω) are convex with respect to the cone C. A mapping G : R

n → R
� is

said to be convex with respect to C if the multifunction M(x) := G(x) + C is convex.
Equivalently, mapping G is convex with respect to C if

G
(
tx + (1− t)x ′) �

C
tG(x)+ (1− t)G(x ′), ∀x, x ′ ∈ R

n, ∀t ∈ [0, 1].
For example, mapping G(·) = (g1(·), . . . , g�(·)) is convex with respect to C := R

�+ iff all
its components gi(·), i = 1, . . . , �, are convex functions. Convexity of Tω and Wω implies
convexity of the corresponding multifunction Gω.

We assume, further, that g(x, y, ω) := c(x)+q(y, ω), where c(·) and q(·, ω) are real
valued convex functions. For G(x, ω) of the form (2.70), and given x, we can write the
second-stage problem, up to the constant c(x), in the form

Min
y∈Y qω(y)

s.t. Wω(y)+ χω �C 0
(2.71)

with χω := T (x, ω). Let us denote by ϑ(χ, ω) the optimal value of problems (2.71). Note
that F(x, ω) = c(x) + ϑ(T (x, ω), ω). The (Lagrangian) dual of problem (2.71) can be
written in the form

Max
π�

C
0

{
πTχω + inf

y∈Y Lω(y, π)
}
, (2.72)

where

Lω(y, π) := qω(y)+ πTWω(y)
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is the Lagrangian of problem (2.71). We have the following results (see Theorems 7.8
and 7.9).

Proposition 2.21. Letω ∈ � andχω be given and suppose that the specified above convexity
assumptions are satisfied. Then the following statements hold true:

(i) The functions ϑ(·, ω) and F(·, ω) are convex.

(ii) Suppose that problem (2.71) is subconsistent. Then there is no duality gap between
problem (2.71) and its dual (2.72) iff the optimal value function ϑ(·, ω) is lower
semicontinuous at χω.

(iii) There is no duality gap between problems (2.71) and (2.72) and the dual problem
(2.72) has a nonempty set of optimal solutions iff the optimal value function ϑ(·, ω)
is subdifferentiable at χω.

(iv) Suppose that the optimal value of (2.71) is finite. Then there is no duality gap between
problems (2.71) and (2.72) and the dual problem (2.72) has a nonempty and bounded
set of optimal solutions iff χω ∈ int(dom ϑ(·, ω)).
The regularity condition χω ∈ int(dom ϑ(·, ω))means that for all small perturbations

of χω the corresponding problem (2.71) remains feasible.
We can also characterize the differentiability properties of the optimal value functions

in terms of the dual problem (2.72). Let us denote by D(χ, ω) the set of optimal solutions
of the dual problem (2.72). This set may be empty, of course.

Proposition 2.22. Let ω ∈ �, x ∈ R
n and χ = T (x, ω) be given. Suppose that the

specified convexity assumptions are satisfied and that problems (2.71) and (2.72) have finite
and equal optimal values. Then

∂ϑ(χ, ω) = D(χ, ω). (2.73)

Suppose, further, that functions c(·) and Tω(·) are differentiable, and

0 ∈ int
{
Tω(x)+ ∇Tω(x)R� − dom ϑ(·, ω)}. (2.74)

Then

∂F (x, ω) = ∇c(x)+ ∇Tω(x)TD(χ, ω). (2.75)

Corollary 2.23. Let ω ∈ �, x ∈ R
n and χ = T (x, ω) and suppose that the specified

convexity assumptions are satisfied. Then ϑ(·, ω) is differentiable at χ iff D(χ, ω) is a
singleton. Suppose, further, that the functions c(·) and Tω(·) are differentiable. Then the
function F(·, ω) is differentiable at every x at which D(χ, ω) is a singleton.

Proof. If D(χ, ω) is a singleton, then the set of optimal solutions of the dual problem (2.72)
is nonempty and bounded, and hence there is no duality gap between problems (2.71) and
(2.72). Thus formula (2.73) holds. Conversely, if ∂ϑ(χ, ω) is a singleton and hence is
nonempty, then again there is no duality gap between problems (2.71) and (2.72), and hence
formula (2.73) holds.
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Now if D(χ, ω) is a singleton, then ϑ(·, ω) is continuous at χ and hence the regularity
condition (2.74) holds. It follows then by formula (2.75) that F(·, ω) is differentiable at x
and formula

∇F(x, ω) = ∇c(x)+ ∇Tω(x)TD(χ, ω) (2.76)

holds true.

Let us focus on the expectation function f (x) := E[F(x, ω)]. If the set � is finite,
say, � = {ω1, . . . , ωK} with corresponding probabilities pk , k = 1, . . . , K , then f (x) =∑K

k=1 pkF (x, ωk) and subdifferentiability of f (x) is described by the Moreau–Rockafellar
theorem (Theorem 7.4) together with formula (2.75). In particular, f (·) is differentiable
at a point x if the functions c(·) and Tω(·) are differentiable at x and for every ω ∈ � the
corresponding dual problem (2.72) has a unique optimal solution.

Let us consider the general case, when � is not assumed to be finite. By combining
Proposition 2.22 and Theorem 7.47 we obtain that, under appropriate regularity conditions
ensuring for a.e. ω ∈ � formula (2.75) and interchangeability of the subdifferential and
expectation operators, it follows that f (·) is subdifferentiable at a point x̄ ∈ dom f and

∂f (x̄) = ∇c(x̄)+
∫
�

∇Tω(x̄)TD(Tω(x̄), ω) dP (ω)+Ndom f (x̄). (2.77)

In particular, it follows from the above formula (2.77) that f (·) is differentiable at x̄ iff
x̄ ∈ int(dom f ) and D(Tω(x̄), ω) = {π(ω)} is a singleton w.p. 1, in which case

∇f (x̄) = ∇c(x̄)+ E
[∇Tω(x̄)Tπ(ω)] . (2.78)

We obtain the following conditions for optimality.

Proposition 2.24. Let x̄ ∈ X∩ int(dom f ) and assume that formula (2.77) holds. Then x̄ is
an optimal solution of the first-stage problem (2.61) iff there exists a measurable selection
π(ω) ∈ D(T (x̄, ω), ω) such that

−c(x̄)− E
[∇Tω(x̄)Tπ(ω)] ∈ NX(x̄). (2.79)

Proof. Since x̄ ∈ X∩int(dom f ), we have that int(dom f ) �= ∅ and x̄ is an optimal solution
iff 0 ∈ ∂f (x̄)+NX(x̄). By formula (2.77) and since x̄ ∈ int(dom f ), this is equivalent to
condition (2.79).

2.4 Nonanticipativity

2.4.1 Scenario Formulation

An additional insight into the structure and properties of two-stage problems can be gained
by introducing the concept of nonanticipativity. Consider the first-stage problem (2.61).
Assume that the number of scenarios is finite, i.e., � = {ω1, . . . , ωK} with respective
(positive) probabilities p1, . . . , pK . Let us relax the first-stage problem by replacing vector
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x withK vectors x1, x2, . . . , xK , one for each scenario. We obtain the following relaxation
of problem (2.61):

Min
x1,...,xK

K∑
k=1

pkF (xk, ωk) subject to xk ∈ X, k = 1, . . . , K. (2.80)

We observe that problem (2.80) is separable in the sense that it can be split into K
smaller problems, one for each scenario,

Min
xk∈X

F(xk, ωk), k = 1, . . . , K, (2.81)

and that the optimal value of problem (2.80) is equal to the weighted sum, with weights pk ,
of the optimal values of problems (2.81), k = 1, . . . , K . For example, in the case of the
two-stage linear program (2.15), relaxation of the form (2.80) leads to solving K smaller
problems,

Min
xk≥0,yk≥0

cTxk + qT
k yk

s.t. Axk = b, Tkxk +Wkyk = hk.
Problem (2.80), however, is not suitable for modeling a two-stage decision process.

This is because the first-stage decision variables xk in (2.80) are now allowed to depend on
a realization of the random data at the second stage. This can be fixed by introducing the
additional constraint

(x1, . . . , xK) ∈ L, (2.82)

where L := {x = (x1, . . . , xK) : x1 = · · · = xK} is a linear subspace of thenK-dimensional
vector space X := R

n × · · · × R
n. Due to the constraint (2.82), all realizations xk , k =

1, . . . , K , of the first-stage decision vector are equal to each other, that is, they do not depend
on the realization of the random data. The constraint (2.82) can be written in different forms,
which can be convenient in various situations, and will be referred to as the nonanticipativity
constraint. Together with the nonanticipativity constraint (2.82), problem (2.80) becomes

Min
x1,...,xK

K∑
k=1

pkF (xk, ωk)

s.t. x1 = · · · = xK, xk ∈ X, k = 1, . . . , K.

(2.83)

Clearly, the above problem (2.83) is equivalent to problem (2.61). Such nonanticipativity
constraints are especially important in multistage modeling, which we discuss later.

A way to write the nonanticipativity constraint is to require that

xk =
K∑
i=1

pixi, k = 1, . . . , K, (2.84)

which is convenient for extensions to the case of a continuous distribution of problem data.
Equations (2.84) can be interpreted in the following way. Consider the space X equipped
with the scalar product

〈x, y〉 :=
K∑
i=1

pix
T
i yi . (2.85)
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Define linear operator P : X→ X as

Px :=
(

K∑
i=1

pixi, . . . ,

K∑
i=1

pixi

)
.

Constraint (2.84) can be compactly written as

x = Px.

It can be verified that P is the orthogonal projection operator of X, equipped with the scalar
product (2.85), onto its subspace L. Indeed, P (Px) = Px, and

〈Px, y〉 =
(

K∑
i=1

pixi

)T ( K∑
k=1

pkyk

)
= 〈x,Py〉. (2.86)

The range space of P , which is the linear space L, is called the nonanticipativity subspace
of X.

Another way to algebraically express nonanticipativity, which is convenient for nu-
merical methods, is to write the system of equations

x1 = x2,

x2 = x3,

...

xK−1 = xK.

(2.87)

This system is very sparse: each equation involves only two variables, and each vari-
able appears in at most two equations, which is convenient for many numerical solution
methods.

2.4.2 Dualization of Nonanticipativity Constraints

We discuss now a dualization of problem (2.80) with respect to the nonanticipativity
constraints (2.84). Assigning to these nonanticipativity constraints Lagrange multipliers
λk ∈ R

n, k = 1, . . . , K , we can write the Lagrangian

L(x,λ) :=
K∑
k=1

pkF (xk, ωk)+
K∑
k=1

pkλ
T
k

(
xk −

K∑
i=1

pixi

)
.

Note that since P is an orthogonal projection, I −P is also an orthogonal projection (onto
the space orthogonal to L), and hence

K∑
k=1

pkλ
T
k

(
xk −

K∑
i=1

pixi

)
= 〈λ, (I − P )x〉 = 〈(I − P )λ, x〉.
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Therefore, the above Lagrangian can be written in the following equivalent form:

L(x,λ) =
K∑
k=1

pkF (xk, ωk)+
K∑
k=1

pk

λk − K∑
j=1

pjλj

T

xk.

Let us observe that shifting the multipliers λk , k = 1, . . . , K , by a constant vector does not
change the value of the Lagrangian, because the expression λk −∑K

j=1 pjλj is invariant to
such shifts. Therefore, with no loss of generality we can assume that

K∑
j=1

pjλj = 0.

or, equivalently, that Pλ = 0. Dualization of problem (2.80) with respect to the nonantici-
pativity constraints takes the form of the following problem:

Max
λ

{
D(λ) := inf

x
L(x,λ)

}
s.t. Pλ = 0. (2.88)

By general duality theory we have that the optimal value of problem (2.61) is greater than
or equal to the optimal value of problem (2.88). These optimal values are equal to each
other under some regularity conditions; we will discuss a general case in the next section.
In particular, if the two-stage problem is linear and since the nonanticipativity constraints
are linear, we have in that case that there is no duality gap between problem (2.61) and its
dual problem (2.88) unless both problems are infeasible.

Let us take a closer look at the dual problem (2.88). Under the condition Pλ = 0, the
Lagrangian can be written simply as

L(x,λ) =
K∑
k=1

pk
(
F(xk, ωk)+ λT

kxk
)
.

We see that the Lagrangian can be split into K components:

L(x,λ) =
K∑
k=1

pkLk(xk, λk),

where Lk(xk, λk) := F(xk, ωk)+ λT
kxk . It follows that

D(λ) =
K∑
j=1

pkDk(λk),

where

Dk(λk) := inf
xk∈X

Lk(xk, λk).
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For example, in the case of the two-stage linear program (2.15), Dk(λk) is the optimal value
of the problem

Min
xk,yk

(c + λk)Txk + qT
k yk

s.t. Axk = b,
Tkxk +Wkyk = hk,
xk ≥ 0, yk ≥ 0.

We see that value of the dual function D(λ) can be calculated by solving K independent
scenario subproblems.

Suppose that there is no duality gap between problem (2.61) and its dual (2.88) and
their common optimal value is finite. This certainly holds true if the problem is linear, and
both problems, primal and dual, are feasible. Let λ̄ = (λ̄1, . . . , λ̄K) be an optimal solution
of the dual problem (2.88). Then the set of optimal solutions of problem (2.61) is contained
in the set of optimal solutions of the problem

Min
xk∈X

K∑
k=1

pkLk(xk, λ̄k) (2.89)

This inclusion can be strict, i.e., the set of optimal solutions of (2.89) can be larger than the
set of optimal solutions of problem (2.61). (See an example of linear program defined in
(7.32).) Of course, if problem (2.89) has unique optimal solution x̄ = (x̄1, . . . , x̄K), then
x̄ ∈ L, i.e., x̄1 = · · · = x̄K , and this is also the optimal solution of problem (2.61) with x̄
being equal to the common value of x̄1, . . . , x̄K . Note also that the above problem (2.89) is
separable, i.e., x̄ is an optimal solution of (2.89) iff for every k = 1, . . . , K , x̄k is an optimal
solution of the problem

Min
xk∈X

Lk(xk, λ̄k).

2.4.3 Nonanticipativity Duality for General Distributions

In this section we discuss dualization of the first-stage problem (2.61) with respect to nonan-
ticipativity constraints in the general (not necessarily finite-scenarios) case. For the sake of
convenience we write problem (2.61) in the form

Min
x∈Rn

{
f̄ (x) := E[F̄ (x, ω)]}, (2.90)

where F̄ (x, ω) := F(x, ω)+ IX(x), i.e., F̄ (x, ω) = F(x, ω) if x ∈ X and F̄ (x, ω) = +∞
otherwise. Let X be a linear decomposable space of measurable mappings from � to R

n.
Unless stated otherwise we use X := Lp(�,F , P ;Rn) for some p ∈ [1,+∞] such that
for every x ∈ X the expectation E[F̄ (x(ω), ω)] is well defined. Then we can write problem
(2.90) in the equivalent form

Min
x∈L

E[F̄ (x(ω), ω)], (2.91)

where L is a linear subspace of X formed by mappings x : � → R
n which are constant

almost everywhere, i.e.,

L := {x ∈ X : x(ω) ≡ x for some x ∈ R
n
}
,

where x(ω) ≡ x means that x(ω) = x for a.e. ω ∈ �.
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Consider the dual9 X∗ := Lq(�,F , P ;Rn) of the space X and define the scalar
product (bilinear form)

〈λ, x〉 := E
[
λTx
] = ∫

�

λ(ω)Tx(ω)dP (ω), λ ∈ X
∗, x ∈ X.

Also, consider the projection operator P : X→ L defined as [Px](ω) ≡ E[x]. Clearly the
space L is formed by such x ∈ X that Px = x. Note that

〈λ,Px〉 = E [λ]T
E [x] = 〈P ∗λ, x〉,

where P ∗ is a projection operator [P ∗λ](ω) ≡ E[λ] from X∗ onto its subspace formed by
constant a.e. mappings. In particular, if p = 2, then X∗ = X and P ∗ = P .

With problem (2.91) is associated the following Lagrangian:

L(x,λ) := E[F̄ (x(ω), ω)] + E
[
λT(x − E[x])] .

Note that
E
[
λT(x − E[x])] = 〈λ, x − Px〉 = 〈λ− P ∗λ, x〉,

and λ−P ∗λ does not change by adding a constant to λ(·). Therefore we can set P ∗λ = 0,
in which case

L(x,λ) = E
[
F̄ (x(ω), ω)+ λ(ω)Tx(ω)

]
for E[λ] = 0. (2.92)

This leads to the following dual of problem (2.90):

Max
λ∈X∗

{
D(λ) := inf

x∈X
L(x,λ)

}
s.t. E[λ] = 0. (2.93)

In case of finitely many scenarios, the above dual is the same as the dual problem (2.88).
By the interchangeability principle (Theorem 7.80) we have

inf
x∈X

E
[
F̄ (x(ω), ω)+ λ(ω)Tx(ω)

] = E

[
inf
x∈Rn

(
F̄ (x, ω)+ λ(ω)Tx

)]
.

Consequently,
D(λ) = E[Dω(λ(ω))],

where Dω : Rn→ R is defined as

Dω(λ) := inf
x∈Rn

(
λTx + F̄ω(x)

) = − sup
x∈Rn

(−λTx − F̄ω(x)
) = −F̄ ∗ω(−λ). (2.94)

That is, in order to calculate the dual function D(λ) one needs to solve for every ω ∈ �
the finite dimensional optimization problem (2.94) and then to integrate the optimal values
obtained.

9Recall that 1/p + 1/q = 1 for p, q ∈ (1,+∞). If p = 1, then q = +∞. Also for p = +∞ we use
q = 1. This results in a certain abuse of notation since the space X = L∞(�,F , P ;Rn) is not reflexive and
X∗ = L1(�,F , P ;Rn) is smaller than its dual. Note also that if x ∈ Lp(�,F , P ;Rn), then its expectation
E[x] = ∫

�
x(ω)dP (ω) is well defined and is an element of vector space R

n.
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58 Chapter 2. Two-Stage Problems

By the general theory, we have that the optimal value of problem (2.91), which is the
same as the optimal value of problem (2.90), is greater than or equal to the optimal value
of its dual (2.93). We also have that there is no duality gap between problem (2.91) and its
dual (2.93) and both problems have optimal solutions x̄ and λ̄, respectively, iff (x̄, λ̄) is a
saddle point of the Lagrangian defined in (2.92). By definition a point (x̄, λ̄) ∈ X × X∗ is
a saddle point of the Lagrangian iff

x̄ ∈ arg min
x∈L

L(x, λ̄) and λ̄ ∈ arg max
λ:E[λ]=0

L(x̄,λ). (2.95)

By the interchangeability principle (see (7.247) of Theorem 7.80), we have that the first
condition in (2.95) can be written in the following equivalent form:

x̄(ω) ≡ x̄ and x̄ ∈ arg min
x∈Rn

{
F̄ (x, ω)+ λ̄(ω)Tx

}
a.e. ω ∈ �. (2.96)

Since x̄(ω) ≡ x̄, the second condition in (2.95) means that E[λ̄] = 0.
Let us assume now that the considered problem is convex, i.e., the set X is convex

(and closed) and Fω(·) is a convex function for a.e. ω ∈ �. It follows that F̄ω(·) is a convex
function for a.e. ω ∈ �. Then the second condition in (2.96) holds iff λ̄(ω) ∈ −∂F̄ω(x̄) for
a.e. ω ∈ �. Together with condition E[λ̄] = 0 this means that

0 ∈ E
[
∂F̄ω(x̄)

]
. (2.97)

It follows that the Lagrangian has a saddle point iff there exists x̄ ∈ R
n satisfying condition

(2.97). We obtain the following result.

Theorem 2.25. Suppose that the function F(x, ω) is random lower semicontinuous, the set
X is convex and closed, and for a.e. ω ∈ � the function F(·, ω) is convex. Then there is no
duality gap between problems (2.90) and (2.93) and both problems have optimal solutions
iff there exists x̄ ∈ R

n satisfying condition (2.97). In that case, x̄ is an optimal solution
of (2.90) and a measurable selection λ̄(ω) ∈ −∂F̄ω(x̄) such that E[λ̄] = 0 is an optimal
solution of (2.93).

Recall that the inclusion E
[
∂F̄ω(x̄)

] ⊂ ∂f̄ (x̄) always holds (see (7.125) in the proof
of Theorem 7.47). Therefore, condition (2.97) implies that 0 ∈ ∂f̄ (x̄), which in turn implies
that x̄ is an optimal solution of (2.90). Conversely, if x̄ is an optimal solution of (2.90),
then 0 ∈ ∂f̄ (x̄), and if in addition E

[
∂F̄ω(x̄)

] = ∂f̄ (x̄), then (2.97) follows. Therefore,
Theorems 2.25 and 7.47 imply the following result.

Theorem 2.26. Suppose that (i) the function F(x, ω) is random lower semicontinuous,
(ii) the set X is convex and closed, (iii) for a.e. ω ∈ � the function F(·, ω) is convex, and
(iv) problem (2.90) possesses an optimal solution x̄ such that x̄ ∈ int(domf ). Then there is
no duality gap between problems (2.90) and (2.93), the dual problem (2.93) has an optimal
solution λ̄, and the constant mapping x̄(ω) ≡ x̄ is an optimal solution of the problem

Min
x∈X

E
[
F̄ (x(ω), ω)+ λ̄(ω)Tx(ω)

]
.

Proof. Since x̄ is an optimal solution of problem (2.90), we have that x̄ ∈ X and f (x̄)
is finite. Moreover, since x̄ ∈ int(domf ) and f is convex, it follows that f is proper
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and Ndomf (x̄) = {0}. Therefore, it follows by Theorem 7.47 that E [∂Fω(x̄)] = ∂f (x̄).
Furthermore, since x̄ ∈ int(domf ), we have that ∂f̄ (x̄) = ∂f (x̄) + NX(x̄), and hence
E
[
∂F̄ω(x̄)

] = ∂f̄ (x̄). By optimality of x̄, we also have that 0 ∈ ∂f̄ (x̄). Consequently,
0 ∈ E

[
∂F̄ω(x̄)

]
, and hence the proof can be completed by applying Theorem 2.25.

If X is a subset of int(domf ), then any point x ∈ X is an interior point of domf . In
that case, condition (iv) of the above theorem is reduced to existence of an optimal solution.
The condition X ⊂ int(domf ) means that f (x) < +∞ for every x in a neighborhood of
the set X. This requirement is slightly stronger than the condition of relatively complete
recourse.

Example 2.27 (Capacity Expansion Continued). Let us consider the capacity expansion
problem of Examples 2.4 and 2.13. Suppose that x̄ is the optimal first-stage decision and
let ȳij (ξ) be the corresponding optimal second-stage decisions. The scenario problem has
the form

Min
∑

(i,j)∈A

[
(cij + λij (ξ))xij + qij yij

]
s.t.

∑
(i,j)∈A+(n)

yij −
∑

(i,j)∈A−(n)
yij = ξn, n ∈ N ,

0 ≤ yij ≤ xij , (i, j) ∈ A.

From Example 2.13 we know that there exist random node potentials µn(ξ), n ∈ N , such
that for all ξ ∈ � we have µ(ξ) ∈ M(x̄, ξ), and conditions (2.42)–(2.43) are satisfied.
Also, the random variables gij (ξ) = −max{0, µi(ξ)−µj(ξ)− qij } are the corresponding
subgradients of the second stage cost. Define

λij (ξ) = max{0, µi(ξ)−µj(ξ)−qij }−
∫
�

max{0, µi(ξ)−µj(ξ)−qij }P(dξ), (i, j) ∈ A.

We can easily verify that xij (ξ) = x̄ij and ȳij (ξ), (i, j) ∈ A, are an optimal solution of the
scenario problem, because the first term of λij cancels with the subgradient gij (ξ), while
the second term satisfies the optimality conditions (2.42)–(2.43). Moreover, E[λ] = 0 by
construction.

2.4.4 Value of Perfect Information

Consider the following relaxation of the two-stage problem (2.61)–(2.62):

Min
x∈X

E[F̄ (x(ω), ω)]. (2.98)

This relaxation is obtained by removing the nonanticipativity constraint from the formulation
(2.91) of the first-stage problem. By the interchangeability principle (Theorem 7.80) we
have that the optimal value of the above problem (2.98) is equal to E

[
inf x∈Rn F̄ (x, ω)

]
.

The value inf x∈Rn F̄ (x, ω) is equal to the optimal value of the problem

Min
x∈X, y∈G(x,ω)

g(x, y, ω). (2.99)
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60 Chapter 2. Two-Stage Problems

That is, the optimal value of problem (2.98) is obtained by solving problems of the form
(2.99), one for eachω ∈ �, and then taking the expectation of the calculated optimal values.

Solving problems of the form (2.99) makes sense if we have perfect information about
the data, i.e., the scenario ω ∈ � is known at the time when the first-stage decision should
be made. The problem (2.99) is deterministic, e.g., in the case of two-stage linear program
(2.1)–(2.2) it takes the form

Min
x≥0,y≥0

cTx + qTy s.t. Ax = b, T x +Wy = h.

An optimal solution of the second-stage problem (2.99) depends on ω ∈ � and is called the
wait-and-see solution.

We have that for any x ∈ X and ω ∈ �, the inequality F(x, ω) ≥ inf x∈X F(x, ω)
clearly holds, and hence E[F(x, ω)] ≥ E [inf x∈X F(x, ω)]. It follows that

inf
x∈XE[F(x, ω)] ≥ E

[
inf
x∈X F(x, ω)

]
. (2.100)

Another way to view the above inequality is to observe that problem (2.98) is a relaxation
of the corresponding two-stage stochastic problem, which of course implies (2.100).

Suppose that the two-stage problem has an optimal solution x̄ ∈ arg minx∈X E[F(x, ω)].
As F(x̄, ω)− inf x∈X F(x, ω) ≥ 0 for all ω ∈ �, we conclude that

E[F(x̄, ω)] = E

[
inf
x∈X F(x, ω)

]
(2.101)

iff F(x̄, ω) = inf x∈X F(x, ω) w.p. 1. That is, equality in (2.101) holds iff

F(x̄, ω) = inf
x∈X F(x, ω) for a.e. ω ∈ �. (2.102)

In particular, this happens if F̄ω(x) has a minimizer independent of ω ∈ �. This, of course,
may happen only in rather specific situations.

The difference F(x̄, ω)− inf x∈X F(x, ω) represents the value of perfect information
of knowing ω. Consequently

EVPI := inf
x∈XE[F(x, ω)] − E

[
inf
x∈X F(x, ω)

]
is called the expected value of perfect information. It follows from (2.100) that EVPI is
always nonnegative and EVPI = 0 iff condition (2.102) holds.

Exercises
2.1. Consider the assembly problem discussed in section 1.3.1 in two cases:

(i) The demand which is not satisfied from the preordered quantities of parts is
lost.
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(ii) All demand has to be satisfied by making additional orders of the missing parts.
In this case, the cost of each additionally ordered part j is rj > cj .

For each of these cases describe the subdifferential of the recourse cost and of the
expected recourse cost.

2.2. A transportation company has n depots among which they send cargo. The demand
for transportation between depot i and depot j �= i is modeled as a random variable
Dij . The total capacity of vehicles currently available at depot i is denoted si ,
i = 1, . . . , n. The company considers repositioning its fleet to better prepare to
the uncertain demand. It costs cij to move a unit of capacity from location i to
location j . After repositioning, the realization of the random vector D is observed,
and the demand is served, up to the limit determined by the transportation capacity
available at each location. The profit from transporting a unit of cargo from location
i to location j is equal qij . If the total demand at location i exceeds the capacity
available at location i, the excessive demand is lost. It is up to the company to decide
how much of each demand Dij be served, and which part will remain unsatisfied.
For simplicity, we consider all capacity and transportation quantities as continuous
variables.

(a) Formulate the problem of maximizing the expected profit as a two-stage stochas-
tic programming problem.

(b) Describe the subdifferential of the recourse cost and the expected recourse cost.

2.3. Show that the function sq(·), defined in (2.4), is convex.
2.4. Consider the optimal value Q(x, ξ) of the second-stage problem (2.2). Show that

Q(·, ξ) is differentiable at a point x iff the dual problem (2.3) has a unique optimal
solution π̄ , in which case ∇xQ(x, ξ) = −T Tπ̄ .

2.5. Consider the two-stage problem (2.1)–(2.2) with fixed recourse. Show that the
following conditions are equivalent: (i) problem (2.1)–(2.2) has complete recourse,
(ii) the feasible set �(q) of the dual problem is bounded for every q, and (iii) the
system W Tπ ≤ 0 has only one solution π = 0.

2.6. Show that if random vector ξ has a finite support, then condition (2.24) is necessary
and sufficient for relatively complete recourse.

2.7. Show that the conjugate function of a polyhedral function is also polyhedral.
2.8. Show that if Q(x, ω) is finite, then the set D(x, ω) of optimal solutions of problem

(2.46) is a nonempty convex closed polyhedron.
2.9. Consider problem (2.63) and its optimal valueF(x, ω). Show thatF(x, ω) is convex

in x if ḡ(x, y, ω) is convex in (x, y). Show that the indicator function IGω(x)(y) is
convex in (x, y) iff condition (2.68) holds for any t ∈ [0, 1].

2.10. Show that equation (2.86) implies that 〈x − Px, y〉 = 0 for any x ∈ X and y ∈ L,
i.e., that P is the orthogonal projection of X onto L.

2.11. Derive the form of the dual problem for the linear two-stage stochastic programming
problem in form (2.80) with nonanticipativity constraints (2.87).
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Chapter 3

Multistage Problems

Andrzej Ruszczyński and Alexander Shapiro

3.1 Problem Formulation

3.1.1 The General Setting

The two-stage stochastic programming models can be naturally extended to a multistage
setting. We discussed examples of such decision processes in sections 1.2.3 and 1.4.2 for a
multistage inventory model and a multistage portfolio selection problem, respectively. In the
multistage setting, the uncertain data ξ1, . . . , ξT is revealed gradually over time, inT periods,
and our decisions should be adapted to this process. The decision process has the form

decision (x1) � observation (ξ2) � decision (x2) �

· · ·� observation (ξT ) � decision (xT ).

We view the sequence ξt ∈ R
dt , t = 1, . . . , T , of data vectors as a stochastic process, i.e.,

as a sequence of random variables with a specified probability distribution. We use notation
ξ[t] := (ξ1, . . . , ξt ) to denote the history of the process up to time t .

The values of the decision vector xt , chosen at stage t , may depend on the information
(data) ξ[t] available up to time t , but not on the results of future observations. This is the
basic requirement of nonanticipativity. As xt may depend on ξ[t], the sequence of decisions
is a stochastic process as well.

We say that the process {ξt } is stagewise independent if ξt is stochastically independent
of ξ[t−1], t = 2, . . . , T . It is said that the process is Markovian if for every t = 2, . . . , T ,
the conditional distribution of ξt given ξ[t−1] is the same as the conditional distribution of
ξt given ξt−1. Of course, if the process is stagewise independent, then it is Markovian.
As before, we often use the same notation ξt to denote a random vector and its particular

63
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64 Chapter 3. Multistage Problems

realization. Which of these two meanings will be used in a particular situation will be clear
from the context.

In a generic form a T -stage stochastic programming problem can be written in the
nested formulation

Min
x1∈X1

f1(x1)+E

[
inf

x2∈X2(x1,ξ2)
f2(x2, ξ2)+ E

[
· · · + E

[
inf

xT ∈XT (xT−1,ξT )
fT (xT , ξT )

]]]
, (3.1)

driven by the random data process ξ1, ξ2, . . . , ξT . Here xt ∈ R
nt , t = 1, . . . , T , are decision

variables, ft : R
nt × R

dt → R are continuous functions and Xt : R
nt−1 × R

dt ⇒ R
nt ,

t = 2, . . . , T , are measurable closed valued multifunctions. The first-stage data, i.e., the
vector ξ1, the function f1 : Rn1 → R, and the set X1 ⊂ R

n1 are deterministic. It is said that
the multistage problem is linear if the objective functions and the constraint functions are
linear. In a typical formulation,

ft (xt , ξt ) := cT
t xt , X1 := {x1 : A1x1 = b1, x1 ≥ 0} ,

Xt (xt−1, ξt ) := {xt : Btxt−1 + Atxt = bt , xt ≥ 0} , t = 2, . . . , T .

Here, ξ1 := (c1, A1, b1) is known at the first-stage (and hence is nonrandom), and ξt :=
(ct , Bt , At , bt ) ∈ R

dt , t = 2, . . . , T , are data vectors,10 some (or all) elements of which can
be random.

There are several equivalent ways to make this formulation precise. One approach is
to consider decision variables xt = x t (ξ[t]), t = 1, . . . , T , as functions of the data process
ξ[t] up to time t . Such a sequence of (measurable) mappings x t : Rd1 × · · · × R

dt → R
nt ,

t = 1, . . . , T , is called an implementable policy (or simply a policy) (recall that ξ1 is
deterministic). An implementable policy is said to be feasible if it satisfies the feasibility
constraints, i.e.,

x t (ξ[t]) ∈ Xt (x t−1(ξ[t−1]), ξt ), t = 2, . . . , T , w.p. 1. (3.2)

We can formulate the multistage problem (3.1) in the form

Min
x1,x2,...,xT

E
[
f1(x1)+ f2(x2(ξ[2]), ξ2)+ · · · + fT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, x t (ξ[t]) ∈ Xt (x t−1(ξ[t−1]), ξt ), t = 2, . . . , T .

(3.3)

Note that optimization in (3.3) is performed over implementable and feasible policies and
that policies x2, . . . , xT are functions of the data process, and hence are elements of appro-
priate functional spaces, while x1 ∈ R

n1 is a deterministic vector. Therefore, unless the data
process ξ1, . . . , ξT has a finite number of realizations, formulation (3.3) leads to an infinite
dimensional optimization problem. This is a natural extension of the formulation (2.66) of
the two-stage problem.

Another possible way is to write the corresponding dynamic programming equations.
That is, consider the last-stage problem

Min
xT ∈XT (xT−1,ξT )

fT (xT , ξT ).

10If data involves matrices, then their elements can be stacked columnwise to make it a vector.
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The optimal value of this problem, denoted QT (xT−1, ξT ), depends on the decision vector
xT−1 and data ξT . At stage t = 2, . . . , T − 1, we formulate the problem

Min
xt

ft (xt , ξt )+ E
{
Qt+1

(
xt , ξ[t+1]

) ∣∣ξ[t]}
s.t. xt ∈ Xt (xt−1, ξt ),

where E
[ · |ξ[t]] denotes conditional expectation. Its optimal value depends on the decision

xt−1 at the previous stage and realization of the data process ξ[t], and denotedQt

(
xt−1, ξ[t]

)
.

The idea is to calculate the cost-to-go (or value) functionsQt

(
xt−1, ξ[t])

)
, recursively, going

backward in time. At the first stage we finally need to solve the problem:

Min
x1∈X1

f1(x1)+ E [Q2 (x1, ξ2)] .

The corresponding dynamic programming equations are

Qt

(
xt−1, ξ[t]

) = inf
xt∈Xt (xt−1,ξt )

{
ft (xt , ξt )+Qt+1

(
xt , ξ[t]

) }
, (3.4)

where
Qt+1

(
xt , ξ[t]

) := E
{
Qt+1

(
xt , ξ[t+1]

) ∣∣ξ[t]} .
An implementable policy x̄ t (ξ[t]) is optimal iff for t = 1, . . . , T ,

x̄ t (ξ[t]) ∈ arg min
xt∈Xt (x̄ t−1(ξ[t−1]),ξt )

{
ft (xt , ξt )+Qt+1

(
xt , ξ[t]

) }
, w.p. 1, (3.5)

where for t = T the term QT+1 is omitted and for t = 1 the set X1 depends only on ξ1. In
the dynamic programming formulation the problem is reduced to solving a family of finite
dimensional problems, indexed by t and by ξ[t]. It can be viewed as an extension of the
formulation (2.61)–(2.62) of the two-stage problem.

If the process ξ1, . . . , ξT is Markovian, then conditional distributions in the above
equations, given ξ[t], are the same as the respective conditional distributions given ξt . In
that case each cost-to-go function Qt depends on ξt rather than the whole ξ[t] and we can
write it as Qt (xt−1, ξt ). If, moreover, the stagewise independence condition holds, then
each expectation function Qt does not depend on realizations of the random process, and
we can write it simply as Qt (xt−1).

3.1.2 The Linear Case

We discuss linear multistage problems in more detail. Let x1, . . . , xT be decision vectors
corresponding to time periods (stages) 1, . . . , T . Consider the following linear program-
ming problem:

Min cT
1x1 + cT

2x2 + cT3 x3 + . . . + cT
T xT

s.t. A1x1 = b1,

B2x1 + A2x2 = b2,

B3x2 + A3x3 = b3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BT xT−1 + AT xT = bT ,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, . . . xT ≥ 0.

(3.6)
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66 Chapter 3. Multistage Problems

We can view this problem as a multiperiod stochastic programming problem where c1, A1

and b1 are known, but some (or all) the entries of the cost vectors ct , matricesBt andAt , and
right-hand-side vectors bt , t = 2, . . . , T , are random. In the multistage setting, the values
(realizations) of the random data become known in the respective time periods (stages), and
we have the following sequence of actions:

decision (x1)

observation ξ2 := (c2, B2, A2, b2)

decision (x2)

...

observation ξT := (cT , BT ,AT , bT )

decision (xT ).

Our objective is to design the decision process in such a way that the expected value of the
total cost is minimized while optimal decisions are allowed to be made at every time period
t = 1, . . . , T .

Let us denote by ξt the data vector, realization of which becomes known at time
period t . In the setting of the multiperiod problem (3.6), ξt is assembled from the components
of ct ,Bt ,At , bt , some (or all) of which can be random, while the data ξ1 = (c1, A1, b1) at the
first stage of problem (3.6) is assumed to be known. The important condition in the above
multistage decision process is that every decision vector xt may depend on the information
available at time t (that is, ξ[t]) but not on the results of observations to be made at later stages.
This differs multistage stochastic programming problems from deterministic multiperiod
problems, in which all the information is assumed to be available at the beginning of the
decision process.

As it was outlined in section 3.1.1, there are several possible ways to formulate
multistage stochastic programs in a precise mathematical form. In one such formulation
xt = x t (ξ[t]), t = 2, . . . , T , is viewed as a function of ξ[t], and the minimization in (3.6) is
performed over appropriate functional spaces of such functions. If the number of scenar-
ios is finite, this leads to a formulation of the linear multistage stochastic program as one
large (deterministic) linear programming problem. We discuss that further in section 3.1.4.
Another possible approach is to write dynamic programming equations, which we discuss
next.

Let us look at our problem from the perspective of the last stage T . At that time
the values of all problem data, ξ[T ], are already known, and the values of the earlier deci-
sion vectors, x1, . . . , xT−1, have been chosen. Our problem is, therefore, a simple linear
programming problem

Min
xT

cT
T xT

s.t. BT xT−1 + AT xT = bT ,
xT ≥ 0.

The optimal value of this problem depends on the earlier decision vector xT−1 ∈ R
nT−1 and

data ξT = (cT , BT ,AT , bT ) and is denoted by QT (xT−1, ξT ).
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At stage T −1 we know xT−2 and ξ[T−1]. We face, therefore, the following stochastic
programming problem:

Min
xT−1

cT
T−1xT−1 + E

[
QT (xT−1, ξT )

∣∣ ξ[T−1]
]

s.t. BT−1xT−2 + AT−1xT−1 = bT−1,

xT−1 ≥ 0.

The optimal value of the above problem depends on xT−2 ∈ R
nT−2 and data ξ[T−1] and is

denoted QT−1(xT−2, ξ[T−1]).
Generally, at stage t = 2, . . . , T − 1, we have the problem

Min
xt

cT
t xt + E

[
Qt+1(xt , ξ[t+1])

∣∣ ξ[t]]
s.t. Btxt−1 + Atxt = bt ,

xt ≥ 0.

(3.7)

Its optimal value, called cost-to-go function, is denoted Qt(xt−1, ξ[t]).
On top of all these problems is the problem to find the first decisions, x1 ∈ R

n1 ,

Min
x1

cT
1x1 + E [Q2(x1, ξ2)]

s.t. A1x1 = b1,

x1 ≥ 0.

(3.8)

Note that all subsequent stages t = 2, . . . , T are absorbed in the above problem into the
function Q2(x1, ξ2) through the corresponding expected values. Note also that since ξ1 is
not random, the optimal value Q2(x1, ξ2) does not depend on ξ1. In particular, if T = 2,
then (3.8) coincides with the formulation (2.1) of a two-stage linear problem.

The dynamic programming equations here take the form (compare with (3.4))

Qt

(
xt−1, ξ[t]

) = inf
xt

{
cT
t xt +Qt+1

(
xt , ξ[t]

) : Btxt−1 + Atxt = bt , xt ≥ 0
}
,

where
Qt+1

(
xt , ξ[t]

) := E
{
Qt+1

(
xt , ξ[t+1]

) ∣∣ξ[t]} .
Also an implementable policy x̄ t (ξ[t]) is optimal if for t = 1, . . . , T the condition

x̄ t (ξ[t]) ∈ arg min
xt

{
cT
t xt +Qt+1

(
xt , ξ[t]

) : Atxt = bt − Bt x̄ t−1(ξ[t−1]), xt ≥ 0
}

holds for almost every realization of the random process. (For t = T the term QT+1 is
omitted and for t = 1 the term Bt x̄ t−1 is omitted.) If the process ξt is Markovian, then each
cost-to-go function depends on ξt rather than ξ[t], and we can simply writeQt(xt−1, ξt ), t =
2, . . . , T . If, moreover, the stagewise independence condition holds, then each expectation
function Qt does not depend on realizations of the random process, and we can write it as
Qt (xt−1), t = 2, . . . , T .

The nested formulation of the linear multistage problem can be written as follows
(compare with (3.1)):

Min
A1x1=b1
x1≥0

cT
1x1 + E

 min
B2x1+A2x2=b2

x2≥0

cT
2x2 + E

[
· · · + E

[
min

BT xT−1+AT xT=bT
xT≥0

cT
T xT
]] . (3.9)
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68 Chapter 3. Multistage Problems

Suppose now that we deal with an underlying model with a full lower block triangular
constraint matrix:

Min cT
1x1 + cT

2x2 + cT
3x3 + · · · + cT

T xT
s.t. A11x1 = b1,

A21x1 + A22x2 = b2,

A31x1 + A32x2 + A33x3 = b3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AT 1x1 + AT 2x2 + · · · + AT,T−1xT−1 + ATT xT = bT ,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, · · · xT ≥ 0.
(3.10)

In the constraint matrix of (3.6), the respective blocks At1, . . . , At,t−2 were assumed
to be zeros. This allowed us to express there the optimal value Qt of (3.7) as a function of
the immediately preceding decision, xt−1, rather than all earlier decisions x1, . . . , xt−1. In
the case of problem (3.10), each respective subproblem of the form (3.7) depends on the
entire history of our decisions, x[t−1] := (x1, . . . , xt−1). It takes on the form

Min
xt

cT
t xt + E

[
Qt+1(x[t], ξ[t+1])

∣∣ ξ[t]]
s.t. At1x1 + · · · + At,t−1xt−1 + At,txt = bt ,

xt ≥ 0.

(3.11)

Its optimal value (i.e., the cost-to-go function)Qt(x[t−1], ξ[t]) is now a function of the whole
history x[t−1] of the decision process rather than its last decision vector xt−1.

Sometimes it is convenient to convert such a lower triangular formulation into the
staircase formulation from which we started our presentation. This can be accomplished by
introducing additional variables rt which summarize the relevant history of our decisions.
We shall call these variables the model state variables (to distinguish from information
states discussed before). The relations that describe the next values of the state variables
as a function of the current values of these variables, current decisions, and current random
parameters are called model state equations.

For the general problem (3.10), the vectors x[t] = (x1, . . . , xt ) are sufficient model
state variables. They are updated at each stage according to the state equation x[t] =
(x[t−1], xt ) (which is linear), and the constraint in (3.11) can be formally written as

[At1 At2 . . . At,t−1 ]x[t−1] + At,txt = bt .

Although it looks a little awkward in this general case, in many problems it is possible to
define model state variables of reasonable size. As an example let us consider the structure

Min cT
1x1 + cT

2x2 + cT
3x3 + · · · + cT

T xT
s.t. A11x1 = b1,

B1x1 + A22x2 = b2,

B1x1 + B2x2 + A33x3 = b3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B1x1 + B2x2 + · · · + BT−1xT−1 + ATT xT = bT ,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, · · · xT ≥ 0,
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in which all blocksAit , i = t + 1, . . . , T , are identical and observed at time t . Then we can
define the state variables rt , t = 1, . . . , T , recursively by the state equation rt = rt−1+Btxt ,
t = 1, . . . , T − 1, where r0 = 0. Subproblem (3.11) simplifies substantially:

Min
xt ,rt

cT
t xt + E

[
Qt+1(rt , ξ[t+1])

∣∣ ξ[t]]
s.t. rt−1 + At,txt = bt ,

rt = rt−1 + Btxt ,
xt ≥ 0.

Its optimal value depends on rt−1 and is denoted Qt(rt−1, ξ[t]).
Let us finally remark that the simple sign constraints xt ≥ 0 can be replaced in our

model by a general constraint xt ∈ Xt , where Xt is a convex polyhedron defined by some
linear equations and inequalities (local for stage t). The setXt may be random, too, but has
to become known at stage t .

3.1.3 Scenario Trees

In order to proceed with numerical calculations, one needs to make a discretization of the
underlying random process. It is useful and instructive to discuss this in detail. That is, we
consider in this section the case where the random process ξ1, . . . , ξT has a finite number of
realizations. It is useful to depict the possible sequences of data in a form of scenario tree. It
has nodes organized in levels which correspond to stages 1, . . . , T . At level t = 1 we have
only one root node, and we associate with it the value of ξ1 (which is known at stage t = 1).
At level t = 2 we have as many nodes as many different realizations of ξ2 may occur. Each
of them is connected with the root node by an arc. For each node ι of level t = 2 (which
corresponds to a particular realization ξ ι2 of ξ2) we create at least as many nodes at level 3
as different values of ξ3 may follow ξ ι2, and we connect them with the node ι, etc.

Generally, nodes at level t correspond to possible values of ξt that may occur. Each
of them is connected to a unique node at level t − 1, called the ancestor node, which
corresponds to the identical first t−1 parts of the process ξ[t] and is also connected to nodes
at level t + 1, called children nodes, which correspond to possible continuations of history
ξ[t]. Note that in general realizations ξ ιt are vectors, and it may happen that some of the
values ξ ιt , associated with nodes at a given level t , are equal to each other. Nevertheless,
such equal values may be represented by different nodes, because they may correspond to
different histories of the process. (See Figure 3.1 in Example 3.1 of the next section.)

We denote by�t the set of all nodes at stage t = 1, . . . , T . In particular,�1 consists of
a unique root node,�2 has as many elements as many different realizations of ξ2 may occur,
etc. For a node ι ∈ �t we denote byCι ⊂ �t+1, t = 1, . . . , T−1, the set of all children nodes
of ι, and by a(ι) ∈ �t−1, t = 2, . . . , T , the ancestor node of ι. We have that�t+1 = ∪ι∈�tCι
and the setsCι are disjoint, i.e.,Cι∩Cι′ = ∅ if ι �= ι′. Note again that with different nodes at
stage t ≥ 3 may be associated the same numerical values (realizations) of the corresponding
data process ξt . Scenario is a path from the root note at stage t = 1 to a node at the last stage
T . Each scenario represents a history of the process ξ1, . . . , ξT . By construction, there is
one-to-one correspondence between scenarios and the set �T , and hence the total number
K of scenarios is equal to the cardinality11 of the set �T , i.e., K = |�T |.

11We denote by |�| the number of elements in a (finite) set �.
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Next we should define a probability distribution on a scenario tree. In order to deal with
the nested structure of the decision process we need to specify the conditional distribution
of ξt+1 given ξ[t], t = 1, . . . , T − 1. That is, if we are currently at a node ι ∈ �t , we need
to specify probability of moving from ι to a node η ∈ Cι. Let us denote this probability
by ριη. Note that ριη ≥ 0 and

∑
η∈Cι ριη = 1, and that probabilities ριη are in one-to-

one correspondence with arcs of the scenario tree. Probabilities ριη, η ∈ Cι, represent
conditional distribution of ξt+1 given that the path of the process ξ1, . . . , ξt ended at the
node ι.

Every scenario can be defined by its nodes ι1, . . . ιT , arranged in the chronological
order, i.e., node ι2 (at level t = 2) is connected to the root node, ι3 is connected to the node ι2,
etc. The probability of that scenario is then given by the product ρι1ι2ρι2ι3 · · · ριT−1ιT . That
is, a set of conditional probabilities defines a probability distribution on the set of scenarios.
Conversely, it is possible to derive these conditional probabilities from scenario probabilities
pk , k = 1, . . . , K , as follows. Let us denote by S(ι) the set of scenarios passing through node
ι (at level t) of the scenario tree, and let p(ι) := Pr[S(ι)], i.e., p(ι) is the sum of probabilities
of all scenarios passing through node ι. If ι1, ι2, . . . , ιt , with ι1 being the root node and
ιt = ι, is the history of the process up to node ι, then the probability p(ι) is given by the
product

p(ι) = ρι1ι2ρι2ι3 · · · ριt−1ιt

of the corresponding conditional probabilities. In another way, we can write this in the
recursive form p(ι) = ρaιp(a), where a = a(ι) is the ancestor of the node ι. This equation
defines the conditional probability ρaι from the probabilities p(ι) and p(a). Note that if
a = a(ι) is the ancestor of the node ι, then S(ι) ⊂ S(a) and hence p(ι) ≤ p(a). Consequently,
if p(a) > 0, then ρaι = p(ι)/p(a). Otherwise S(a) is empty, i.e., no scenario is passing
through the node a, and hence no scenario is passing through the node ι.

If the process ξ1, . . . , ξT is stagewise independent, then the conditional distribution
of ξt+1 given ξ[t] is the same as the unconditional distribution of ξt+1, t = 1, . . . , T − 1. In
that case at every stage t = 1, . . . , T − 1, with every node ι ∈ �t is associated an identical
set of children, with the same set of respective conditional probabilities and with the same
respective numerical values.

Recall that a stochastic process Zt , t = 1, 2, . . . , that can take a finite number
{z1, . . . , zm} of different values is a Markov chain if

Pr
{
Zt+1 = zj

∣∣Zt = zi, Zt−1 = zit−1 , . . . , Z1 = zi1
} = Pr

{
Zt+1 = zj

∣∣Zt = zi}
for all states zit−1 , . . . , zi1 , zi, zj and all t = 1, 2, . . . . Denote

pij := Pr
{
Zt+1 = zj

∣∣Zt = zi} , i, j = 1, . . . , m.

In some situations, it is natural to model the data process as a Markov chain with the
corresponding state space12 {ζ 1, . . . , ζm} and probabilities pij of moving from state ζ i to
state ζ j , i, j = 1, . . . , m. We can model such a process by a scenario tree. At stage
t = 1 there is one root node to which is assigned one of the values from the state space,
say, ζ i . At stage t = 2 there are m nodes to which are assigned values ζ 1, . . . , ζm with the

12In our model, values ζ 1, . . . , ζm can be numbers or vectors.
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corresponding probabilities pi1, . . . , pim. At stage t = 3 there arem2 nodes, such that each
node at stage t = 2, associated with a state ζ a , a = 1, . . . , m, is the ancestor of m nodes
at stage t = 3 to which are assigned values ζ 1, . . . , ζm with the corresponding conditional
probabilities pa1, . . . , pam. At stage t = 4 there are m3 nodes, etc. At each stage t of
such T -stage Markov chain process there aremt−1 nodes, the corresponding random vector
(variable) ξt can take values ζ 1, . . . , ζm with respective probabilities which can be calculated
from the history of the process up to time t , and the total number of scenarios is mT−1. We
have here that the random vectors (variables) ξ1, . . . , ξT are independently distributed iff
pij = pi ′j for any i, i ′, j = 1, . . . , m, i.e., the conditional probability pij of moving from
state ζ i to state ζ j does not depend on i.

In the above formulation of the Markov chain, the corresponding scenario tree rep-
resents the total history of the process with the number of scenarios growing exponentially
with the number of stages. Now if we approach the problem by writing the cost-to-go func-
tions Qt(xt−1, ξt ), going backward, then we do not need to keep track of the history of the
process. That is, at every stage t the cost-to-go functionQt(·, ξt ) depends only on the current
state (realization) ξt = ζ i , i = 1, . . . , m, of the process. On the other hand, if we want to
write the corresponding optimization problem (in the case of a finite number of scenarios)
as one large linear programming problem, we still need the scenario tree formulation. This
is the basic difference between the stochastic and dynamic programming approaches to the
problem. That is, the stochastic programming approach does not necessarily rely on the
Markovian structure of the process considered. This makes it more general at the price of
considering a possibly very large number of scenarios.

An important concept associated with the data process is the corresponding filtration.
We associate with the set �T the sigma algebra FT of all its subsets. The set �T can be
represented as the union of disjoint sets Cι, ι ∈ �T−1. Let FT−1 be the subalgebra of FT

generated by the sets Cι, ι ∈ �T−1. As they are disjoint, they are the elementary events
of FT−1. By this construction, there is one-to-one correspondence between elementary
events of FT−1 and the set �T−1 of nodes at stage T − 1. By continuing in this way
we construct a sequence of sigma algebras F1 ⊂ · · · ⊂ FT , called filtration. In this
construction, elementary events of sigma algebra Ft are subsets of �T which are in one-
to-one correspondence with the nodes ι ∈ �t . Of course, the cardinality |Ft | = 2|�t |. In
particular, F1 corresponds to the unique root at stage t = 1 and hence F1 = {∅, �T }.

3.1.4 Algebraic Formulation of Nonanticipativity Constraints

Suppose that in our basic problem (3.6) there are only finitely many, say, K , different
scenarios the problem data can take. Recall that each scenario can be considered as a path
of the respective scenario tree. With each scenario, numbered k, is associated probability
pk and the corresponding sequence of decisions13 xk = (xk1 , x

k
2 , . . . , x

k
T ). That is, with

each possible scenario k = 1, . . . , K (i.e., a realization of the data process) we associate a
sequence of decisions xk . Of course, it would not be appropriate to try to find the optimal

13To avoid ugly collisions of subscripts, we change our notation a little and put the index of the scenario,
k, as a superscript.
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values of these decisions by solving the relaxed version of (3.6):

Min
K∑
k=1

pk

[
cT

1x
k
1 + (ck2)

Txk2 + (ck3)
Txk3 + · · · + (ckT )

TxkT

]
s.t. A1x

k
1 = b1,

Bk2x
k
1 + Ak2x

k
2 = bk2,

Bk3x
k
2 + Ak3x

k
3 = bk3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BkT x
k
T−1 + AkT x

k
T = bkT ,

xk1 ≥ 0, xk2 ≥ 0, xk3 ≥ 0, . . . xkT ≥ 0,
(3.12)

k = 1, . . . , K.

The reason is the same as in the two-stage case. That is, in problem (3.12) all parts of the
decision vector are allowed to depend on all parts of the random data, while each part xt
should be allowed to depend only on the data known up to stage t . In particular, problem
(3.12) may suggest different values of x1, one for each scenario k, while our first-stage
decision should be independent of possible realizations of the data process.

In order to correct this problem we enforce the constraints

xk1 = x�1, ∀k, � ∈ {1, . . . , K}, (3.13)

similarly to the two-stage case (2.83). But this is not sufficient, in general. Consider the
second part of the decision vector, x2. It should be allowed to depend only on ξ[2] = (ξ1, ξ2),
so it has to have the same value for all scenarios k for which ξk[2] are identical. We must,
therefore, enforce the constraints

xk2 = x�2, ∀k, � for which ξk[2] = ξ�[2].
Generally, at stage t = 1, . . . , T , the scenarios that have the same history ξ[t] cannot be
distinguished, so we need to enforce the nonanticipativity constraints:

xkt = x�t , ∀k, � for which ξk[t] = ξ�[t], t = 1, . . . , T . (3.14)

Problem (3.12) together with the nonanticipativity constraints (3.14) becomes equivalent to
our original formulation (3.6).

Remark 3. Let us observe that if in problem (3.12) only the constraints (3.13) are enforced,
then from the mathematical point of view the problem obtained becomes a two-stage stochas-
tic linear program withK scenarios. In this two-stage program the first-stage decision vector
is x1, the second-stage decision vector is (x2, . . . , xK), the technology matrix is B2, and the
recourse matrix is the block matrixA2 0 . . . . . . 0 0

B3 A3 . . . . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 . . . . . . BT AT

 .
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0.40.6

t = 2

0.10.40.50.40.6

t = 3

10.50.510.40.40.21

t = 4

36

1550

1020122070

1010301210204070

Figure 3.1. Scenario tree. Nodes represent information states. Paths from the root
to leaves represent scenarios. Numbers along the arcs represent conditional probabilities
of moving to the next node. Bold numbers represent numerical values of the process.

Since the two-stage problem obtained is a relaxation of the multistage problem (3.6), its
optimal value gives a lower bound for the optimal value of problem (3.6) and in that sense it
may be useful. Note, however, that this model does not make much sense in any application,
because it assumes that at the end of the process, when all realizations of the random data
become known, one can go back in time and make all decisions x2, . . . , xK−1.

Example 3.1 (Scenario Tree). As discussed in section 3.1.3, it can be useful to depict the
possible sequences of data ξ[t] in a form of a scenario tree. An example of such a scenario tree
is given in Figure 3.1. Numbers along the arcs represent conditional probabilities of moving
from one node to the next. The associated process ξt = (ct , Bt , At , bt ), t = 1, . . . , T , with
T = 4, is defined as follows. All involved variables are assumed to be one-dimensional, with
ct , Bt , At , t = 2, 3, 4, being fixed and only right-hand-side variables bt being random. The
values (realizations) of the random process b1, . . . , bT are indicated by the bold numbers at
the nodes of the tree. (The numerical values of ct , Bt , At are not written explicitly, although,
of course, they also should be specified.) That is, at level t = 1, b1 has the value 36. At level
t = 2, b2 has two values 15 and 50 with respective probabilities 0.4 and 0.6. At level t = 3
we have 5 nodes with which are associated the following numerical values (from right to
left): 10, 20, 12, 20, 70. That is, b3 can take 4 different values with respective probabilities
Pr{b3 = 10} = 0.4 · 0.1, Pr{b3 = 20} = 0.4 · 0.4 + 0.6 · 0.4, Pr{b3 = 12} = 0.4 · 0.5,
and Pr{b3 = 70} = 0.6 · 0.6. At level t = 4, the numerical values associated with 8 nodes
are defined, from right to left, as 10, 10, 30, 12, 10, 20, 40, 70. The respective probabilities
can be calculated by using the corresponding conditional probabilities. For example,

Pr{b4 = 10} = 0.4 · 0.1 · 1.0+ 0.4 · 0.4 · 0.5+ 0.6 · 0.4 · 0.4.
Note that although some of the realizations of b3, and hence of ξ3, are equal to each other,
they are represented by different nodes. This is necessary in order to identify different
histories of the process corresponding to different scenarios. The same remark applies to
b4 and ξ4. Altogether, there are eight scenarios in this tree. Figure 3.2 illustrates the way in
which sequences of decisions are associated with scenarios from Figure 3.1.
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� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �t = 1

t = 2

t = 3

t = 4

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Figure 3.2. Sequences of decisions for scenarios from Figure 3.1. Horizontal
dotted lines represent the equations of nonanticipativity.

The process bt (and hence the process ξt ) in this example is not Markovian. For
instance,

Pr {b4 = 10 | b3 = 20, b2 = 15, b1 = 36} = 0.5,

while

Pr {b4 = 10 | b3 = 20} = Pr{b4 = 10, b3 = 20}
Pr{b3 = 20}

= 0.5 · 0.4 · 0.4+ 0.4 · 0.4 · 0.6
0.4 · 0.4+ 0.4 · 0.6 = 0.44.

That is, Pr {b4 = 10 | b3 = 20} �= Pr {b4 = 10 | b3 = 20, b2 = 15, b1 = 36}.
Relaxing the nonanticipativity constraints means that decisions xt = x t (ω) are viewed

as functions of all possible realizations (scenarios) of the data process. This was the case
in formulation (3.12), where the problem was separated into K different problems, one
for each scenario ωk = (ξ k1 , . . . , ξ kT ), k = 1, . . . , K . The corresponding nonanticipativity
constraints can be written in several way. One possible way is to write them, similarly to
(2.84) for two-stage models, as

xt = E
[
xt
∣∣ξ[t]] , t = 1, . . . , T . (3.15)

Another way is to use filtration associated with the data process. Let Ft be the sigma algebra
generated by ξ[t], t = 1, . . . , T . That is, Ft is the minimal subalgebra of the sigma algebra
F such that ξ1(ω), . . . , ξt (ω) are Ft -measurable. Since ξ1 is not random, F1 contains only
two sets: ∅ and �. We have that F1 ⊂ F2 ⊂ · · · ⊂ FT ⊂ F . In the case of finitely many
scenarios, we discussed construction of such a filtration at the end of section 3.1.3. We can
write (3.15) in the following equivalent form

xt = E
[
xt
∣∣Ft

]
, t = 1, . . . , T . (3.16)
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(See section 7.2.2 for a definition of conditional expectation with respect to a sigma subalge-
bra.) Condition (3.16) holds iff xt (ω) is measurable with respect to Ft , t = 1, . . . , T . One
can use this measurability requirement as a definition of the nonanticipativity constraints.

Suppose, for the sake of simplicity, that there is a finite number K of scenarios.
To each scenario corresponds a sequence (xk1 , . . . , x

k
T ) of decision vectors which can be

considered as an element of a vector space of dimension n1 + · · · + nT . The space of all
such sequences (xk1 , . . . , x

k
T ), k = 1, . . . , K , is a vector space, denoted X, of dimension

(n1 + · · · + nT )K .The nonanticipativity constraints (3.14) define a linear subspace of X,
denoted L. Define the scalar product on the space X,

〈x, y〉 :=
K∑
k=1

T∑
t=1

pk(x
k
t )

Tykt , (3.17)

and let P be the orthogonal projection of X onto L with respect to this scalar product. Then

x = Px

is yet another way to write the nonanticipativity constraints.
A computationally convenient way of writing the nonanticipativity constraints (3.14)

can be derived by using the following construction, which extends to the multistage case
the system (2.87).

Let �t be the set of nodes at level t . For a node ι ∈ �t we denote by S(ι) the set
of scenarios that pass through node ι and are, therefore, indistinguishable on the basis of
the information available up to time t . As explained before, the sets S(ι) for all ι ∈ �t are
the atoms of the sigma-subalgebra Ft associated with the time stage t . We order them and
denote them by S1

t , . . . ,S
γt
t .

Let us assume that all scenarios 1, . . . , K are ordered in such a way that each set Sνt
is a set of consecutive numbers lνt , l

ν
t + 1, . . . , rνt . Then nonanticipativity can be expressed

by the system of equations

xst − xs+1
t = 0, s = lνt , . . . , rνt − 1, t = 1, . . . , T − 1, ν = 1, . . . , γt . (3.18)

In other words, each decision is related to its neighbors from the left and from the right, if
they correspond to the same node of the scenario tree.

The coefficients of constraints (3.18) define a giant matrix

M = [M1 . . .MK ],
whose rows have two nonzeros each: 1 and −1. Thus, we obtain an algebraic description
of the nonanticipativity constraints:

M1x1 + · · · +MKxK = 0. (3.19)

Owing to the sparsity of the matrix M , this formulation is very convenient for various
numerical methods for solving linear multistage stochastic programming problems: the
simplex method, interior point methods, and decomposition methods.

Example 3.2. Consider the scenario tree depicted in Figure 3.1. Let us assume that the
scenarios are numbered from the left to the right. Our nonanticipativity constraints take on
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

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I



.

Figure 3.3. The nonanticipativity constraint matrix M corresponding to the sce-
nario tree from Figure 3.1. The subdivision corresponds to the scenario submatrices
M1, . . . ,M8.

the form

x1
1 − x2

1 = 0, x2
1 − x3

1 = 0, . . . , x7
1 − x8

1 = 0,

x1
2 − x2

2 = 0, x2
2 − x3

2 = 0, x3
2 − x4

2 = 0,

x5
2 − x6

2 = 0, x6
2 − x7

2 = 0, x7
2 − x8

2 = 0,

x2
3 − x3

3 = 0, x3
3 − x4

3 = 0, x6
3 − x7

3 = 0.

Using I to denote the identity matrix of an appropriate dimension, we may write the con-
straint matrix M as shown in Figure 3.3. M is always a very sparse matrix: each row of
it has only two nonzeros, each column at most two nonzeros. Moreover, all nonzeros are
either 1 or −1, which is also convenient for numerical methods.

3.2 Duality

3.2.1 Convex Multistage Problems

In this section we consider multistage problems of the form (3.1) with

Xt (xt−1, ξt ) := {xt : Btxt−1 + Atxt = bt } , t = 2, . . . , T , (3.20)

X1 := {x1 : A1x1 = b1} and ft (xt , ξt ), t = 1, . . . , T , being random lower semicontinuous
functions. We assume that functions ft (·, ξt ) are convex for a.e. ξt . In particular, if

ft (xt , ξt ) :=
{
cT
t xt if xt ≥ 0,
+∞ otherwise,

(3.21)

then the problem becomes the linear multistage problem given in the nested formula-
tion (3.9). All constraints involving only variables and quantities associated with stage
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t are absorbed in the definition of the functions ft . It is implicitly assumed that the data
(At , Bt , bt ) = (At (ξt ), Bt (ξt ), bt (ξt )), t = 1, . . . , T , form a random process.

Dynamic programming equations take here the form

Qt

(
xt−1, ξ[t]

) = inf
xt

{
ft (xt , ξt )+Qt+1

(
xt , ξ[t]

) : Btxt−1 + Atxt = bt
}
, (3.22)

where
Qt+1

(
xt , ξ[t]

) := E
{
Qt+1

(
xt , ξ[t+1]

) ∣∣ξ[t]} .
For every t = 1, . . . , T and ξ[t], the function Qt(·, ξ[t]) is convex. Indeed,

QT (xT−1, ξT ) = inf
xT
φ(xT , xT−1, ξT ),

where

φ(xT , xT−1, ξT ) :=
{
fT (xT , ξT ) if BT xT−1 + AT xT = bT ,
+∞ otherwise.

It follows from the convexity of fT (·, ξT ) that φ(·, ·, ξT ) is convex, and hence the optimal
value functionQT (·, ξT ) is also convex. Convexity of functionsQt(·, ξ[t]) can be shown in
the same way by induction in t = T , . . . , 1. Moreover, if the number of scenarios is finite
and functions ft (xt , ξt ) are random polyhedral, then the cost-to-go functions Qt(xt−1, ξ[t])
are also random polyhedral.

3.2.2 Optimality Conditions

Consider the cost-to-go functionsQt(xt−1, ξ[t]) defined by the dynamic programming equa-
tions (3.22). With the optimization problem on the right-hand side of (3.22) is associated
the following Lagrangian:

Lt(xt , πt ) := ft (xt , ξt )+Qt+1
(
xt , ξ[t]

)+ πT
t (bt − Btxt−1 − Atxt ) .

This Lagrangian also depends on ξ[t] and xt−1, which we omit for brevity of the notation.
Denote

ψt(xt , ξ[t]) := ft (xt , ξt )+Qt+1
(
xt , ξ[t]

)
.

The dual functional is

Dt(πt ) := inf
xt
Lt (xt , πt )

= − sup
xt

{
πT
t Atxt − ψt(xt , ξ[t])

}+ πT
t (bt − Btxt−1)

= −ψ∗t (AT
t πt , ξ[t])+ πT

t (bt − Btxt−1) ,

where ψ∗t (·, ξ[t]) is the conjugate function of ψt(·, ξ[t]). Therefore we can write the La-
grangian dual of the optimization problem on the right hand side of (3.22) as follows:

Max
πt

{−ψ∗t (AT
t πt , ξ[t])+ πT

t (bt − Btxt−1)
}
. (3.23)

Both optimization problems, (3.22) and its dual (3.23), are convex. Under various reg-
ularity conditions there is no duality gap between problems (3.22) and (3.23). In particular,
we can formulate the following two conditions.



SPbook
2009/8/20
page 78

�

�

�

�

�

�

�

�

78 Chapter 3. Multistage Problems

(D1) The functions ft (xt , ξt ), t = 1, . . . , T , are random polyhedral, and the number of
scenarios is finite.

(D2) For all sufficiently small perturbations of the vector bt , the corresponding optimal
value Qt(xt−1, ξ[t]) is finite, i.e., there is a neighborhood of bt such that for any b′t in
that neighborhood the optimal value of the right-hand side of (3.22) with bt replaced
by b′t is finite.

We denote by Dt

(
xt−1, ξ[t]

)
the set of optimal solutions of the dual problem (3.23). All

subdifferentials in the subsequent formulas are taken with respect to xt for an appropriate
t = 1, . . . , T .

Proposition 3.3. Suppose that either condition (D1) holds and Qt

(
xt−1, ξ[t]

)
is finite or

condition (D2) holds. Then,

(i) there is no duality gap between problems (3.22) and (3.23), i.e.,

Qt

(
xt−1, ξ[t]

) = sup
πt

{−ψ∗t (AT
t πt , ξ[t])+ πT

t (bt − Btxt−1)
}
, (3.24)

(ii) x̄t is an optimal solution of (3.22) iff there exists π̄t = π̄t (ξ[t]) such that π̄t ∈
D(xt−1, ξ[t]) and

0 ∈ ∂Lt (x̄t , π̄t ) , (3.25)

(iii) the function Qt(·, ξ[t]) is subdifferentiable at xt−1 and

∂Qt

(
xt−1, ξ[t]

) = −BT
t Dt

(
xt−1, ξ[t]

)
. (3.26)

Proof. Consider the optimal value function

ϑ(y) := inf
xt

{
ψt(xt , ξ[t]) : Atxt = y

}
.

Since ψt(·, ξ[t]) is convex, the function ϑ(·) is also convex. Condition (D2) means that
ϑ(y) is finite valued for all y in a neighborhood of ȳ := bt −Btxt−1. It follows that ϑ(·) is
continuous and subdifferentiable at ȳ. By conjugate duality (see Theorem 7.8) this implies
assertion (i). Moreover, the set of optimal solutions of the corresponding dual problem
coincides with the subdifferential of ϑ(·) at ȳ. Formula (3.26) then follows by the chain
rule. Condition (3.25) means that x̄t is a minimizer of L (·, π̄t ), and hence the assertion (ii)
follows by (i).

If condition (D1) holds, then the functions Qt

(·, ξ[t]) are polyhedral, and hence ϑ(·)
is polyhedral. It follows that ϑ(·) is lower semicontinuous and subdifferentiable at any
point where it is finite valued. Again, the proof can be completed by applying the conjugate
duality theory.

Note that condition (D2) actually implies that the set Dt

(
xt−1, ξ[t]

)
of optimal solu-

tions of the dual problem is nonempty and bounded, while condition (D1) only implies that
Dt

(
xt−1, ξ[t]

)
is nonempty.

Now let us look at the optimality conditions (3.5), which in the present case can be
written as follows:

x̄ t (ξ[t]) ∈ arg min
xt

{
ft (xt , ξt )+Qt+1

(
xt , ξ[t]

) : Atxt = bt − Bt x̄ t−1(ξ[t−1])
}
. (3.27)
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Since the optimization problem on the right-hand side of (3.27) is convex, subject to linear
constraints, we have that a feasible policy is optimal iff it satisfies the following optimal-
ity conditions: for t = 1, . . . , T and a.e. ξ[t] there exists π̄ t (ξ[t]) such that the following
condition holds:

0 ∈ ∂ [ft (x̄ t (ξ[t]), ξt )+Qt+1
(
x̄ t (ξ[t]), ξ[t]

)]− AT
t π̄ t (ξ[t]). (3.28)

Recall that all subdifferentials are taken with respect to xt , and for t = T the term QT+1 is
omitted.

We shall use the following regularity condition:

(D3) For t = 2, . . . , T and a.e. ξ[t] the function Qt

(·, ξ[t−1]
)

is finite valued.

The above condition implies, of course, thatQt

(·, ξ[t]) is finite valued for a.e. ξ[t] conditional
on ξ[t−1], which in turn implies relatively complete recourse. Note also that condition (D3)
does not necessarily imply condition (D2), because in the latter the function Qt

(·, ξ[t]) is
required to be finite for all small perturbations of bt .

Proposition 3.4. Suppose that either conditions (D2) and (D3) or condition (D1) are
satisfied. Then a feasible policy x̄ t (ξ[t]) is optimal iff there exist mappings π̄ t (ξ[t]), t =
1, . . . , T , such that the condition

0 ∈ ∂ft (x̄ t (ξ[t]), ξt )− AT
t π̄ t (ξ[t])+ E

[
∂Qt+1

(
x̄ t (ξ[t]), ξ[t+1]

) ∣∣ξ[t]] (3.29)

holds true for a.e. ξ[t] and t = 1, . . . , T . Moreover, multipliers π̄ t (ξ[t]) satisfy (3.29) iff for
a.e. ξ[t] it holds that

π̄ t (ξ[t]) ∈ D(x̄ t−1(ξ[t−1]), ξ[t]). (3.30)

Proof. Suppose that condition (D3) holds. Then by the Moreau–Rockafellar theorem
(Theorem 7.4) we have that at x̄t = x̄ t (ξ[t]),

∂
[
ft (x̄t , ξt )+Qt+1

(
x̄t , ξ[t]

)] = ∂ft (x̄t , ξt )+ ∂Qt+1
(
x̄t , ξ[t]

)
.

Also by Theorem 7.47 the subdifferential of Qt+1
(
x̄ t , ξ[t]

)
can be taken inside the expecta-

tion to obtain the last term in the right-hand side of (3.29). Note that conditional on ξ[t] the
term x̄t = x̄ t (ξ[t]) is fixed. Optimality conditions (3.29) then follow from (3.28). Suppose,
further, that condition (D2) holds. Then there is no duality gap between problems (3.22)
and (3.23), and the second assertion follows by (3.27) and Proposition 3.3(ii).

If condition (D1) holds, then functions ft (xt , ξt ) and Qt+1
(
xt , ξ[t]

)
are random poly-

hedral, and hence the same arguments can be applied without additional regularity condi-
tions.

Formula (3.26) makes it possible to write optimality conditions (3.29) in the following
form.

Theorem 3.5. Suppose that either conditions (D2) and (D3) or condition (D1) are satisfied.
Then a feasible policy x̄ t (ξ[t]) is optimal iff there exist measurable π̄ t (ξ[t]), t = 1, . . . , T ,
such that

0 ∈ ∂ft (x̄ t (ξ[t]), ξt )− AT
t π̄ t (ξ[t])− E

[
BT
t+1π̄ t+1(ξ[t+1])

∣∣ξ[t]] (3.31)

for a.e. ξ[t] and t = 1, . . . , T , where for t = T the corresponding term T + 1 is omitted.
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Proof. By Proposition 3.4 we have that a feasible policy x̄ t (ξ[t]) is optimal iff conditions
(3.29) and (3.30) hold true. For t = 1 this means the existence of π̄1 ∈ D1 such that

0 ∈ ∂f1(x̄1)− AT
1 π̄1 + E [∂Q2 (x̄1, ξ2)] . (3.32)

Recall that ξ1 is known, and hence the set D1 is fixed. By (3.26) we have

∂Q2 (x̄1, ξ2) = −BT
2 D2 (x̄1, ξ2) . (3.33)

Formulas (3.32) and (3.33) mean that there exists a measurable selection

π̄2(ξ2) ∈ D2 (x̄1, ξ2)

such that (3.31) holds for t = 1. By the second assertion of Proposition 3.4, the same
selection π̄2(ξ2) can be used in (3.29) for t = 2. Proceeding in that way we obtain existence
of measurable selections

π̄ t (ξt ) ∈ Dt

(
x̄ t−1(ξ[t−1]), ξ[t]

)
satisfying (3.31).

In particular, consider the multistage linear problem given in the nested formulation
(3.9). That is, functions ft (xt , ξt ) are defined in the form (3.21), which can be written as

ft (xt , ξt ) = cT
t xt + IR

nt+ (xt ).

Then ∂ft (xt , ξt ) =
{
ct +NR

nt+ (xt )
}

at every point xt ≥ 0, and hence optimality conditions
(3.31) take the form

0 ∈ NR
nt+

(
x̄ t (ξ[t])

)+ ct − AT
t π̄ t (ξ[t])− E

[
BT
t+1π̄ t+1(ξ[t+1])

∣∣ξ[t]] .
3.2.3 Dualization of Feasibility Constraints

Consider the linear multistage program given in the nested formulation (3.9). In this sec-
tion we discuss dualization of that problem with respect to the feasibility constraints. As
discussed before, we can formulate that problem as an optimization problem with respect
to decision variables xt = x t (ξ[t]) viewed as functions of the history of the data process.
Recall that the vector ξt of the data process of that problem is formed from some (or all)
elements of (ct , Bt , At , bt ), t = 1, . . . , T . As before, we use the same symbols ct , Bt , At , bt
to denote random variables and their particular realization. It will be clear from the context
which of these meanings is used in a particular situation.

With problem (3.9) we associate the Lagrangian

L(x,π) := E

{
T∑
t=1

[
cT
t xt + πT

t (bt − Btxt−1 − Atxt )
]}

= E

{
T∑
t=1

[
cT
t xt + πT

t bt − πT
t Atxt − πT

t+1Bt+1xt
]}

= E

{
T∑
t=1

[
bT
t πt +

(
ct − AT

t πt − BT
t+1πt+1

)T
xt

]}
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with the convention that x0 = 0 and BT+1 = 0. Here the multipliers πt = π t (ξ[t]), as well
as decisions xt = x t (ξ[t]), are functions of the data process up to time t .

The dual functional is defined as

D(π) := inf
x≥0

L(x,π),

where the minimization is performed over variables xt = x t (ξ[t]), t = 1, . . . , T , in an
appropriate functional space subject to the nonnegativity constraints. The Lagrangian dual
of (3.9) is the problem

Max
π
D(π), (3.34)

where π lives in an appropriate functional space. Since, for a given π , the Lagrangian
L(·,π) is separable in xt = x t (·), by the interchangeability principle (Theorem 7.80) we
can move the operation of minimization with respect to xt inside the conditional expectation
E
[ · |ξ[t]]. Therefore, we obtain

D(π) = E

{
T∑
t=1

[
bT
t πt + inf

xt∈R
nt+

(
ct − AT

t πt − E
[
BT
t+1πt+1

∣∣ξ[t]] )Txt]} .
Clearly we have that inf xt∈R

nt+

(
ct − AT

t πt − E
[
BT
t+1πt+1

∣∣ξ[t]])T xt is equal to zero ifAT
t πt+

E
[
BT
t+1πt+1|ξ[t]

] ≤ ct , and to −∞ otherwise. It follows that in the present case the dual
problem (3.34) can be written as

Max
π

E

[
T∑
t=1

bT
t πt

]
s.t. AT

t πt + E
[
BT
t+1πt+1|ξ[t]

] ≤ ct , t = 1, . . . , T ,

(3.35)

where for the uniformity of notation we set all T + 1 terms equal to zero. Each multiplier
vector πt = π t (ξ[t]), t = 1, . . . , T , of problem (3.35) is a function of ξ[t]. In that sense,
these multipliers form a dual implementable policy. Optimization in (3.35) is performed
over all implementable and feasible dual policies.

If the data process has a finite number of scenarios, then implementable policies x t (·)
and π t (·), t = 1, . . . , T , can be identified with finite dimensional vectors. In that case,
the primal and dual problems form a pair of mutually dual linear programming problems.
Therefore, the following duality result is a consequence of the general duality theory of
linear programming.

Theorem 3.6. Suppose that the data process has a finite number of possible realizations
(scenarios). Then the optimal values of problems (3.9) and (3.35) are equal unless both
problems are infeasible. If the (common) optimal value of these problems is finite, then both
problems have optimal solutions.

If the data process has a general distribution with an infinite number of possible
realizations, then some regularity conditions are needed to ensure zero duality gap between
problems (3.9) and (3.35).
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3.2.4 Dualization of Nonanticipativity Constraints

In this section we deal with a problem which is slightly more general than linear problem
(3.12). Let ft (xt , ξt ), t = 1, . . . , T , be random polyhedral functions, and consider the
problem

Min
K∑
k=1

pk

[
f1(x

k
1 ) + f k2 (x

k
2 ) + f k3 (x

k
3 ) + · · · + f kT (x

k
T )
]

s.t. A1x
k
1 = b1,

Bk2x
k
1 + Ak2x

k
2 = bk2,

Bk3x
k
2 + Ak3x

k
3 = bk3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BkT x
k
T−1 + AkT x

k
T = bkT ,

xk1 ≥ 0, xk2 ≥ 0, xk3 ≥ 0, · · · xkT ≥ 0,

k = 1, . . . , K.

Here ξk1 , . . . , ξ
k
T , k = 1, . . . , K , is a particular realization (scenario) of the corresponding

data process, f kt (x
k
t ) := ft (x

k
t , ξ

k
t ) and (Bkt , A

k
t , b

k
t ) := (Bt (ξ

k
t ), At (ξ

k
t ), bt (ξ

k
t )), t =

2, . . . , T . This problem can be formulated as a multistage stochastic programming problem
by enforcing the corresponding nonanticipativity constraints.

As discussed in section 3.1.4, there are many ways to write nonanticipativity con-
straints. For example, let X be the linear space of all sequences (xk1 , . . . , x

k
T ), k = 1, . . . , K ,

and L be the linear subspace of X defined by the nonanticipativity constraints. (These spaces
were defined above (3.17).) We can write the corresponding multistage problem in the fol-
lowing lucid form:

Min
x∈X

f (x) :=
K∑
k=1

T∑
t=1

pkf
k
t (x

k
t ) s.t. x ∈ L. (3.36)

Clearly, f (·) is a polyhedral function, so if problem (3.36) has a finite optimal value, then
it has an optimal solution and the optimality conditions and duality relations hold true. Let
us introduce the Lagrangian associated with (3.36),

L(x,λ) := f (x)+ 〈λ, x〉,
with the scalar product 〈·, ·〉defined in (3.17). By the definition of the subspaceL, every point
x ∈ L can be viewed as an implementable policy. By L⊥ := {y ∈ X : 〈y, x〉 = 0, ∀x ∈ L}
we denote the orthogonal subspace to the subspace L.

Theorem 3.7. A policy x̄ ∈ L is an optimal solution of (3.36) iff there exists a multiplier
vector λ̄ ∈ L⊥ such that

x̄ ∈ arg min
x∈X

L(x, λ̄). (3.37)

Proof. Let λ̄ ∈ L⊥ and x̄ ∈ L be a minimizer of L(·, λ̄) over X. Then by the first-order
optimality conditions we have that 0 ∈ ∂xL(x̄, λ̄). Note that there is no need here for a
constraint qualification since the problem is polyhedral. Now ∂xL(x̄, λ̄) = ∂f (x̄) + λ̄.
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Since NL(x̄) = L⊥, it follows that 0 ∈ ∂f (x̄)+NL(x̄), which is a sufficient condition for
x̄ to be an optimal solution of (3.36). Conversely, if x̄ is an optimal solution of (3.36), then
necessarily 0 ∈ ∂f (x̄)+NL(x̄). This implies existence of λ̄ ∈ L⊥ such that 0 ∈ ∂xL(x̄, λ̄).
This, in turn, implies that x̄ ∈ L is a minimizer of L(·, λ̄) over X.

Also, we can define the dual function

D(λ) := inf
x∈X

L(x,λ),

and the dual problem

Max
λ∈L⊥

D(λ). (3.38)

Since the problem considered is polyhedral, we have by the standard theory of linear pro-
gramming the following results.

Theorem 3.8. The optimal values of problems (3.36) and (3.38) are equal unless both
problems are infeasible. If their (common) optimal value is finite, then both problems have
optimal solutions.

The crucial role in our approach is played by the requirement that λ ∈ L⊥. Let us
decipher this condition. For λ = (λkt )t=1,...,T , k=1,...,K , the condition λ ∈ L⊥ is equivalent to

T∑
t=1

K∑
k=1

pk〈λkt , xkt 〉 = 0, ∀x ∈ L.

We can write this in a more abstract form as

E

[
T∑
t=1

〈λt , xt 〉
]
= 0, ∀x ∈ L. (3.39)

Since14
E|t xt = xt for all x ∈ L, and 〈λt ,E|t xt 〉 = 〈E|t λt , xt 〉, we obtain from

(3.39) that

E

[
T∑
t=1

〈E|t λt , xt 〉
]
= 0, ∀x ∈ L,

which is equivalent to

E|t [λt ] = 0, t = 1, . . . , T . (3.40)

We can now rewrite our necessary conditions of optimality and duality relations in a more
explicit form. We can write the dual problem in the form

Max
λ∈X

D(λ) s.t. E|t [λt ] = 0, t = 1, . . . , T . (3.41)

14In order to simplify notation, we denote in the remainder of this section by E|t the conditional expectation,
conditional on ξ[t].
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Corollary 3.9. A policy x̄ ∈ L is an optimal solution of (3.36) iff there exist multipliers
vector λ̄ satisfying (3.40) such that

x̄ ∈ arg min
x∈X

L(x, λ̄).

Moreover, problem (3.36) has an optimal solution iff problem (3.41) has an optimal solution.
The optimal values of these problems are equal unless both are infeasible.

There are many different ways to express the nonanticipativity constraints, and thus
there are many equivalent ways to formulate the Lagrangian and the dual problem. In partic-
ular, a dual formulation based on (3.18) is quite convenient for dual decomposition methods.
We leave it to the reader to develop the particular form of the dual problem in this case.

Exercises
3.1. Consider the inventory model of section 1.2.3.

(a) Specify for this problem the variables, the data process, the functions, and
the sets in the general formulation (3.1). Describe the sets Xt (xt−1, ξt ) as in
formula (3.20).

(b) Transform the problem to an equivalent linear multistage stochastic program-
ming problem.

3.2. Consider the cost-to-go functionQt(xt−1, ξ[t]), t = 2, . . . , T , of the linear multistage
problem defined as the optimal value of problem (3.7). Show that Qt(xt−1, ξ[t]) is
convex in xt−1.

3.3. Consider the assembly problem discussed in section 1.3.3 in the case when all demand
has to be satisfied, by backlogging the orders. It costs bi to delay delivery of a unit
of product i by one period. Additional orders of the missing parts can be made after
the last demand D(T ) is known. Write the dynamic programming equations of the
problem. How they can be simplified, if the demand is stagewise independent?

3.4. A transportation company has n depots among which they move cargo. They are
planning their operation in the next T days. The demand for transportation between
depot i and depot j �= i on day t , where t = 1, 2 . . . , T , is modeled as a random
variableDij (t). The total capacity of vehicles currently available at depot i is denoted
si , i = 1, . . . , n. Before each day t , the company considers repositioning their fleet
to better prepare to the uncertain demand on the coming day. It costs cij to move a
unit of capacity from location i to location j . After repositioning, the realization of
the random variables Dij (t) is observed, and the demand is served, up to the limit
determined by the transportation capacity available at each location. The profit from
transporting a unit of cargo from location i to location j is equal qij . If the total
demand at location i exceeds the capacity available at this location, the excessive
demand is lost. It is up to the company to decide how much of each demand Dij

will be served, and which part will remain unsatisfied. For simplicity, we consider
all capacity and transportation quantities as continuous variables.

After the demand is served, the transportation capacity of the vehicles at each
location changes, as a result of the arrivals of vehicles with cargo from other locations.
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Before the next day, the company may choose to reposition some of the vehicles to
prepare for the next demand. On the last day, the vehicles are repositioned so that
initial quantities si , i = 1, . . . , n, are restored.

(a) Formulate the problem of maximizing the expected profit as a multistage
stochastic programming problem.

(b) Write the dynamic programming equations for this problem. Assuming that
the demand is stagewise independent, identify the state variables and simplify
the dynamic programming equations.

(c) Develop a scenario-tree-based formulation of the problem.

3.5. Derive the dual problem to the linear multistage stochastic programming problem
(3.12) with nonanticipativity constraints in the form (3.18).

3.6. You have initial capitalC0 which you may invest in a stock or keep in cash. You plan
your investments for the next T periods. The return rate on cash is deterministic and
equals r per each period. The price of the stock is random and equals St in period
t = 1, . . . , T . The current price S0 is known to you and you have a model of the
price process St in the form of a scenario tree. At the beginning, several American
options on the stock prize are available. There are n put options with strike prices
p1, . . . , pn and corresponding costs c1, . . . , cn. For example, if you buy one put
option i, at any time t = 1, . . . , T you have the right to exercise the option and cash
pi − St (this makes sense only when pi > St ). Also, m call options are available,
with strike prices π1, . . . , πm and corresponding costs q1, . . . , qm. For example, if
you buy one call option j , at any time t = 1, . . . , T you may exercise it and cash
St − πj (this makes sense only when πj < St ). The options are available only at
t = 0. At any time period t you may buy or sell the underlying stock. Borrowing
cash and short selling, that is, selling shares which are not actually owned (with
the hope of repurchasing them later with profit), are not allowed. At the end of
period T all options expire. There are no transaction costs, and shares and options
can be bought, sold (in the case of shares) or realized (in the case of options) in
any quantities (not necessarily whole numbers). The amounts gained by exercising
options are immediately available for purchasing shares.

Consider two objective functions:

(i) The expected value of your holdings at the end of period T .

(ii) The expected value of a piecewise linear utility function evaluated at the value
of your final holdings. Its form is

u(CT ) =
{
CT if CT ≥ 0,
(1+ R)CT if CT < 0,

where R > 0 is some known constant.

For both objective functions,

(a) Develop a linear multistage stochastic programming model.

(b) Derive the dual problem by dualizing with respect to feasibility constraints.
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Chapter 4

Optimization Models with
Probabilistic Constraints

Darinka Dentcheva

4.1 Introduction
In this chapter, we discuss stochastic optimization problems with probabilistic (also called
chance) constraints of the form

Min c(x)

s.t. Pr
{
gj (x, Z) ≤ 0, j ∈ J

} ≥ p,
x ∈ X.

(4.1)

Here X ⊂ R
n is a nonempty set, c : Rn → R, gj : Rn × R

s → R, j ∈ J, where J is an
index set, Z is an s-dimensional random vector, and p is a modeling parameter. We denote
by PZ the probability measure (probability distribution) induced by the random vector Z
on R

s . The event A(x) = {gj (x, Z) ≤ 0, j ∈ J
}

in (4.1) depends on the decision vector
x, and its probability Pr

{
A(x)

}
is calculated with respect to the probability distribution PZ .

This model reflects the point of view that for a given decision x we do not reject the
statistical hypothesis that the constraints gj (x, Z) ≤ 0, j ∈ J, are satisfied. We discussed
examples and a motivation for such problems in Chapter 1 in the contexts of inventory,
multiproduct, and portfolio selection models. We emphasize that imposing constraints on
probability of events is particularly appropriate whenever high uncertainty is involved and
reliability is a central issue. In such cases, constraints on the expected value may not be
sufficient to reflect our attitude to undesirable outcomes.

We also note that the objective function c(x) can represent an expected value function,
i.e., c(x) = E[f (x, Z)]; however, we focus on the analysis of the probabilistic constraints
at the moment.

87



SPbook
2009/8/20
page 88

�

�

�

�

�

�

�

�

88 Chapter 4. Optimization Models with Probabilistic Constraints

�

� �

�

�

A

B C

D

E

���
�����������������

�
�

����
�

���

	




��




	

�
�

����
�

��


Figure 4.1. Vehicle routing network

We can write the probability Pr
{
A(x)} as the expected value of the characteristic func-

tion of the event A(x), i.e., Pr
{
A(x)} = E

[
1A(x)

]
. The discontinuity of the characteristic

function and the complexity of the event A(x) make such problems qualitatively different
from the expectation models. Let us consider two examples.

Example 4.1 (Vehicle Routing Problem). Consider a network with m arcs on which a
random transportation demand arises. A set of n routes in the network is described by the
incidence matrix T . More precisely, T is an m× n dimensional matrix such that

tij =
{

1 if route j contains arc i,
0 otherwise.

We have to allocate vehicles to the routes to satisfy transportation demand. Figure 4.1
depicts a small network, and the table in Figure 4.2 provides the incidence information
for 19 routes on this network. For example, route 5 consists of the arcs AB, BC, and CA.

Our aim is to satisfy the demand with high prescribed probability p ∈ (0, 1). Let xj
be the number of vehicles assigned to route j , j = 1, . . . , n. The demand for transportation
on each arc is given by the random variables Zi , i = 1, . . . , m. We set Z = (Z1, . . . , Zm)

T.
A cost cj is associated with operating a vehicle on route j . Setting c = (c1, . . . , cn)

T, the
model can be formulated as follows:15

Min
x

cTx (4.2)

s.t. Pr{T x ≥ Z} ≥ p, (4.3)

x ∈ Z
n
+. (4.4)

In practical applications, we may have a heterogeneous fleet of vehicles with different
capacities; we may consider imposing constraints on transportation time or other
requirements.

In the context of portfolio optimization, probabilistic constraints arise in a natural
way, as discussed in Chapter 1.

15The notation Z+ is used to denote the set of nonnegative integer numbers.
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Arc Route
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AB 1 1 1 1 1
AC 1 1 1 1 1
AD 1 1 1 1
AE 1 1 1 1 1
BA 1 1 1 1 1
BC 1 1 1 1
CA 1 1 1 1 1
CB 1 1 1 1
CD 1 1 1 1 1 1
DA 1 1 1 1
DC 1 1 1 1 1 1
DE 1 1 1 1
EA 1 1 1 1 1
ED 1 1 1 1

Figure 4.2. Vehicle routing incidence matrix

Example 4.2 (Portfolio Optimization with Value-at-Risk Constraint). We consider n

investment opportunities with random return rates R1, . . . , Rn in the next year. We have
certain initial capital and our aim is to invest it in such a way that the expected value of our
investment after a year is maximized, under the condition that the chance of losing no more
than a given fraction of this amount is at least p, where p ∈ (0, 1). Such a requirement is
called a Value-at-Risk (V@R) constraint (already discussed in Chapter 1).

Let x1, . . . , xn be the fractions of our capital invested in the n assets. After a year, our
investment changes in value according to a rate that can be expressed as

g(x, R) =
n∑
i=1

Rixi.

We formulate the following stochastic optimization problem with a probabilistic constraint:

Max
n∑
i=1

E[Ri]xi

s.t. Pr
{ n∑
i=1

Rixi ≥ η
}
≥ p,

n∑
i=1

xi = 1,

x ≥ 0.

(4.5)

For example, η = −0.1 may be chosen if we aim at protecting against losses larger
than 10%.
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The constraint

Pr{gj (x, Z) ≤ 0, j ∈ J} ≥ p
is called a joint probabilistic constraint, while the constraints

Pr{gj (x, Z) ≤ 0} ≥ pj , j ∈ J, where pj ∈ [0, 1],
are called individual probabilistic constraints.

In the vehicle routing example, we have a joint probabilistic constraint. If we were to
cover the demand on each arc separately with high probability, then the constraints would
be formulated as follows:

Pr{T ix ≥ Zi} ≥ pi, i = 1, . . . , m,

where T i denotes the ith row of the matrix T . However, the latter formulation would not
ensure reliability of the network as a whole.

Infinitely many individual probabilistic constraints appear naturally in the context
of stochastic orders. For an integrable random variable X, we consider its distribution
function FX(·).

Definition 4.3. A random variable X dominates in the first order a random variable Y
(denoted X �(1) Y ) if

FX(η) ≤ FY (η), ∀η ∈ R.

The left-continuous inverse F (−1)
X of the cumulative distribution function of a random

variable X is defined as follows:

F
(−1)
X (p) = inf {η : F1(X; η) ≥ p}, p ∈ (0, 1).

Givenp ∈ (0, 1), the number q = q(X;p) is called ap-quantile of the random variableX if

Pr{X < q} ≤ p ≤ Pr{X ≤ q}.

For p ∈ (0, 1) the set of p-quantiles is a closed interval and F (−1)
X (p) represents its left end.

Directly from the definition of the first order dominance we see that

X �(1) Y ⇔ F
(−1)
X (p) ≥ F (−1)

Y (p), ∀p ∈ (0, 1). (4.6)

The first order dominance constraint can be interpreted as a continuum of probabilistic
(chance) constraints.

Denoting F (1)
X (η) = FX(η), we define higher order distribution functions of a random

variable X ∈ Lk−1(�,F , P ) as follows:

F
(k)
X (η) =

∫ η

−∞
F
(k−1)
X (t) dt for k = 2, 3, 4, . . . .
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We can express the integrated distribution function F (2)
X as the expected shortfall function.

Integrating by parts, for each value η, we have the following formula:16

F
(2)
X (η) =

∫ η

−∞
FX(α) dα = E

[
(η −X)+

]
. (4.7)

The function F (2)
X (·) is well defined and finite for every integrable random variable.

It is continuous, nonnegative, and nondecreasing. The function F (2)
X (·) is also convex

because its derivative is nondecreasing as it is a cumulative distribution function. By
the same arguments, the higher order distribution functions are continuous, nonnegative,
nondecreasing, and convex as well.

Due to (4.7), the second order dominance relation can be expressed in an equivalent
way as follows:

X �(2) Y iff E{[η −X]+} ≤ E{[η − Y ]+}, ∀η ∈ R. (4.8)

The stochastic dominance relation generalizes to higher orders as follows.

Definition 4.4. Given two random variables X and Y in Lk−1(�,F , P ) we say that X
dominates Y in the kth order if

F
(k)
X (η) ≤ F (k)

Y (η), ∀η ∈ R.

We denote this relation by X �(k) Y .

We call the following semi-infinite (probabilistic) problem a stochastic optimization
problem with a stochastic ordering constraint:

Min
x

c(x)

s.t. Pr {g(x, Z) ≤ η} ≤ FY (η), η ∈ [a, b],
x ∈ X.

(4.9)

Here the dominance relation is restricted to an interval [a, b] ⊂ R. There are technical
reasons for this restriction, which will become apparent later. In the case of discrete distri-
butions with finitely many realizations, we can assume that the interval [a, b] contains the
entire support of the probability measures.

In general, we formulate the following semi-infinite probabilistic problem, which we
refer to as a stochastic optimization problem with a stochastic dominance constraint of
order k ≥ 2:

Min
x

c(x)

s.t. F (k)

g(x,Z)(η) ≤ F (k)
Y (η), η ∈ [a, b],

x ∈ X.

(4.10)

16Recall that [a]+ = max{a, 0}.
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Example 4.5 (Portfolio Selection Problem with Stochastic Ordering Constraints). Re-
turning to Example 4.2, we can require that the net profit on our investment dominates certain
benchmark outcome Y , which may be the return rate of our current portfolio or the return
rate of some index. Then the Value-at-Risk constraint has to be satisfied at a continuum of
points η ∈ R. Setting Pr

{
Y ≤ η} = pη, we formulate the following model:

Max
n∑
i=1

E[Ri]xi

s.t. Pr

{
n∑
i=1

Rixi ≤ η
}
≤ pη, ∀η ∈ R,

n∑
i=1

xi = 1,

x ≥ 0.

(4.11)

Using higher order stochastic dominance relations, we formulate a portfolio optimization
model of form

Max
n∑
i=1

E[Ri]xi

s.t.
n∑
i=1

Rixi �(k) Y,
n∑
i=1

xi = 1,

x ≥ 0.

(4.12)

A second order dominance constraint on the portfolio return rate represents a constraint on
the shortfall function:

n∑
i=1

Rixi �(2) Y ⇐⇒ E

[(
η −

n∑
i=1

Rixi

)
+

]
≤ E
[
(η − Y )+

]
, ∀η ∈ R.

The second order dominance constraint can also be viewed as a continuum of Average Value-
at-Risk17 (AV@R) constraints. For more information on this connection, see Dentcheva and
Ruszczyński [56].

We stress that if a = b, then the semi-infinite model (4.9) reduces to a problem with
a single probabilistic constraint, and problem (4.10) for k = 2 becomes a problem with a
single shortfall constraint.

We shall pay special attention to problems with separable functions gi , i = 1, . . . , m,
that is, functions of form gi(x, z) = ĝi (x)+ hi(z). The probabilistic constraint becomes

Pr
{
ĝi (x) ≥ −hi(Z), i = 1, . . . , m

} ≥ p.
17Average Value-at-Risk is also called Conditional Value-at-Risk.
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We can view the inequalities under the probability as a deterministic vector function ĝ :
R
n → R

m, ĝ = [ĝ1, . . . , ĝm]T constrained from below by a random vector Y with Yi =
−hi(Z), i = 1, . . . , m. The problem can be formulated as

Min
x

c(x)

s.t. Pr
{
ĝ(x) ≥ Y} ≥ p,

x ∈ X,

(4.13)

where the inequality a ≤ b for two vectors a, b ∈ R
n is understood componentwise.

We note again that the objective function can have a more specific form:

c(x) = E[f (x, Z)].
By virtue of Theorem 7.43, we have that if the function f (·, Z) is continuous at x0 w.p. 1 and
there exists an integrable random variable Ẑ such that |f (x, Z(ω))| ≤ Ẑ(ω) for P -almost
every ω ∈ � and for all x in a neighborhood of x0, then for all x in a neighborhood of x0 the
expected value function c(x) is well defined and continuous at x0. Furthermore, convexity
of f (·, Z) for a.e. Z implies convexity of the expectation function c(x). Therefore, we can
carry out the analysis of probabilistically constrained problems using a general objective
function c(x) with the understanding that in some cases it may be defined as an expectation
function.

Problems with separable probabilistic constraints arise frequently in the context of
serving certain demand, as in the vehicle routing Example 4.1. Another type of example is
an inventory problem, as the following one.

Example 4.6 (Cash Matching with Probabilistic Liquidity Constraint). We have ran-
dom liabilities Lt in periods t = 1, . . . , T . We consider an investment in a bond port-
folio from a basket of n bonds. The payment of bond i in period t is denoted by ait . It is
zero for the time periods t before purchasing of the bond is possible, as well as for t greater
than the maturity time of the bond. At the time period of purchase, ait is the negative of
the price of the bond. At the following periods, ait is equal to the coupon payment, and
at the time of maturity it is equal to the face value plus the coupon payment. All prices of
bonds and coupon payments are deterministic and no default is assumed. Our initial capital
equals c0.

The objective is to design a bond portfolio such that the probability of covering the
liabilities over the entire period 1, . . . , T is at least p. Subject to this condition, we want to
maximize the final cash on hand, guaranteed with probability p.

Let us introduce the cumulative liabilities

Zt =
t∑

τ=1

Lτ , t = 1, . . . , T .

Denoting by xi the amount invested in bond i, we observe that the cumulative cash flows
up to time t , denoted ct , can be expressed as follows:

ct = ct−1 +
n∑
i=1

aitxi, t = 1, . . . , T .
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Using cumulative cash flows and cumulative liabilities permits the carryover of capital
from one stage to the next, while keeping the random quantities at the right-hand side of the
constraints. We represent the cumulative cash flow during the entire period by the vector
c = (c1, . . . , cT )

T. Let us assume that we quantify our preferences by using concave utility
function U : R→ R. We would like to maximize the final capital at hand in a risk-averse
manner. The problem takes on the form

Max
x,c

E [U(cT − ZT )]
s.t. Pr

{
ct ≥ Zt, t = 1, . . . , T

} ≥ p,
ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T ,

x ≥ 0.

This optimization problem has the structure of model (4.13). The first constraint can be
called a probabilistic liquidity constraint.

4.2 Convexity in Probabilistic Optimization
Fundamental questions for every optimization model concern convexity of the feasible set,
as well as continuity and differentiability of the constraint functions. The analysis of models
with probability functions is based on specific properties of the underlying probability dis-
tributions. In particular, the generalized concavity theory plays a central role in probabilistic
optimization as it facilitates the application of powerful tools of convex analysis.

4.2.1 Generalized Concavity of Functions and Measures

We consider various nonlinear transformations of functions f : � → R+ defined on a
convex set � ⊂ R

n.

Definition 4.7. A nonnegative function f (x) defined on a convex set � ⊂ R
n is said to

be α-concave, where α ∈ [−∞,+∞], if for all x, y ∈ � and all λ ∈ [0, 1] the following
inequality holds true:

f (λx + (1− λ)y) ≥ mα(f (x), f (y), λ),

where mα : R+ × R+ × [0, 1] → R is defined as follows:

mα(a, b, λ) = 0 if ab = 0,

and if a > 0, b > 0, 0 ≤ λ ≤ 1, then

mα(a, b, λ) =


aλb1−λ if α = 0,
max{a, b} if α = ∞,
min{a, b} if α = −∞,
(λaα + (1− λ)bα)1/α otherwise.
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In the case of α = 0 the function f is called logarithmically concave or log-concave
because ln f (·) is a concave function. In the case of α = 1, the function f is simply
concave.

It is important to note that if f and g are two measurable functions, then the func-
tion mα(f (·), g(·), λ) is a measurable function for all α and all λ ∈ (0, 1). Furthermore,
mα(a, b, λ) has the following important property.

Lemma 4.8. The mapping α !→ mα(a, b, λ) is nondecreasing and continuous.

Proof. First we show the continuity of the mapping at α = 0. We have the following chain
of equations:

lnmα(a, b, λ) = ln(λaα + (1− λ)bα)1/α = 1

α
ln
(
λeα ln a + (1− λ)eα ln b

)
= 1

α
ln
(

1+ α(λ ln a + (1− λ) ln b
)+ o(α2)

)
.

Applying the l’Hôpital rule to the right-hand side in order to calculate its limit when α→ 0,
we obtain

lim
α→0

lnmα(a, b, λ) = lim
α→0

λ ln a + (1− λ) ln b + o(α)
1+ α(λ ln a + (1− λ) ln b

)+ o(α2)

= lim
α→0

ln(aλb(1−λ))+ o(α)
1+ α ln(aλb(1−λ))+ o(α2)

= ln(aλb(1−λ)).

Now we turn to the monotonicity of the mapping. First, let us consider the case of
0 < α < β. We set

h(α) = mα(a, b, λ) = exp

(
1

α
ln
[
λaα + (1− λ)bα]) .

Calculating its derivative, we obtain

h′(α) = h(α)
( 1

α
· λa

α ln a + (1− λ)bα ln b

λaα + (1− λ)bα − 1

α2
ln
[
λaα + (1− λ)bα]).

We have to demonstrate that the expression on the right-hand side is nonnegative. Substi-
tuting x = aα and y = bα , we obtain

h′(α) = 1

α2
h(α)

(λx ln x + (1− λ)y ln y

λx + (1− λ)y − ln
[
λx + (1− λ)y]).

Using the fact that the function z !→ z ln z is convex for z > 0 and that both x, y > 0, we
have that

λx ln x + (1− λ)y ln y

λx + (1− λ)y − ln
[
λx + (1− λ)y] ≥ 0.

As h(α) > 0, we conclude that h(·) is nondecreasing in this case. If α < β < 0, we have
the following chain of relations:

mα(a, b, λ) =
[
m−α
(1

a
,

1

b
, λ
)]−1

≤
[
m−β
(1

a
,

1

b
, λ
)]−1

= mβ(a, b, λ).
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In the case of 0 = α < β, we can select a sequence {αk} such thatαk > 0 and limk→∞ αk = 0.
We use the monotonicity of h(·) for positive arguments and the continuity at 0 to obtain the
desired assertion. In the case α < β = 0, we proceed in the same way, choosing appropriate
sequence approaching 0.

If α < 0 < β, then the inequality

mα(a, b, λ) ≤ m0(a, b, λ) ≤ mβ(a, b, λ)

follows from the previous two cases. It remains to investigate how the mapping behaves
when α→∞ or α→−∞. We observe that

max{λ1/αa, (1− λ)1/αb} ≤ mα(a, b, λ) ≤ max{a, b}.
Passing to the limit, we obtain that

lim
α→∞mα(a, b, λ) = max{a, b}.

We also conclude that

lim
α→−∞mα(a, b, λ) = lim

α→−∞[m−α(1/a, 1/b, λ)]−1 = [max{1/a, 1/b}]−1 = min{a, b}.

This completes the proof.

This statement has the very important implication thatα-concavity entailsβ-concavity
for allβ ≤ α. Therefore, allα-concave functions are (−∞)-concave, that is, quasi-concave.

Example 4.9. Consider the density function of a nondegenerate multivariate normal distri-
bution on R

s :

θ(x) = 1√
(2π)sdet(Σ)

exp
{− 1

2 (x − µ)TΣ−1(x − µ)} ,
where Σ is a positive definite symmetric matrix of dimension s × s, det(Σ) denotes the
determinant of the matrix Σ , and µ ∈ R

s . We observe that

ln θ(x) = − 1
2 (x − µ)TΣ−1(x − µ)− ln

(√
(2π)sdet(Σ)

)
is a concave function. Therefore, we conclude that θ is 0-concave, or log-concave.

Example 4.10. Consider a convex body (a convex compact set with nonempty interior)
� ⊂ R

s . The uniform distribution on this set has density defined as follows:

θ(x) =
{

1
Vs(�)

, x ∈ �,
0, x �∈ �,

where Vs(�) denotes the Lebesgue measure of �. The function θ(x) is quasi-concave on
R
s and +∞-concave on �.
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We point out that for two Borel measurable sets A,B in R
s , the Minkowski sum

A+ B = {x + y : x ∈ A, y ∈ B} is Lebesgue measurable in R
s .

Definition 4.11. A probability measure P defined on the Lebesgue measurable subsets of a
convex set � ⊂ R

s is said to be α-concave if for any Borel measurable sets A,B ⊂ � and
for all λ ∈ [0, 1] we have the inequality

P (λA+ (1− λ)B) ≥ mα

(
P(A), P (B), λ

)
,

where λA+ (1− λ)B = {λx + (1− λ)y : x ∈ A, y ∈ B}.

We say that a random vector Z with values in R
n has an α-concave distribution if the

probability measure PZ induced by Z on R
n is α-concave.

Lemma 4.12. If a random vector Z induces an α-concave probability measure on R
s , then

its cumulative distribution function FZ is an α-concave function.

Proof. Indeed, for given points z1, z2 ∈ R
s and λ ∈ [0, 1], we define

A = {z ∈ R
s : zi ≤ z1

i , i = 1, . . . , s} and B = {z ∈ R
s : zi ≤ z2

i , i = 1, . . . , s}.

Then the inequality for FZ follows from the inequality in Definition 4.11.

Lemma 4.13. If a random vectorZ has independent components with log-concave marginal
distributions, then Z has a log-concave distribution.

Proof. For two Borel setsA,B ⊂ R
s and λ ∈ (0, 1), we define the set C = λA+ (1−λ)B.

Denote the projections ofA, B and C on the coordinate axis byAi , Bi and Ci , i = 1, . . . , s,
respectively. For any number r ∈ Ci there is c ∈ C such that ci = r , which implies that we
have a ∈ A and b ∈ B with λa + (1− λ)b = c and r = λai + (1− λ)bi . In other words,
r ∈ λAi + (1− λ)Bi , and we conclude that Ci ⊂ λAi + (1− λ)Bi . On the other hand, if
r ∈ λAi + (1−λ)Bi , then we have a ∈ A and b ∈ B such that r = λai + (1−λ)bi . Setting
c = λa + (1− λ)b, we conclude that r ∈ Ci . We obtain

ln[PZ(C)] =
s∑
i=1

ln[PZi (Ci)] =
s∑
i=1

ln[PZi (λAi + (1− λ)Bi)]

≥
s∑
i=1

(
λ ln[PZi (Ai)] + (1− λ) ln[PZi (Bi)]

)
= λ ln[PZ(A)] + (1− λ) ln[PZ(B)].

As usually, concavity properties of a function imply a certain continuity of the function.
We formulate without proof two theorems addressing this issue.

Theorem 4.14 (Borell [24]). If P is a quasi-concave measure on R
s and the dimension of

its support is s, then P has a density with respect to the Lebesgue measure.
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We can relate the α-concavity property of a measure to generalized concavity of its
density. (See Brascamp and Lieb [26], Prékopa [159], Rinott [168], and the references
therein.)

Theorem 4.15. Let � be a convex subset of R
s and let m > 0 be the dimension of the

smallest affine subspace L containing �. The probability measure P on � is γ -concave
with γ ∈ [−∞, 1/m] iff its probability density function with respect to the Lebesgue
measure on L is α-concave with

α =


γ /(1−mγ ) if γ ∈ (−∞, 1/m),
−1/m if γ = −∞,
+∞ if γ = 1/m.

Corollary 4.16. Let an integrable function θ(x) be define and positive on a nondegenerate
convex set� ⊂ R

s . Denote c = ∫
�
θ(x) dx. If θ(x) is α-concave with α ∈ [−1/s,∞] and

positive on the interior of �, then the measure P on � defined by setting that

P(A) = 1

c

∫
A

θ(x) dx, A ⊂ �,
is γ -concave with

γ =


α/(1+ sα) if α ∈ (−1/s,∞),
1/s if α = ∞,
−∞ if α = −1/s.

In particular, if a measure P on R
s has a density function θ(x) such that θ−1/s is convex,

then P is quasi-concave.

Example 4.17. We observed in Example 4.10 that the density of the unform distribution on
a convex body � is a∞-concave function. Hence, it generates a 1/s-concave measure on
�. On the other hand, the density of the normal distribution (Example 4.9) is log-concave,
and, therefore, it generates a log-concave probability measure.

Example 4.18. Consider positive numbers α1, . . . , αs and the simplex

S =
{
x ∈ R

s :
s∑
i=1

xi ≤ 1, xi ≥ 0, i = 1, . . . , s

}
.

The density function of the Dirichlet distribution with parameters α1, . . . , αs is defined as
follows:

θ(x) =

�(α1 + · · · + αs)
�(α1) · · ·�(αs) x

α1−1
1 x

α2−1
2 · · · xαs−1

s if x ∈ int S,

0 otherwise.

Here �(·) stands for the Gamma function �(z) = ∫∞0 t z−1e−t dt .
Assuming that x ∈ int S, we consider

ln θ(x) =
s∑
i=1

(αi − 1) ln xi + ln�(α1 + · · · + αs)−
s∑
i=1

ln�(αi).
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If αi ≥ 1 for all i = 1, . . . , s, then ln θ(·) is a concave function on the interior of S and,
therefore, θ(x) is log-concave on cl S. If all parameters satisfy αi ≤ 1, then θ(x) is log-
convex on cl (S). For other sets of parameters, this density function does not have any
generalized concavity properties.

The next results provide calculus rules for α-concave functions.

Theorem 4.19. If the function f : Rn→ R+ is α-concave and the function g : Rn→ R+ is
β-concave, where α, β ≥ 1, then the function h : Rn→ R, defined as h(x) = f (x)+ g(x)
is γ -concave with γ = min{α, β}.

Proof. Given points x1, x2 ∈ R
n and a scalar λ ∈ (0, 1), we set xλ = λx1+ (1−λ)x2. Both

functions f and g are γ -concave by virtue of Lemma 4.8. Using the Minkowski inequality,
which holds true for γ ≥ 1, we obtain

f (xλ)+ g(xλ)
≥ [λ(f (x1)

)γ + (1− λ)(f (x2)
)γ ] 1

γ + [λ(g(x1)
)γ + (1− λ)(g(x2)

)γ ] 1
γ

≥ [λ(f (x1)+ g(x1)
)γ + (1− λ)(f (x2)+ g(x2)

)γ ] 1
γ .

This completes the proof.

Theorem 4.20. Let f be a concave function defined on a convex setC ⊂ R
s and g : R→ R

be a nonnegative nondecreasingα-concave function, α ∈ [−∞,∞]. Then the function g◦f
is α-concave.

Proof. Given x, y ∈ R
s and a scalar λ ∈ (0, 1), we consider z = λx + (1 − λ)y. We

have f (z) ≥ λf (x)+ (1− λ)f (y). By monotonicity and α-concavity of g, we obtain the
following chain of inequalities:

[g ◦ f ](z) ≥ g(λf (x)+ (1− λ)f (y)) ≥ mα

(
g(f (x)), g(f (y)), λ

)
.

This proves the assertion.

Theorem 4.21. Let the function f : R
m × R

s → R+ be such that for all y ∈ Y ⊂ R
s

the function f (·, y) is α-concave (α ∈ [−∞,∞]) on the convex set X ⊂ R
m. Then the

function ϕ(x) = inf y∈Y f (x, y) is α-concave on X.

Proof. Let x1, x2 ∈ X and a scalar λ ∈ (0, 1) be given. We set z = λx1 + (1 − λ)x2. We
can find a sequence of points yk ∈ Y such that

ϕ(z) = inf
y∈Y f (z, y) = lim

k→∞ f (z, yk).

Using the α-concavity of the function f (·, y), we conclude that

f (z, yk) ≥ mα

(
f (x1, yk), f (x2, yk), λ

)
.
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The mapping (a, b) !→ mα(a, b, λ) is monotone for nonnegative a and b and λ ∈ (0, 1).
Therefore, we have that

f (z, yk) ≥ mα

(
ϕ(x1), ϕ(x2), λ

)
.

Passing to the limit, we obtain the assertion.

Lemma 4.22. If αi > 0, i = 1, . . . , m, and
∑m

i=1 αi = 1, then the function f : Rm+ → R,
defined as f (x) =∏m

i=1 x
αi
i is concave.

Proof. We shall show the statement for the case of m = 2. For points x, y ∈ R
2+ and a

scalar λ ∈ (0, 1), we consider λx + (1− λ)y. Define the quantities

a1 = (λx1)
α1 , a2 = ((1− λ)y1)

α1 , b1 = (λx2)
α2 , b2 = ((1− λ)y2)

α2 .

Using Hölder’s inequality, we obtain the following:

f (λx + (1− λ)y) =
(
a

1
α1
1 + a

1
α1
2

)α1
(
b

1
α2
1 + b

1
α2
2

)α2

≥ a1b1 + a2b2 = λxα1
1 x

α2
2 + (1− λ)yα1

1 y
α2
2 .

The assertion in the general case follows by induction.

Theorem 4.23. If the functions fi : Rn → R+, i = 1, . . . , m, are αi-concave and αi are
such that

∑m
i=1 αi

−1 > 0, then the function g : Rnm→ R+, defined as g(x) =∏m
i=1 fi(xi)

is γ -concave with γ = (∑m
i=1 αi

−1
)−1

.

Proof. Fix points x1, x2 ∈ R
n+, a scalar λ ∈ (0, 1) and set xλ = λx1 + (1 − λ)x2. By the

generalized concavity of the functions fi , i = 1, . . . , m, we have the following inequality:
m∏
i=1

fi(xλ) ≥
m∏
i=1

(
λfi(x1)

αi + (1− λ)fi(x2)
αi

)1/αi
.

We denote yij = fi(xj )
αi , j = 1, 2. Substituting into the last displayed inequality and

raising both sides to power γ , we obtain(
m∏
i=1

fi(xλ)

)γ
≥

m∏
i=1

(
λyi1 + (1− λ)yi2

)γ /αi
.

We continue the chain of inequalities using Lemma 4.22:
m∏
i=1

(
λyi1 + (1− λ)yi2

)γ /αi ≥ λ m∏
i=1

[
yi1
]γ /αi + (1− λ) m∏

i=1

[
yi2
]γ /αi

.

Putting the inequalities together and using the substitutions at the right-hand side of the last
inequality, we conclude that

m∏
i=1

[
f1(xλ)

]γ ≥ λ m∏
i=1

[
fi(x1)

]γ + (1− λ) m∏
i=1

[
fi(x2)

]γ
,

as required.
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In the special case, when the functions fi : Rn → R, i = 1, . . . , k, are concave, we
can apply Theorem 4.23 consecutively to conclude that f1f2 is 1

2 -concave and f1 · · · fk is
1
k
-concave.

Lemma 4.24. If A is a symmetric positive definite matrix of size n × n, then the function
A !→ det(A) is 1

n
-concave.

Proof. Consider two n× n symmetric positive definite matrices A,B and γ ∈ (0, 1). We
note that for every eigenvalue λ of A, γ λ is an eigenvalue of γA, and, hence, det(γA) =
γ n det(A). We could apply the Minkowski inequality for matrices,

[det (A+ B)] 1
n ≥ [det(A)] 1

n + [det(B)] 1
n , (4.14)

which implies the 1
n

-concavity of the function. As inequality (4.14) is not well known,
we provide a proof of it. First, we consider the case of diagonal matrices. In this case
the determinants of A and B are products of their diagonal elements and inequality (4.14)
follows from Lemma 4.22.

In the general case, let A1/2 stand for the symmetric positive definite square root of
A and let A−1/2 be its inverse. We have

det (A+ B) = det
(
A1/2A−1/2(A+ B)A−1/2A1/2

)
= det

(
A−1/2(A+ B)A−1/2

)
det(A)

= det
(
I + A−1/2BA−1/2

)
det(A). (4.15)

Notice that A−1/2BA−1/2 is symmetric positive definite and, therefore, we can choose an
n× n orthogonal matrix R, which diagonalizes it. We obtain

det
(
I + A−1/2BA−1/2

) = det
(
RT (I + A−1/2BA−1/2

)
R
)

= det
(
I + RTA−1/2BA−1/2R

)
.

At the right-hand side of the equation, we have a sum of two diagonal matrices and we can
apply inequality (4.14) for this case. We conclude that[

det
(
I + A−1/2BA−1/2

)] 1
n = [det

(
I + RTA−1/2BA−1/2R

)] 1
n

≥ 1+ [det
(
RTA−1/2BA−1/2R

)] 1
n

= 1+ [det(B)] 1
n [det(A)]− 1

n .

Combining this inequality with (4.15), we obtain (4.14) in the general case.

Example 4.25 (Dirichlet Distribution Continued). We return to Example 4.18. We see
that the functions xi !→ x

βi
i are 1/βi-concave, provided that βi > 0. Therefore, the density

function of the Dirichlet distribution is a product of 1
αi−1 -concave functions, given that all

parameters αi > 1. By virtue of Theorem 4.23, we obtain that this density is γ -concave
with γ = (α1 + · · ·αm − s)−1 provided that αi > 1, i = 1, . . . , m. Due to Corollary 4.16,

the Dirichlet distribution is a
(
α1 + · · ·αm

)−1
-concave probability measure.
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Theorem 4.26. If the s-dimensional random vector Z has an α-concave probability distri-
bution, α ∈ [−∞,+∞], and T is a constantm× s matrix, then them-dimensional random
vector Y = T Z has an α-concave probability distribution.

Proof. Let A ⊂ R
m and B ⊂ R

m be two Borel sets. We define

A1 =
{
z ∈ R

s : T z ∈ A} and B1 =
{
z ∈ R

s : T z ∈ B}.
The setsA1 andA2 are Borel sets as well due to the continuity of the linear mapping z !→ T z.
Furthermore, for λ ∈ [0, 1] we have the relation

λA1 + (1− λ)B1 ⊂
{
z ∈ R

s : T z ∈ λA+ (1− λ)B}.
Denoting PZ and PY the probability measure of Z and Y respectively, we obtain

PY
{
λA+ (1− λ)B} ≥ PZ{λA1 + (1− λ)B1

}
≥ mα

(
PZ
{
A1
}
, PZ
{
B1
}
, λ
)

= mα

(
PY
{
A
}
, PY
{
B
}
, λ
)
.

This completes the proof.

Example 4.27. A univariate gamma distribution is given by the following probability den-
sity function:

f (z) =
 λϑzϑ−1e−λz

�(ϑ)
for z > 0,

0 otherwise,

where λ > 0 and ϑ > 0 are constants. For λ = 1 the distribution is the standard gamma
distribution. If a random variable Y has the gamma distribution, then ϑY has the standard
gamma distribution. It is not difficult to check that this density function is log-concave,
provided ϑ ≥ 1.

A multivariate gamma distribution can be defined by a certain linear transformation
of m independent random variables Z1, . . . , Zm (1 ≤ m ≤ 2s − 1) that have the standard
gamma distribution. Let an s × m matrix A with 0–1 elements be given. Setting Z =
(Z1, . . . , Z2s−1), we define

Y = AZ.
The random vector Y has a multivariate standard gamma distribution.

We observe that the distribution of the vector Z is log-concave by virtue of
Lemma 4.13. Hence, the s-variate standard gamma distribution is log-concave by virtue
of Theorem 4.26.

Example 4.28. The Wishart distribution arises in estimation of covariance matrices and
can be considered as a multidimensional version of the χ2- distribution. More precisely, let
us assume thatZ is an s-dimensional random vector having multivariate normal distribution
with a nonsingular covariance matrixΣ and expectationµ. Given an iid sampleZ1, . . . , ZN

from this distribution, we consider the matrix

N∑
i=1

(Zi − Z̄)(Zi − Z̄)T,
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where Z̄ is the sample mean. This matrix has Wishart distribution with N − 1 degrees of
freedom. We denote the trace of a matrix A by tr(A).

If N > s, the Wishart distribution is a continuous distribution on the space of sym-
metric square matrices with probability density function defined by

f (A) =


det(A)

N−s−2
2 exp

(− 1
2 tr(Σ−1A)

)
2
N−1

2 s π
s(s−1)

4 det(Σ)
N−1

2

s∏
i=1
�
(
N−i

2

) for A positive definite,

0 otherwise.

If s = 1 and Σ = 1, this density becomes the χ2- distribution density with N − 1 degrees
of freedom.

If A1 and A2 are two positive definite matrices and λ ∈ (0, 1), then the matrix
λA1 + (1 − λ)A2 is positive definite as well. Using Lemma 4.24 and Lemma 4.8 we
conclude that function A !→ ln det(A), defined on the set of positive definite Hermitian
matrices, is concave. This implies that if N ≥ s + 2, then f is a log-concave function on
the set of symmetric positive definite matrices. IfN = s+ 1, then f is a log-convex on the
convex set of symmetric positive definite matrices.

Recall that a function f : Rn→ R is called regular in the sense of Clarke or Clarke-
regular, at a point x, if the directional derivative f ′(x; d) exists and

f ′(x; d) = lim
y→x,t↓0

f (y + td)− f (y)
t

, ∀d ∈ R
n.

It is known that convex functions are regular in this sense. We call a concave function f
regular with the understanding that the regularity requirement applies to −f . In this case,
we have ∂◦(−f )(x) = −∂◦f (x), where ∂◦f (x) refers to the Clarke generalized gradient
of f at the point x. For convex functions ∂◦f (x) = ∂f (x).

Theorem 4.29. If f : R
n → R is α-concave (α ∈ R) on some open set U ⊂ R

n

and f (x) > 0 for all x ∈ U , then f (x) is locally Lipschitz continuous, directionally
differentiable, and Clarke-regular. Its Clarke generalized gradients are given by the formula

∂◦f (x) =
{

1
α

[
f (x)

]1−α
∂
[
(f (x))α

]
if α �= 0,

f (x)∂
(

ln f (x)
)

if α = 0.

Proof. If f is an α-concave function, then an appropriate transformation of f is a concave
function on U . We define

f̄ (x) =
{
(f (x))α if α �= 0,
ln f (x) if α = 0.

If α < 0, then f α(·) is convex. This transformation is well defined on the open subset U
since f (x) > 0 for x ∈ U , and, thus, f̄ (x) is subdifferentiable at any x ∈ U . Further, we
represent f as follows:

f (x) =
{(
f̄ (x)

)1/α
if α �= 0,

exp(f̄ (x)) if α = 0.
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In this representation, f is a composition of a continuously differentiable function and
a concave function. By virtue of Clarke [38, Theorem 2.3.9(3)], the function f is locally
Lipschitz continuous, directionally differentiable, and Clarke-regular. Its Clarke generalized
gradient set is given by the formula

∂◦f (x) =
{

1
α

(
f̄ (x)

)1/α−1
∂f̄ (x) if α �= 0,

exp
(
f̄ (x)

)
∂f̄ (x) if α = 0.

Substituting the definition of f̄ yields the result.

For a function f : Rn → R, we consider the set of points at which it takes positive
values. It is denoted by domposf , i.e.,

domposf = {x ∈ R
n : f (x) > 0}.

Recall that NX(x) denotes the normal cone to the set X at x ∈ X.

Definition 4.30. We call a point x̂ ∈ R
n a stationary point of an α-concave function f if

there is a neighborhood U of x̂ such that f is Lipschitz continuous on U , and 0 ∈ ∂◦f (x̂).
Furthermore, for a convex set X ⊂ domposf , we call x̂ ∈ X a stationary point of f
on X if there is a neighborhood U of x̂ such that f is Lipschitz continuous on U and
0 ∈ ∂◦fX(x̂)+NX(x̂).

We observe that certain properties of the maxima of concave functions extend to
generalized concave functions.

Theorem 4.31. Let f be an α-concave function f and the set X ⊂ domposf be convex.
Then all the stationary points of f on X are global maxima and the set of global maxima
of f on X is convex.

Proof. First, assume that α = 0. Let x̂ be a stationary point of f on X. This implies that

0 ∈ f (x̂)∂( ln f (x̂)
)+NX(x̂). (4.16)

Using that f (x̂) > 0, we obtain

0 ∈ ∂( ln f (x̂)
)+NX(x̂). (4.17)

As the function f̄ (x) = ln f (x) is concave, this inclusion implies that x̂ is a global maximal
point of f̄ on X. By the monotonicity of ln(·), we conclude that x̂ is a global maximal
point of f on X. If a point x̃ ∈ X is a maximal point of f̄ on X, then inclusion (4.17) is
satisfied. It entails (4.16) as X ⊂ domposf , and, therefore, x̃ is a stationary point of f
on X. Therefore, the set of maximal points of f on X is convex because this is the set of
maximal points of the concave function f̄ .

In the case of α �= 0, the statement follows by the same line of argument using the
function f̄ (x) = [f (x)]α .

Another important property of α-concave measures is the existence of so-called float-
ing body for all probability levels p ∈ ( 1

2 , 1).



SPbook
2009/8/20
page 105

�

�

�

�

�

�

�

�

4.2. Convexity in Probabilistic Optimization 105

Definition 4.32. A measure P on R
s has a floating body at level p > 0 if there exists a

convex body Cp ⊂ R
s such for all vectors z ∈ R

s ,

P
{
x ∈ R

s : zTx ≥ s
Cp
(z)
} = 1− p,

where s
Cp
(·) is the support function of the set Cp. The set Cp is called the floating body of

P at level p.

Symmetric log-concave measures have floating bodies. We formulate this result of
Meyer and Reisner [128] without proof.

Theorem 4.33. Any nondegenerate probability measure with symmetric log-concave density
function has a floating body Cp at all levels p ∈ ( 1

2 , 1
)
.

We see that α-concavity as introduced so far implies continuity of the distribution
function. As empirical distributions are very important in practical applications, we would
like to find a suitable generalization of this notion applicable to discrete distributions. For
this purpose, we introduce the following notion.

Definition 4.34. A distribution function F is called α-concave on the set A ⊂ R
s with

α ∈ [−∞,∞] if

F(z) ≥ mα

(
F(x), F (y), λ

)
for all z, x, y ∈ A, and λ ∈ (0, 1) such that z ≥ λx + (1− λ)y.

Observe that if A = R
s , then this definition coincides with the usual definition of

α-concavity of a distribution function.
To illustrate the relation between Definition 4.7 and Definition 4.34, let us consider

the case of integer random vectors which are roundups of continuously distributed random
vectors.

Remark 4. If the distribution function of a random vector Z is α-concave on R
s then the

distribution function of Y = $Z% is α-concave on Z
s .

This property follows from the observation that at integer points both distribution
functions coincide.

Example 4.35. Every distribution function of an s-dimensional binary random vector is
α-concave on Z

s for all α ∈ [−∞,∞].
Indeed, let x and y be binary vectors, λ ∈ (0, 1), and z ≥ λx + (1 − λ)y. As z is

integer and x and y binary, then z ≥ x and z ≥ y. Hence, F(z) ≥ max{F(x), F (y)} by
the monotonicity of the cumulative distribution function. Consequently, F is∞-concave.
Using Lemma 4.8 we conclude that FZ is α-concave for all α ∈ [−∞,∞].

For a random vector with independent components, we can relate concavity of the
marginal distribution functions to the concavity of the joint distribution function. Note that
the statement applies not only to discrete distributions, as we can always assume that the
set A is the whole space or some convex subset of it.
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Theorem 4.36. Consider the s-dimensional random vector Z = (Z1, . . . , ZL), where the
subvectors Zl , l = l, . . . , L, are sl-dimensional and

∑L
l=1 sl = s. Assume that Zl , l =

l, . . . , L, are independent and that their marginal distribution functions FZl : Rsl → [0, 1]
are αl-concave on the sets Al ⊂ Z

sl . Then the following statements hold true:

1. If
∑L

l=1 α
−1
l > 0, l = 1, . . . , L, then FZ is α-concave on A = A1 × · · · ×AL with

α = (∑L
l=1 α

−1
l )−1.

2. If αl = 0, l = 1, . . . , L, then FZ is log-concave on A = A1 × · · · ×AL.

Proof. The proof of the first statement follows by virtue of Theorem 4.23 using the mono-
tonicity of the cumulative distribution function.

For the second statement consider λ ∈ (0, 1) and points x = (x1, . . . , xL) ∈ A,
y = (y1, . . . , yL) ∈ A, and z = (z1, . . . , zL) ∈ A such that z ≥ λx + (1 − λ)y. Using
the monotonicity of the function ln(·) and of FZ(·), along with the log-concavity of the
marginal distribution functions, we obtain the following chain of inequalities:

ln[FZ(z)] ≥ ln[FZ(λx + (1− λ)y)] =
L∑
l=1

ln
[
FZl (λx

l + (1− λ)yl)]
≥

L∑
l=1

[
λ ln[FZl (xl)] + (1− λ) ln[FZl (yl)]

]
≥ λ

L∑
l=1

ln[FZl (xl)] + (1− λ)
L∑
l=1

ln[FZl (yl)]

= λ[FZ(x)] + (1− λ)[FZ(y)].
This concludes the proof.

For integer random variables our definition of α-concavity is related to log-concavity
of sequences.

Definition 4.37. A sequence pk , k ∈ Z, is called log-concave if

p2
k ≥ pk−1pk+1, ∀k ∈ Z.

We have the following property. (See Prékopa [159, Theorem 4.7.2].)

Theorem 4.38. Suppose that for an integer random variable Y the probabilities pk =
Pr{Y = k}, k ∈ Z, form a log-concave sequence. Then the distribution function of Y is
α-concave on Z for every α ∈ [−∞, 0].

4.2.2 Convexity of Probabilistically Constrained Sets

One of the most general results in the convexity theory of probabilistic optimization is the
following theorem.
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Theorem 4.39. Let the functions gj : Rn × R
s , j ∈ J, be quasi-concave. If Z ∈ R

s is a
random vector that has an α-concave probability distribution, then the function

G(x) = P {gj (x, Z) ≥ 0, j ∈ J} (4.18)

is α-concave on the set

D = {x ∈ R
n : ∃z ∈ R

s such that gj (x, z) ≥ 0, j ∈ J}.
Proof. Given the points x1, x2 ∈ D and λ ∈ (0, 1), we define the sets

Ai = {z ∈ R
s : gj (xi, z) ≥ 0, j ∈ J}, i = 1, 2,

and B = λA1 + (1− λ)A2. We consider

G(λx1 + (1− λ)x2) = P {gj (λx1 + (1− λ)x2, Z) ≥ 0, j ∈ J}.
If z ∈ B, then there exist points zi ∈ Ai such that z = λz1 + (1 − λ)z2. By virtue of the
quasi concavity of gj we obtain that

gj (λx1 + (1− λ)x2, λz1 + (1− λ)z2) ≥ min{gj (x1, z1), gj (x2, z2)} ≥ 0, ∀j ∈ J.

This implies that z ∈ {z ∈ R
s : gj (λx1 + (1 − λ)x2, z) ≥ 0, j ∈ J}, which entails that

λx1 + (1− λ)x2 ∈ D and that

G(λx1 + (1− λ)x2) ≥ P {B}.
Using the α-concavity of the measure, we conclude that

G(λx1 + (1− λ)x2) ≥ P {B} ≥ mα{P {A1}, P {A2}, λ} = mα{G(x1),G(x2), λ},
as desired.

Example 4.40 (The Log-Normal Distribution). The probability density function of the
one-dimensional log-normal distribution with parameters µ and σ is given by

f (x) =
{

1√
2πσx

exp
(
− (ln x−µ)2

2σ 2

)
if x > 0,

0 otherwise.

This density is neither log-concave nor log-convex. However, we can show that the cu-
mulative distribution function is log-concave. We demonstrate it for the multidimensional
case.

The m-dimensional random vector Z has the log-normal distribution if the vector
Y = (lnZ1, . . . , lnZm)T has a multivariate normal distribution. Recall that the normal
distribution is log-concave. The distribution function of Z at a point z ∈ R

m, z > 0, can be
written as

FZ(z) = Pr
{
Z1 ≤ z1, . . . , Zm ≤ zm

}
= Pr

{
z1 − eY1 ≥ 0, . . . , zm − eYm ≥ 0

}
.

We observe that the assumptions of Theorem 4.39 are satisfied for the probability function
on the right-hand side. Thus, FZ is a log-concave function.
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As a consequence, under the assumptions of Theorem 4.39, we obtain convexity
statements for sets described by probabilistic constraints.

Corollary 4.41. Assume that the functions gj (·, ·), j ∈ J, are quasi-concave jointly in
both arguments and that Z ∈ R

s is a random variable that has an α-concave probability
distribution. Then the following set is convex and closed:

X0 =
{
x ∈ R

n : Pr{gi(x, Z) ≥ 0, i = 1, . . . , m} ≥ p}. (4.19)

Proof. Let G(x) be defined as in (4.18), and let x1, x2 ∈ X0, λ ∈ [0, 1]. We have

G(λx1 + (1− λ)x2) ≥ mα{G(x1),G(x2), λ} ≥ min{G(x1),G(x2)} ≥ p.
The closedness of the set follows from the continuity of α-concave functions.

We consider the case of a separable mapping g when the random quantities appear
only on the right-hand side of the inequalities.

Theorem 4.42. Let the mapping g : Rn→ R
m be such that each component gi is a concave

function. Furthermore, assume that the random vector Z has independent components and
the one-dimensional marginal distribution functions FZi , i = 1, . . . , m, are αi-concave.
Furthermore, let

∑k
i=1 α

−1
i > 0. Then the set

X0 =
{
x ∈ R

n : Pr{g(x) ≥ Z} ≥ p
}

is convex.

Proof. Indeed, the probability function appearing in the definition of the set X0 can be
described as follows:

G(x) = P {gi(x) ≥ Zi, i = 1, . . . , m} =
m∏
i=1

FZi (gi(xi)).

Due to Theorem 4.20, the functions FZi ◦ gi are αi-concave. Using Theorem 4.23, we
conclude thatG(·) is γ -concave with γ = (∑k

i=1 α
−1
i )−1. The convexity of X0 follows the

same argument as in Corollary 4.41.

Under the same assumptions, the set determined by the first order stochastic dominance
constraint with respect to any random variable Y is convex and closed.

Theorem 4.43. Assume that g(·, ·) is a quasi-concave function jointly in both arguments,
and that Z has an α-concave distribution. Then the following sets are convex and closed:

Xd =
{
x ∈ R

n : g(x, Z) �(1) Y
}
,

Xc =
{
x ∈ R

n : Pr
{
g(x, Z) ≥ η} ≥ Pr

{
Y ≥ η}, ∀η ∈ [a, b]}.

Proof. Let us fix η ∈ R and observe that the relation g(x, Z) �(1) Y can be formulated in
the following equivalent way:

Pr
{
g(x, Z) ≥ η} ≥ Pr

{
Y ≥ η}, ∀η ∈ R.
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Therefore, the first set can be defined as follows:

Xd =
{
x ∈ R

n : Pr
{
g(x, Z)− η ≥ 0

} ≥ Pr
{
Y ≥ η} ∀η ∈ R

}
.

For any η ∈ R, we define the set

X(η) = {x ∈ R
n : Pr

{
g(x, Z)− η ≥ 0

} ≥ Pr
{
Y ≥ η}}.

This set is convex and closed by virtue of Corollary 4.41. The set Xd is the intersection of
the sets X(η) for all η ∈ R, and, therefore, it is convex and closed as well. Analogously,
the set Xc is convex and closed as Xc =⋂η∈[a,b]X(η).

Let us observe that affine in each argument functions gi(x, z) = zTx + bi are not
necessarily quasi-concave in both arguments (x, z). We can apply Theorem 4.39 to conclude
that the set

Xl =
{
x ∈ R

n : Pr{xTai ≤ bi(Z), i = 1, . . . , m} ≥ p} (4.20)

is convex if ai , i = 1, . . . , m are deterministic vectors. We have the following.

Corollary 4.44. The set Xl is convex whenever bi(·) are quasi-concave functions and Z
has a quasi-concave probability distribution function.

Example 4.45 (Vehicle Routing Continued). We return to Example 4.1. The probabilistic
constraint (4.3) has the form

Pr
{
TX ≥ Z} ≥ pη.

If the vector Z of a random demand has an α-concave distribution, then this constraint
defines a convex set. For example, this is the case if each component Zi has a uni-
form distribution and the components (the demand on each arc) are independent of each
other.

If the functions gi are not separable, we can invoke Theorem 4.33.

Theorem 4.46. Let pi ∈ ( 1
2 , 1) for all i = 1, . . . , n. The set

Xp =
{
x ∈ R

n : PZi {xTZi ≤ bi} ≥ pi, i = 1, . . . , m
}

(4.21)

is convex whenever Zi has a nondegenerate log-concave probability distribution, which is
symmetric around some point µi ∈ R

n.

Proof. If the random vector Zi has a nondegenerate log-concave probability distribution,
which is symmetric around some point µi ∈ R

n, then the vector Yi = Zi − µi has a
symmetric and nondegenerate log-concave distribution.

Given points x1, x2 ∈ Xp and a number λ ∈ [0, 1], we define

Ki(x) = {a ∈ R
n : aTx ≤ bi}, i = 1, . . . , n.

Let us fix an index i. The probability distribution of Yi satisfies the assumptions of Theorem
4.33. Thus, there is a convex set Cpi such that any supporting plane defines a half plane
containing probability pi :

PYi
{
y ∈ R

n : yTx ≤ s
Cpi
(x)
} = pi ∀x ∈ R

n.
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Thus,

PZi
{
z ∈ R

n : zTx ≤ s
Cpi
(x)+ µT

i x
} = pi ∀x ∈ R

n. (4.22)

Since PZi
{
Ki(x1)

} ≥ pi and PZi
{
Ki(x2)

} ≥ pi by assumption, then

Ki(xj ) ⊂
{
z ∈ R

n : zTx ≤ s
Cpi
(x)+ µT

i x
}
, j = 1, 2,

bi ≥ s
Cpi
(x1)+ µT

i xj , j = 1, 2.

The properties of the support function entail that

bi ≥ λ
[
s
Cpi
(x1)+ µT

i x1
]+ (1− λ)[s

Cpi
(x2)+ µT

i x2
]

= s
Cpi
(λx1)+ s

Cpi
((1− λ)x2)+ µT

i λx1 + (1− λ)x2

≥ s
Cpi
(λx1 + (1− λ)x2)+ µT

i λx1 + (1− λ)x2.

Consequently, the set Ki(xλ) with xλ = λx1 + (1− λ)x2 contains the set{
z ∈ R

n : zTxλ ≤ s
Cpi
(xλ)+ µT

i xλ
}
,

and, therefore, using (4.22) we obtain that

PZi
{
Ki(λx1 + (1− λ)x2)

} ≥ pi.
Since i was arbitrary, we obtain that λx1 + (1− λ)x2 ∈ Xp.

Example 4.47 (Portfolio Optimization Continued). Let us consider the Portfolio Exam-
ple 4.2. The probabilistic constraint has the form

Pr

{
n∑
i=1

Rixi ≤ η
}
≤ pη.

If the random vector R = (R1, . . . , Rn)
T has a multidimensional normal distribution or a

uniform distribution, then the feasible set in this example is convex by virtue of the last
corollary since both distributions are symmetric and log-concave.

There is an important relation between the sets constrained by first and second or-
der stochastic dominance relation to a benchmark random variable (see Dentcheva and
Ruszczyński [53]). We denote the space of integrable random variables by L1(�,F , P )
and set

A1(Y ) = {X ∈ L1(�,F , P ) : X �(1) Y },
A2(Y ) = {X ∈ L1(�,F , P ) : X �(2) Y }.

Proposition 4.48. For every Y ∈ L1(�,F , P ) the set A2(Y ) is convex and closed.

Proof. By changing the order of integration in the definition of the second order function
F (2), we obtain

F
(2)
X (η) = E[(η −X)+]. (4.23)
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Therefore, an equivalent representation of the second order stochastic dominance relation
is given by the relation

E[(η −X)+] ≤ E[(η − Y )+], ∀η ∈ R. (4.24)

For everyη ∈ R the functionalX→ E[(η−X)+] is convex and continuous in L1(�,F , P ),
as a composition of a linear function, the “max” function, and the expectation operator.
Consequently, the set A2(Y ) is convex and closed.

The set A1(Y ) is closed, because convergence in L1 implies convergence in proba-
bility, but it is not convex in general.

Example 4.49. Suppose that � = {ω1, ω2}, P {ω1} = P {ω2} = 1/2 and Y (ω1) = −1,
Y (ω2) = 1. Then X1 = Y and X2 = −Y both dominate Y in the first order. However,
X = (X1 + X2)/2 = 0 is not an element of A1(Y ) and, thus, the set A1(Y ) is not convex.
We notice that X dominates Y in the second order.

Directly from the definition we see that first order dominance relation implies the
second order dominance. Hence, A1(Y ) ⊂ A2(Y ). We have demonstrated that the set
A2(Y ) is convex; therefore, we also have

conv(A1(Y )) ⊂ A2(Y ). (4.25)

We find sufficient conditions for the opposite inclusion.

Theorem 4.50. Assume that� = {ω1, . . . , ωN }, F contains all subsets of�, and P {ωk} =
1/N , k = 1, . . . , N . If Y : (�,F , P )→ R is a random variable, then

conv(A1(Y )) = A2(Y ).

Proof. To prove the inverse inclusion to (4.25), suppose that X ∈ A2(Y ). Under the
assumptions of the theorem, we can identify X and Y with vectors x = (x1, . . . , xN) and
y = (y1, . . . , yN) such that xi = X(i) and yi = Y (i), i = 1, . . . , N . As the probabilities of
all elementary events are equal, the second order stochastic dominance relation coincides
with the concept of weak majorization, which is characterized by the following system of
inequalities:

l∑
k=1

x[k] ≥
l∑

k=1

y[k], l = 1, . . . , N,

where x[k] denotes the kth smallest component of x.
As established by Hardy, Littlewood, and Polya [73], weak majorization is equivalent

to the existence of a doubly stochastic matrix � such that

x ≥ �y.
By Birkhoff’s theorem [20], we can find permutation matricesQ1, . . . ,QM and nonnegative
reals α1, . . . , αM totaling 1, such that

� =
M∑
j=1

αjQ
j .
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Setting zj = Qjy, we conclude that

x ≥
M∑
j=1

αjz
j .

Identifying random variables Zj on (�,F , P ) with the vectors zj , we also see that

X(ω) ≥
M∑
j=1

αjZ
j (ω)

for all ω ∈ �. Since each vector zj is a permutation of y and the probabilities are equal,
the distribution of Zj is identical with the distribution of Y . Thus

Zj �(1) Y, j = 1, . . . ,M.

Let us define

Ẑj (ω) = Zj(ω)+
(
X(ω)−

M∑
k=1

αkZ
k(ω)

)
, ω ∈ �, j = 1, . . . ,M.

Then the last two inequalities render Ẑj ∈ A1(Y ), j = 1, . . . ,M , and

X(ω) =
M∑
j=1

αj Ẑ
j (ω),

as required.

This result does not extend to general probability spaces, as the following example
illustrates.

Example 4.51. We consider the probability space � = {ω1, ω2}, P {ω1} = 1/3, P {ω2} =
2/3. The benchmark variable Y is defined as Y (ω1) = −1, Y (ω2) = 1. It is easy to see that
X �(1) Y iff X(ω1) ≥ −1 and X(ω2) ≥ 1. Thus, A1(Y ) is a convex set.

Now, consider the random variable Z = E[Y ] = 1/3. It dominates Y in the second
order, but it does not belong to convA1(Y ) = A1(Y ).

It follows from this example that the probability space must be sufficiently rich to
observe our phenomenon. If we could define a new probability space �′ = {ω1, ω21, ω22},
in which the event ω2 is split in two equally likely events ω21, ω22, then we could use
Theorem 4.50 to obtain the equality convA1(Y ) = A2(Y ). In the context of optimization
however, the probability space has to be fixed at the outset and we are interested in sets of
random variables as elements of Lp(�,F , P ;Rn), rather than in sets of their distributions.

Theorem 4.52. Assume that the probability space (�,F , P ) is nonatomic. Then

A2(Y ) = cl{conv(A1(Y ))}.
Proof. If the space (�,F , P ) is nonatomic, we can partition� intoN disjoint subsets, each
of the same P -measure 1/N , and we verify the postulated equation for random variables
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which are piecewise constant on such partitions. This reduces the problem to the case
considered in Theorem 4.50. Passing to the limit with N → ∞, we obtain the desired
result. We refer the interested reader to Dentcheva and Ruszczyński [55] for technical
details of the proof.

4.2.3 Connectedness of Probabilistically Constrained Sets

Let X ⊂ R
n be a closed convex set. In this section we focus on the following set:

X = {x ∈ X : Pr
[
gj (x, Z) ≥ 0, j ∈ J

] ≥ p} ,
where J is an arbitrary index set. The functions gi : R

n × R
s → R are continuous, Z

is an s-dimensional random vector, and p ∈ (0, 1) is a prescribed probability. It will be
demonstrated later (Lemma 4.61) that the probabilistically constrained setX with separable
functions gj is a union of cones intersected by X. Thus, X could be disconnected. The
following result provides a sufficient condition forX to be topologically connected. A more
general version of this result is proved in Henrion [84].

Theorem 4.53. Assume that the functions gj (·, Z), j ∈ J are quasi-concave and that they
satisfy the following condition: for all x1, x2 ∈ R

n there exists a point x∗ ∈ X such that

gj (x
∗, z) ≥ min{gj (x1, z), gj (x

2, z)}, ∀z ∈ R
s , ∀j ∈ J.

Then the set X is connected.

Proof. Let x1, x2 ∈ X be arbitrary points. We construct a path joining the two points,
which is contained entirely in X. Let x∗ ∈ X be the point that exists according to the
assumption. We set

π(t) =
{
(1− 2t)x1 + 2tx∗ for 0 ≤ t ≤ 1/2,
2(1− t)x∗ + (2t − 1)x2 for 1/2 < t ≤ 1.

First, we observe that π(t) ∈ X for every t ∈ [0, 1] since x1, x2, x∗ ∈ X and the set X is
convex. Furthermore, the quasi concavity of gj , j ∈ J, and the assumptions of the theorem
imply for every j and for 0 ≤ t ≤ 1/2 the following inequality:

gj ((1− 2t)x1 + 2tx∗, z) ≥ min{gj (x1, z), gj (x
∗, z)} = gj (x1, z).

Therefore,

Pr{gj (π(t), Z) ≥ 0, j ∈ J} ≥ Pr{g(x1) ≥ 0, j ∈ J} ≥ p for 0 ≤ t ≤ 1/2.

A similar argument applies for 1/2 < t ≤ 1. Consequently, π(t) ∈ X, and this proves the
assertion.
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4.3 Separable Probabilistic Constraints
We focus our attention on problems with separable probabilistic constraints. The problem
that we analyze in this section is

Min
x
c(x)

s.t. Pr
{
g(x) ≥ Z} ≥ p,

x ∈ X.

(4.26)

We assume that c : R
n → R is a convex function and g : R

n → R
m is such that each

component gi : Rn→ R is a concave function. We assume that the deterministic constraints
are expressed by a closed convex set X ⊂ R

n. The vector Z is an m-dimensional random
vector.

4.3.1 Continuity and Differentiability Properties of Distribution
Functions

When the probabilistic constraint involves inequalities with random variables on the right-
hand side only as in problem (4.26), we can express it as a constraint on a distribution
function:

Pr
{
g(x) ≥ Z} ≥ p ⇐⇒ FZ

(
g(x)
) ≥ p.

Therefore, it is important to analyze the continuity and differentiability properties of dis-
tribution functions. These properties are relevant to the numerical solution of probabilistic
optimization problems.

Suppose thatZ has anα-concave distribution function withα ∈ R and that the support
of it, suppPZ , has nonempty interior in R

s . Then FZ(·) is locally Lipschitz continuous on
int suppPZ by virtue of Theorem 4.29.

Example 4.54. We consider the following density function:

θ(z) =
{

1
2
√
z

for z ∈ (0, 1),

0 otherwise.

The corresponding cumulative distribution function is

F(z) =


0 for z ≤ 0,√
z for z ∈ (0, 1),

1 for z ≥ 1.

The density θ is unbounded. We observe that F is continuous but it is not Lipschitz
continuous at z = 0. The density θ is also not (−1)-concave and that means that the
corresponding probability distribution is not quasi-concave.

Theorem 4.55. Suppose that all one-dimensional marginal distribution functions of an s-
dimensional random vectorZ are locally Lipschitz continuous. Then FZ is locally Lipschitz
continuous as well.
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Proof. The statement can be proved by straightforward estimation of the distribution func-
tion by its marginals for s = 2 and induction on the dimension of the space.

It should be noted that even if the multivariate probability measure PZ has a contin-
uous and bounded density, then the distribution function FZ is not necessarily Lipschitz
continuous.

Theorem 4.56. Assume that PZ has a continuous density θ(·) and that all one-dimensional
marginal distribution functions are continuous as well. Then the distribution function FZ
is continuously differentiable.

Proof. In order to simplify the notation, we demonstrate the statement for s = 2. It will be
clear how to extend the proof for s > 2. We have that

FZ(z1, z2) = Pr(Z1 ≤ z1, Z2 ≤ z2) =
∫ z1

−∞

∫ z2

−∞
θ(t1, t2)dt2dt1 =

∫ z1

−∞
ψ(t1, z2)dt1,

where ψ(t1, z2) =
∫ z2

−∞ θ(t1, t2)dt2. Since ψ(·, z2) is continuous, by the Newton–Leibnitz
theorem we have that

∂FZ

∂z1
(z1, z2) = ψ(z1, z2) =

∫ z2

−∞
θ(z1, t2)dt2.

In a similar way,

∂FZ

∂z2
(z1, z2) =

∫ z1

−∞
θ(t1, z2)dt1.

Let us show continuity of ∂FZ
∂z1
(z1, z2). Given the points z ∈ R

2 and yk ∈ R
2, such

that limk→∞ yk = z, we have∣∣∣∣∂FZ∂z1
(z)− ∂FZ

∂z1
(yk)

∣∣∣∣ = ∣∣∣∣ ∫ z2

−∞
θ(z1, t)dt −

∫ yk2

−∞
θ(yk1 , t)dt

∣∣∣∣
≤
∣∣∣∣ ∫ yk2

z2

θ(yk1 , t)dt

∣∣∣∣+ ∣∣∣∣ ∫ z2

−∞
[θ(z1, t)− θ(yk1 , t)]dt

∣∣∣∣.
First, we observe that the mapping (z1, z2) !→

∫ z2

a
θ(z1, t)dt is continuous for every a ∈ R

by the uniform continuity of θ(·) on compact sets in R
2. Therefore, | ∫ yk2

z2
θ(yk1 , t)dt | → 0

whenever k → ∞. Furthermore, | ∫ z2

−∞[θ(z1, t) − θ(yk1 , t)]dt | → 0 as well, due to the
continuity of the one-dimensional marginal functionFZ1 . Moreover, by the same reason, the
convergence is uniform about z1. This proves that ∂FZ

∂z1
(z) is continuous.

The continuity of the second partial derivative follows by the same line of argu-
ment. As both partial derivatives exist and are continuous, the function FZ is continuously
differentiable.

4.3.2 p-Efficient Points

We concentrate on deriving an equivalent algebraic description for the feasible set of prob-
lem (4.26).
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The p-level set of the distribution function FZ(z) = Pr{Z ≤ z} of Z is defined as
follows:

Zp =
{
z ∈ R

m : FZ(z) ≥ p
}
. (4.27)

Clearly, problem (4.26) can be compactly rewritten as

Min
x
c(x)

s.t. g(x) ∈ Zp,

x ∈ X.

(4.28)

Lemma 4.57. For every p ∈ (0, 1) the level set Zp is nonempty and closed.

Proof. The statement follows from the monotonicity and the right continuity of the distri-
bution function.

We introduce the key concept of a p-efficient point.

Definition 4.58. Let p ∈ (0, 1). A point v ∈ R
m is called a p-efficient point of the

probability distribution function F if F(v) ≥ p and there is no z ≤ v, z �= v such that
F(z) ≥ p.

The p-efficient points are minimal points of the level set Zp with respect to the partial
order in R

m generated by the nonnegative cone R
m+.

Clearly, for a scalar random variable Z and for every p ∈ (0, 1) there is exactly one
p-efficient point, which is the smallest v such that FZ(v) ≥ p, i.e., F (−1)

Z (p).

Lemma 4.59. Let p ∈ (0, 1) and let

l = (F (−1)
Z1

(p), . . . , F
(−1)
Zm

(p)
)
. (4.29)

Then every v ∈ R
m such that FZ(v) ≥ p must satisfy the inequality v ≥ l.

Proof. Let vi = F (−1)
Zi

(p) be the p-efficient point of the ith marginal distribution function.
We observe that FZ(v) ≤ FZi (vi) for every v ∈ R

m and i = 1, . . . , m, and, therefore, we
obtain that the set of p-efficient points is bounded from below.

Let p ∈ (0, 1) and let vj , j ∈ E , be all p-efficient points of Z. Here E is an arbitrary
index set. We define the cones

Kj = vj + R
m
+, j ∈ E .

The following result can be derived from Phelps theorem [150, Lemma 3.12] about
the existence of conical support points, but we can easily prove it directly.

Theorem 4.60. It holds that Zp =⋃j∈E Kj .
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Proof. If y ∈ Zp, then either y is p-efficient or there exists a vector w such that w ≤ y,
w �= y, w ∈ Zp. By Lemma 4.59, one must have l ≤ w ≤ y. The set Z1 = {z ∈ Zp : l ≤
z ≤ y} is compact because the set Zp is closed by virtue of Lemma 4.57. Thus, there exists
w1 ∈ Z1 with the minimal first coordinate. If w1 is a p-efficient point, then y ∈ w1 + R

m+,
what had to be shown. Otherwise, we define Z2 = {z ∈ Zp : l ≤ z ≤ w1} and choose
a point w2 ∈ Z2 with the minimal second coordinate. Proceeding in the same way, we
shall find the minimal element wm in the set Zp with wm ≤ wm−1 ≤ · · · ≤ y. Therefore,
y ∈ wm + R

m+, and this completes the proof.

By virtue of Theorem 4.60 we obtain (for 0 < p < 1) the following disjunctive
semi-infinite formulation of problem (4.28):

Min
x
c(x)

s.t. g(x) ∈
⋃
j∈E

Kj,

x ∈ X.

(4.30)

This formulation provides insight into the structure of the feasible set and the nature of its
nonconvexity. The main difficulty here is the implicit character of the disjunctive constraint.

Let S stand for the simplex in R
m+1,

S =
{
α ∈ R

m+1 :
m+1∑
i=1

αi = 1, αi ≥ 0

}
.

Denote the convex hull of the p-efficient points by E, i.e., E = conv{vj , j ∈ E}. We
obtain a semi-infinite disjunctive representation of the convex hull of Zp.

Lemma 4.61. It holds that

conv(Zp) = E + R
m
+.

Proof. By Theorem 4.60, every point y ∈ convZ can be represented as a convex combina-
tion of points in the conesKj . By the theorem of Caratheodory the number of these points
is no more than m + 1. Thus, we can write y = ∑m+1

i=1 αi(v
ji + wi), where wi ∈ R

m+,
α ∈ S, and ji ∈ E . The vector w = ∑m+1

i=1 αiw
i belongs to R

m+. Therefore, y ∈∑m+1
i=1 αiv

ji + R
m+.

We also have the representation E = {∑m+1
i=1 αiv

ji : α ∈ S, ji ∈ E
}
.

Theorem 4.62. For every p ∈ (0, 1) the set convZp is closed.

Proof. Consider a sequence {zk} of points of convZp which is convergent to a point z̄.
Using Carathéodory’s theorem again, we have

zk =
m+1∑
i=1

αki y
k
i



SPbook
2009/8/20
page 118

�

�

�

�

�

�

�

�
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with yki ∈ Zp, αki ≥ 0, and
∑m+1

i=1 α
k
i = 1. By passing to a subsequence, if necessary, we

can assume that the limits

ᾱi = lim
k→∞α

k
i

exist for all i = 1, . . . , m+ 1. By Lemma 4.59, all points yki are bounded below by some
vector l. For simplicity of notation we may assume that l = 0.

Let I = {i : ᾱi > 0}. Clearly,
∑

i∈I ᾱi = 1. We obtain

zk ≥
∑
i∈I

αki y
k
i . (4.31)

We observe that 0 ≤ αki y
k
i ≤ zk for all i ∈ I and all k. Since {zk} is convergent and

αki → ᾱi > 0, each sequence {yki }, i ∈ I , is bounded. Therefore, we can assume that each
of them is convergent to some limit ȳi , i ∈ I . By virtue of Lemma 4.57, ȳi ∈ Zp. Passing
to the limit in inequality (4.31), we obtain

z̄ ≥
∑
i∈I

ᾱi ȳi ∈ convZ.

Due to Lemma 4.61, we conclude that z̄ ∈ convZp.

For a general random vector, the set of p-efficient points may be unbounded and not
closed, as illustrated in Figure 4.3.

 P { Y ≤ v }≥ p 

 v

Figure 4.3. Example of a set Zp with p-efficient points v.
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We encounter also a relation between the p-efficient points and the extreme points of
the convex hull of Zp.

Theorem 4.63. For every p ∈ (0, 1), the set of extreme points of convZp is nonempty and
it is contained in the set of p-efficient points.

Proof. Consider the lower bound l defined in (4.29). The set convZp is included in l+R
m+,

by virtue of Lemmas 4.59 and 4.61. Therefore, it does not contain any line. Since convZp

is closed by Theorem 4.62, it has at least one extreme point.
Let w be an extreme point of convZp. Suppose that w is not a p-efficient point.

Then Theorem 4.60 implies that there exists a p-efficient point v ≤ w, v �= w. Since
w+R

m+ ⊂ convZp, the pointw is a convex combination of v andw+(w−v). Consequently,
w cannot be extreme.

The representation becomes very handy when the vector Z has a discrete distribution
on Z

m, in particular, if the problem is of form (4.57). We shall discuss this special case in
more detail. Let us emphasize that our investigations extend to the case when the random
vector Z has a discrete distribution with values on a grid. Our further study can be adapted
to the case of distributions on nonuniform grids for which a uniform lower bound on the dis-
tance of grid points in each coordinate exists. In this presentation, we assume that Z ∈ Z

m.
In this case, we can establish that the distribution function FZ has finitely many p-efficient
points.

Theorem 4.64. For each p ∈ (0, 1) the set of p-efficient points of an integer random vector
is nonempty and finite.

Proof. First we shall show that at least one p-efficient point exists. Since p < 1, there
exists a point y such that FZ(y) ≥ p. By Lemma 4.59, the level set Zp is bounded from
below by the vector l of p-efficient points of one-dimensional marginals. Therefore, if y is
notp-efficient, one of finitely many integer points v such that l ≤ v ≤ y must bep-efficient.

Now we prove the finiteness of the set ofp-efficient points. Suppose that there exists an
infinite sequence of different p-efficient points vj , j = 1, 2, . . . . Since they are integer, and
the first coordinate vj1 is bounded from below by l1, with no loss of generality we may select a
subsequence which is nondecreasing in the first coordinate. By a similar token, we can select
further subsequences which are nondecreasing in the first k coordinates (k = 1, . . . , m).
Since the dimensionm is finite, we obtain a subsequence of differentp-efficient points which
is nondecreasing in all coordinates. This contradicts the definition of ap-efficient point.

Note the crucial role of Lemma 4.59 in this proof. In conclusion, we have obtained
that the disjunctive formulation (4.30) of problem (4.28) has a finite index set E .

Figure 4.4 illustrates the structure of the probabilistically constrained set for a discrete
random variable.

The concept of α-concavity on a set can be used at this moment to find an equivalent
representation of the set Zp for a random vector with a discrete distribution.

Theorem 4.65. Let A be the set of all possible values of an integer random vector Z. If
the distribution function FZ of Z is α-concave on A + Z

m+ for some α ∈ [−∞,∞], then
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v
1

v
2

v
3

v
4

v
5 P { Y ≤ v }≥ p 

Figure 4.4. Example of a discrete set Zp with p-efficient points v1, . . . , v5.

for every p ∈ (0, 1) one has

Zp =
y ∈ R

m : y ≥ z ≥
∑
j∈E

λjv
j ,
∑
j∈E

λj = 1, λj ≥ 0, z ∈ Z
m

 ,
where vj , j ∈ E , are the p-efficient points of F .

Proof. The representation (4.30) implies that

Zp ⊂
y ∈ R

m : y ≥ z ≥
∑
j∈E

λjv
j ,
∑
j∈E

λj = 1, λj ≥ 0, z ∈ Z
m

 .
We have to show that every point y from the set at the right-hand side belongs to Z. By
the monotonicity of the distribution function FZ , we have FZ(y) ≥ FZ(z) whenever y ≥ z.
Therefore, it is sufficient to show that Pr{Z ≤ z} ≥ p for all z ∈ Z

m such that z ≥∑j∈E λjvj

with λj ≥ 0,
∑

j∈E λj = 1. We consider five cases with respect to α.
Case 1: α = ∞. It follows from the definition of α-concavity that

FZ(z) ≥ max{FZ(vj ), j ∈ E : λj �= 0} ≥ p.
Case 2: α = −∞. Since FZ(vj ) ≥ p for each index j ∈ E such that λj �= 0, the

assertion follows as in Case 1.
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Case 3: α = 0. By the definition of α-concavity, we have the following inequalities:

FZ(z) ≥
∏
j∈E
[FZ(vj )]λj ≥

∏
j∈E

pλj = p.

Case 4: α ∈ (−∞, 0). By the definition of α-concavity,

[FZ(z)]α ≤
∑
j∈E

λj [FZ(vj )]α ≤
∑
j∈E

λjp
α = pα.

Since α < 0, we obtain FZ(z) ≥ p.
Case 5: α ∈ (0,∞). By the definition of α-concavity,

[FZ(z)]α ≥
∑
j∈E

λj [FZ(vj )]α ≥
∑
j∈E

λjp
α = pα,

concluding that z ∈ Z, as desired.

The consequence of this theorem is that under the α-concavity assumption, all integer
points contained in convZp = E+R

m+ satisfy the probabilistic constraint. This demonstrates
the importance of the notion of α-concavity for discrete distribution functions as introduced
in Definition 4.34. For example, the set Zp illustrated in Figure 4.4 does not correspond to
any α-concave distribution function, because its convex hull contains integer points which
do not belong to Zp. These are the points (3,6), (4,5), and (6,2).

Under the conditions of Theorem 4.65, problem (4.28) can be formulated in the
following equivalent way:

Min
x,z,λ

c(x) (4.32)

s.t. g(x) ≥ z, (4.33)

z ≥
∑
j∈E

λjv
j , (4.34)

z ∈ Z
m, (4.35)∑

j∈E
λj = 1, (4.36)

λj ≥ 0, j ∈ E , (4.37)

x ∈ X. (4.38)

In this way, we have replaced the probabilistic constraint by algebraic equations and
inequalities, together with the integrality requirement (4.35). This condition cannot be
dropped, in general. However, if other conditions of the problem imply that g(x) is integer,
then we may remove z entirely form the problem formulation. In this case, we replace
constraints (4.33)–(4.35) with

g(x) ≥
∑
j∈E

λjv
j .

For example, if the definition of X contains the constraint x ∈ Z
n, and, in addition, g(x) =

T x, where T is a matrix with integer elements, then we can dispose of the variable z.
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If Z takes values on a nonuniform grid, condition (4.35) should be replaced by the
requirement that z is a grid point.

Corollary 4.66. If the distribution function FZ of an integer random vector Z is α-concave
on the set Z

m+ for some α ∈ [−∞,∞], then for every p ∈ (0, 1) one has

Zp ∩ Z
m
+ = convZp ∩ Z

m
+.

4.3.3 Optimality Conditions and Duality Theory

In this section, we return to problem formulation (4.28). We assume that c : R
n → R is

a convex function. The mapping g : R
n → R

m has concave components gi : R
n → R.

The set X ⊂ R
n is closed and convex; the random vector Z takes values in R

m. The set
Zp is defined as in (4.27). We split variables and consider the following formulation of the
problem:

Min
x,z

c(x)

s.t. g(x) ≥ z,
x ∈ X,

z ∈ Zp.

(4.39)

Associating a Lagrange multiplier u ∈ R
m+ with the constraint g(x) ≥ z, we obtain the

Lagrangian function:

L(x, z, u) = c(x)+ uT(z− g(x)).
The dual functional has the form

Ψ (u) = inf
(x,z)∈X×Zp

L(x, z, u) = h(u)+ d(u),

where

h(u) = inf {c(x)− uTg(x) : x ∈ X}, (4.40)

d(u) = inf {uTz : z ∈ Zp}. (4.41)

For any u ∈ R
m+ the value of Ψ (u) is a lower bound on the optimal value c∗ of the

original problem. The best Lagrangian lower bound will be given by the optimal value Ψ ∗
of the problem:

sup
u≥0

Ψ (u). (4.42)

We call (4.42) the dual problem to problem (4.39). For u �≥ 0 one has d(u) = −∞,
because the set Zp contains a translation of R

m+. The function d(·) is concave. Note that
d(u) = −sZp

(−u), where sZp
(·) is the support function of the set Zp. By virtue of Theorem

4.62 and Hiriart-Urruty and Lemaréchal [89, Chapter V, Proposition 2.2.1], we have

d(u) = inf {uTz : z ∈ convZp}. (4.43)
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Let us consider the convex hull problem:

Min
x,z

c(x)

s.t. g(x) ≥ z,
x ∈ X,

z ∈ convZp.

(4.44)

We impose the following constraint qualification condition:

There exist points x0 ∈ X and z0 ∈ convZp such that g(x0) > z0. (4.45)

If this constraint qualification condition is satisfied, then the duality theory in convex pro-
gramming Rockafellar [174, Corollary 28.2.1] implies that there exists û ≥ 0 at which the
minimum in (4.42) is attained, and Ψ ∗ = Ψ (û) is the optimal value of the convex hull
problem (4.44).

We now study in detail the structure of the dual functional Ψ . We shall characterize
the solution sets of the two subproblems (4.40) and (4.41), which provide the values of the
dual functional. Observe that the normal cone to the positive orthant at a point u ≥ 0 is the
following:

NR
m+(u) = {d ∈ R

m
− : di = 0 if ui > 0, i = 1, . . . , m}. (4.46)

We define the set

V (u) = {v ∈ R
m : uTv = d(u) and v is a p-efficient point}. (4.47)

Lemma 4.67. For every u > 0 the solution set of (4.41) is nonempty. For every u ≥ 0 it
has the following form: Ẑ(u) = V (u)−NR

m+(u).

Proof. First we consider the case u > 0. Then every recession direction q of Zp satisfies
uTq > 0. Since Zp is closed, a solution to (4.41) must exist. Suppose that a solution z to
(4.41) is not a p-efficient point. By virtue of Theorem 4.60, there is a p-efficient v ∈ Zp

such that v ≤ z, and v �= z. Thus, uTv < uTz, which is a contradiction. Therefore, we
conclude that there is a p-efficient point v, which solves problem (4.41).

Consider the general case u ≥ 0 and assume that the solution set of problem (4.41)
is nonempty. In this case, the solution set always contains a p-efficient point. Indeed,
if a solution z is not p-efficient, we must have a p-efficient point v dominated by z, and
uTv ≤ uTz holds by the nonnegativity of u. Consequently, uTv = uTz for all p-efficient
v ≤ z, which is equivalent to z ∈ {v} −NR

m+(u), as required.
If the solution set of (4.41) is empty, then V (u) = ∅ by definition and the assertion is

true as well.

The last result allows us to calculate the subdifferential of the function d in a closed
form.

Lemma 4.68. For every u ≥ 0 one has ∂d(u) = conv(V (u)) − NR
m+(u). If u > 0, then

∂d(u) is nonempty.
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Proof. From (4.41) we obtain d(u) = −s
Zp
(−u), where sZp

(·) is the support function of
Zp and, consequently, of conv Zp. Consider the indicator function Iconv Zp

(·) of the set
conv Zp. By virtue of Corollary 16.5.1 in Rockafellar [174], we have

s
Zp
(u) = I

∗
conv Zp

(u),

where the latter function is the conjugate of the indicator function Iconv Zp
(·). Thus,

∂d(u) = −∂I∗conv Zp
(−u).

Recall that conv Zp is closed, by Theorem 4.62. Using Rockafellar [174, Theorem 23.5],
we observe that y ∈ ∂I∗conv Zp

(−u) iff I
∗
conv Zp

(−u) + Iconv Zp
(y) = −yTu. It follows that

y ∈ conv Zp and I
∗
conv Zp

(−u) = −yTu. Consequently,

yTu = d(u). (4.48)

Since y ∈ conv Zp we can represent it as follows:

y =
m+1∑
j=1

αje
j + w,

where ej , j = 1, . . . , m + 1, are extreme points of conv Zp and w ≥ 0. Using Theorem
4.63 we conclude that ej are p-efficient points. Moreover, applying u, we obtain

yTu =
m+1∑
j=1

αju
Tej + uTw ≥ d(u), (4.49)

because uTej ≥ d(u) and uTw ≥ 0. Combining (4.48) and (4.49) we conclude that
uTej = d(u) for all j , and uTw = 0. Thus y ∈ conv V (u)−NR

m+(u).
Conversely, if y ∈ conv V (u)−NR

m+(u), then (4.48) holds true by the definitions of
the set V (u) and the normal cone. This implies that y ∈ ∂d(u), as required.

Furthermore, the set ∂d(u) is nonempty for u > 0 due to Lemma 4.67.

Now, we analyze the function h(·). Define the set of minimizers in (4.40),

X(u) = {x ∈ X : c(x)− uTg(x) = h(u)}.
Since the set X is convex and the objective function of problem (4.40) is convex for all
u ≥ 0, we conclude that the solution set X(u) is convex for all u ≥ 0.

Lemma 4.69. Assume that the set X is compact. For every u ∈ R
m, the subdifferential of

the function h is described as follows:

∂h(u) = conv {−g(x) : x ∈ X(u)}.
Proof. The function h is concave on R

m. Since the set X is compact, c is convex, and
gi , i = 1, . . . , m, are concave, the set X(u) is compact. Therefore, the subdifferential of
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h(u) for every u ∈ R
m is the closure of conv {−g(x) : x ∈ X(u)}. (See Hiriart-Urruty and

Lemaréchal [89, Chapter VI, Lemma 4.4.2].) By the compactness of X(u) and concavity
of g, the set {−g(x) : x ∈ X(u)} is closed. Therefore, we can omit taking the closure in the
description of the subdifferential of h(u).

This analysis provides the basis for the following necessary and sufficient optimality
conditions for problem (4.42).

Theorem 4.70. Assume that the constraint qualification condition (4.45) is satisfied and that
the set X is compact. A vector u ≥ 0 is an optimal solution of (4.42) iff there exists a point
x ∈ X(u), points v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0 with

∑m+1
j=1 βj = 1

such that
m+1∑
j=1

βjv
j − g(x) ∈ NR

m+(u). (4.50)

Proof. Using Rockafellar [174, Theorem 27.4], the necessary and sufficient optimality
condition for (4.42) has the form

0 ∈ −∂Ψ (u)+NR
m+(u). (4.51)

Since int dom d �= ∅ and dom h = R
m, we have ∂Ψ (u) = ∂h(u) + ∂d(u). Using Lemma

4.68 and Lemma 4.69, we conclude that there exist

p-efficient points vj ∈ V (u), j = 1, . . . , m+ 1,

βj ≥ 0, j = 1, . . . , m+ 1,
m+1∑
j=1

βj = 1,

xj ∈ X(u), j = 1, . . . , m+ 1, (4.52)

αj ≥ 0, j = 1, . . . , m+ 1,
m+1∑
j=1

αj = 1,

such that

m+1∑
j=1

αjg(x
j )−

m+1∑
j=1

βjv
j ∈ −NR

m+(u). (4.53)

If the function c was strictly convex, or g was strictly concave, then the setX(u)would be a
singleton. In this case, all xj would be identical and the above relation would immediately
imply (4.50). Otherwise, let us define

x =
m+1∑
j=1

αjx
j .

By the convexity of X(u) we have x ∈ X(u). Consequently,

c(x)−
m∑
i=1

uigi(x) = h(u) = c(xj )−
m∑
i=1

uigi(x
j ), j = 1, . . . , m+ 1. (4.54)
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Multiplying the last equation by αj and adding, we obtain

c(x)−
m∑
i=1

uigi(x) =
m+1∑
j=1

αj

[
c(xj )−

m∑
i=1

uigi(x
j )

]
≥ c(x)−

m∑
i=1

ui

m+1∑
j=1

αjgi(x
j ).

The last inequality follows from the convexity of c. We have the following inequality:

m∑
i=1

ui

[
gi(x)−

m+1∑
j=1

αjgi(x
j )

]
≤ 0.

Since the functions gi are concave, we have gi(x) ≥ ∑m+1
j=1 αjgi(x

j ). Therefore, we

conclude that ui = 0 whenever gi(x) >
∑m+1

j=1 αjgi(x
j ). This implies that

g(x)−
m+1∑
j=1

αjg(x
j ) ∈ −NR

m+(u).

Since NR
m+(u) is a convex cone, we can combine the last relation with (4.53) and obtain

(4.50), as required.
Now, we prove the converse implication. Assume that we have x ∈ X(u), points

v1, . . . , vm+1 ∈ V (u), and scalars β1 . . . , βm+1 ≥ 0 with
∑m+1

j=1 βj = 1 such that (4.50)
holds true. By Lemma 4.68 and Lemma 4.69 we have

−g(x)+
m+1∑
j=1

βjv
j ∈ ∂Ψ (u).

Thus (4.50) implies (4.51), which is a necessary and sufficient optimality condition for
problem (4.42).

Using these optimality conditions we obtain the following duality result.

Theorem 4.71. Assume that the constraint qualification condition (4.45) for problem (4.39)
is satisfied, the probability distribution of the vectorZ is α-concave for some α ∈ [−∞,∞],
and the set X is compact. If a point (x̂, ẑ) is an optimal solution of (4.39), then there exists
a vector û ≥ 0, which is an optimal solution of (4.42) and the optimal values of both
problems are equal. If û is an optimal solution of problem (4.42), then there exist a point x̂
such that (x̂, g(x̂)) is a solution of problem (4.39), and the optimal values of both problems
are equal.

Proof. The α-concavity assumption implies that problems (4.39) and (4.44) are the same.
If û is optimal solution of problem (4.42), we obtain the existence of points x̂ ∈ X(û),
v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0 with

∑m+1
j=1 βj = 1 such that the

optimality conditions in Theorem 4.70 are satisfied. Setting ẑ = g(x̂) we have to show that
(x̂, ẑ) is an optimal solution of problem (4.39) and that the optimal values of both problems
are equal. First we observe that this point is feasible. We choose y ∈ −NR

m+(û) such
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that y = g(x̂) −∑m+1
j=1 βjv

j . From the definitions of X(û), V (û), and the normal cone,
we obtain

h(û) = c(x̂)− ûTg(x̂) = c(x̂)− ûT
( m+1∑
j=1

βjv
j + y

)

= c(x̂)−
m+1∑
j=1

βjd(û)− ûTy = c(x̂)− d(û).

Thus,

c(x̂) = h(û)+ d(û) = Ψ ∗ ≥ c∗,
which proves that (x̂, ẑ) is an optimal solution of problem (4.39) and Ψ ∗ = c∗.

If (x̂, ẑ) is a solution of (4.39), then by Rockafellar [174, Theorem 28.4] there is a
vector û ≥ 0 such that ûi(ẑi − gi(x̂)) = 0 and

0 ∈ ∂c(x̂)+ ∂ûTg(x̂)− ẑ+NX×Z(x̂, ẑ).

This means that

0 ∈ ∂c(x̂)− ∂uTg(x̂)+NX(x̂) (4.55)

and

0 ∈ û+NZ(ẑ). (4.56)

The first inclusion (4.55) is optimality condition for problem (4.40), and thus x ∈ X(û). By
virtue of Rockafellar [174, Theorem 23.5] the inclusion (4.56) is equivalent to ẑ ∈ ∂I∗Zp

(û).
Using Lemma 4.68 we obtain that

ẑ ∈ ∂d(û) = convV (û)−NR
m+(û).

Thus, there exists points v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0 with∑m+1
j=1 βj = 1 such that

ẑ−
m+1∑
j=1

βjv
j ∈ −NR

m+(û).

Using the complementarity condition ûi(ẑi − gi(x̂)) = 0 we conclude that the optimal-
ity conditions of Theorem 4.70 are satisfied. Thus, û is an optimal solution of problem
(4.42).

For the special case of discrete distribution and linear constraints we can obtain more
specific necessary and sufficient optimality conditions.

In the linear probabilistic optimization problem, we have g(x) = T x, where T is an
m × n matrix, and c(x) = cTx with c ∈ R

n. Furthermore, we assume that X is a closed
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convex polyhedral set, defined by a system of linear inequalities. The problem reads as
follows:

Min
x

cTx

s.t. Pr{T x ≥ Z} ≥ p,
Ax ≥ b,
x ≥ 0.

(4.57)

Here A is an s × n matrix and b ∈ R
s .

Definition 4.72. Problem (4.57) satisfies the dual feasibility condition if

� = {(u,w) ∈ R
m+s
+ : ATw + T T u ≤ c} �= ∅.

Theorem 4.73. Assume that the feasible set of (4.57) is nonempty and that Z has a discrete
distribution on Z

m. Then (4.57) has an optimal solution iff it satisfies the LQ condition,
defined in (4.72).

Proof. If (4.57) has an optimal solution, then for some j ∈ E the linear optimization
problem

Min
x
cTx

s.t. T x ≥ vj ,
Ax ≥ b,
x ≥ 0,

(4.58)

has an optimal solution. By duality in linear programming, its dual problem

Max
u,w

uTvj + bTw

s.t. T Tu+ ATw ≤ c,
u,w ≥ 0,

(4.59)

has an optimal solution and the optimal values of both programs are equal. Thus, the dual
feasibility condition (4.72) must be satisfied. On the other hand, if the dual feasibility
condition is satisfied, all dual programs (4.59) for j ∈ E have nonempty feasible sets, so the
objective values of all primal problems (4.58) are bounded from below. Since at least one
of them has a nonempty feasible set by assumption, an optimal solution must exist.

Example 4.74 (Vehicle Routing Continued). We return to the vehicle routing Example
4.1, introduced at the beginning of the chapter. The convex hull problem reads

Min
x,λ

cTx

s.t.
n∑
i=1

tilxi ≥
∑
j∈E

λjv
j , (4.60)

∑
j∈E

λj = 1, (4.61)

x ≥ 0, λ ≥ 0.
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We assign a Lagrange multiplier u to constraint (4.60) and a multiplierµ to constraint (4.61).
The dual problem has the form

Max
u,µ

µ

s.t.
m∑
l=1

tilul ≤ ci, i = 1, 2, . . . , n,

µ ≤ uTvj , j ∈ E ,

u ≥ 0.

We see that ul provides the increase of routing cost if the demand on arc l increases by
one unit, µ is the minimum cost for covering the demand with probability p, and the
p-efficient points vj correspond to critical demand levels that have to be covered. The
auxiliary problem Minz∈Z uTz identifies p-efficient points, which represent critical demand
levels. The optimal value of this problem provides the minimum total cost of a critical
demand.

Our duality theory finds interesting interpretation in the context of the cash matching
problem in Example 4.6.

Example 4.75 (Cash Matching Continued). Recall the problem formulation

Max
x,c

E
[
U(cT − ZT )

]
s.t. Pr

{
ct ≥ Zt, t = 1, . . . , T

} ≥ p,
ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T ,

x ≥ 0.

If the vectorZ has a quasi-concave distribution (e.g., joint normal distribution), the resulting
problem is convex.

The convex hull problem (4.44) can be written as follows:

Max
x,λ,c

E
[
U(cT − ZT )

]
(4.62)

s.t. ct = ct−1 +
n∑
i=1

aitxi, t = 1, . . . , T , (4.63)

ct ≥
T+1∑
j=1

λjv
j
t , t = 1, . . . , T , (4.64)

T+1∑
j=1

λj = 1, (4.65)

λ ≥ 0, x ≥ 0. (4.66)

In constraint (4.64) the vectors vj = (v
j

1 , . . . , v
j

T ) for j = 1, . . . , T + 1 are p-efficient
trajectories of the cumulative liabilities Z = (Z1, . . . , ZT ). Constraints (4.64)–(4.66)
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require that the cumulative cash flows are greater than or equal to some convex combination
of p-efficient trajectories. Recall that by Lemma 4.61, no more than T + 1 p-efficient
trajectories are needed. Unfortunately, we do not know the optimal collection of these
trajectories.

Let us assign nonnegative Lagrange multipliers u = (u1, . . . , uT ) to the constraint
(4.64), multipliers w = (w1, . . . , wT ) to the constraints (4.63) and a multiplier ρ ∈ R to
the constraint (4.65). To simplify notation, we define the function Ū : R→ R as follows:

Ū (y) = E[U(y − ZT )].
It is a concave nondecreasing function of y due to the properties of U(·). We make the
convention that its conjugate is defined as follows:

Ū ∗(u) = inf
y
{uy − Ū (y}.

Consider the dual function of the convex hull problem:

D(w, u, ρ) = min
x≥0,λ≥0,c

{
− Ū (cT )+

T∑
t=1

wt

(
ct − ct−1 −

n∑
i=1

aitxi

)

+
T∑
t=1

ut

( T+1∑
j=1

λjv
j
t − ct

)
+ ρ
(

1−
T+1∑
j=1

λj

)}

= −max
x≥0

n∑
i=1

T∑
t=1

aitwtxi +min
λ≥0

T+1∑
j=1

(
T∑
t=1

v
j
t ut − ρ

)
λj + ρ

+min
c

{ T−1∑
t=1

ct (wt − ut − wt+1)− w1c0 + cT (wT − uT )− Ū (cT )
}

= ρ − w1c0 + Ū ∗(wT − uT ).
The dual problem becomes

Min
u,w,ρ

− Ū ∗(wT − uT )+ w1c0 − ρ (4.67)

s.t. wt = wt+1 + ut , t = T − 1, . . . , 1, (4.68)
T∑
t=1

wtait ≤ 0, i = 1, . . . , n, (4.69)

ρ ≤
T∑
t=1

utv
j
t , j = 1, . . . , T + 1. (4.70)

u ≥ 0. (4.71)

We can observe that each dual variable ut is the cost of borrowing a unit of cash for one
time period, t . The amount ut is to be paid at the end of the planning horizon. It follows
from (4.68) that each multiplier wt is the amount that has to be returned at the end of the
planning horizon if a unit of cash is borrowed at t and held until time T .
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The constraints (4.69) represent the nonarbitrage condition. For each bond i we can
consider the following operation: borrow money to buy the bond and lend away its coupon
payments, according to the rates implied by wt . At the end of the planning horizon, we
collect all loans and pay off the debt. The profit from this operation should be nonpositive
for each bond in order to comply with the no-free-lunch condition, which is expressed
via (4.69).

Let us observe that each product utv
j
t is the amount that has to be paid at the end,

for having a debt in the amount vjt in period t . Recall that vjt is the p-efficient cumulative
liability up to time t . Denote the implied one-period liabilities by

L
j
t = vjt − vjt−1, t = 2, . . . , T ,

L
j

1 = vj1 .
Changing the order of summation, we obtain

T∑
t=1

utv
j
t =

T∑
t=1

ut

t∑
τ=1

Ljτ =
T∑
τ=1

Ljτ

T∑
t=τ

ut =
T∑
τ=1

Ljτ (wτ + uT − wT ).

It follows that the sum appearing on the right-hand side of (4.70) can be viewed as the
extra cost of covering the j th p-efficient liability sequence by borrowed money, that is, the
difference between the amount that has to be returned at the end of the planning horizon,
and the total liability discounted by wT − uT .

If we consider the special case of a linear expected utility,

Û (cT ) = cT − E[ZT ],
then we can skip the constant E[ZT ] in the formulation of the optimization problem. The
dual function of the convexified cash matching problem becomes

D(w, u, ρ) = −max
x≥0

n∑
i=1

T∑
t=1

aitwtxi +min
λ≥0

T+1∑
j=1

(
T∑
t=1

v
j
t ut − ρ

)
λj + ρ

+min
c

{
T−1∑
t=1

ct (wt − ut − wt+1)− w1c0 + cT (wT − uT − 1)

}
= ρ − w1c0.

The objective function of the dual problem takes on the form

Min
u,w,ρ

w1c0 − ρ,

and the constraints (4.68) extends to all time periods:

wt = wt+1 + ut , t = T , T − 1, . . . , 1,

with the convention wT+1 = 1.
In this case, the sum on the right-hand side of (4.70) is the difference between the cost

of covering the j th p-efficient liability sequence by borrowed money and the total liability.
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The variable ρ represents the minimal cost of this form for all p-efficient trajectories.
This allows us to interpret the dual objective function in this special case as the amount
obtained at T for lending away our capital c0 decreased by the extra cost of covering a
p-efficient liability sequence by borrowed money. By duality this quantity is the same as
cT , which implies that both ways of covering the liabilities are equally profitable. In the case
of a general utility function, the dual objective function contains an additional adjustment
term.

4.4 Optimization Problems with Nonseparable
Probabilistic Constraints

In this section, we concentrate on the following problem:

Min
x

c(x)

s.t. Pr
{
g(x, Z) ≥ 0

} ≥ p,
x ∈ X.

(4.72)

The parameter p ∈ (0, 1) denotes some probability level. We assume that the func-
tions c : Rn × R

s → R and g : Rn × R
s → R

m are continuous and the set X ⊂ R
n is a

closed convex set. We define the constraint function as follows:

G(x) = Pr
{
g(x, Z) ≥ 0

}
.

Recall that if G(·) is α-concave function, α ∈ R, then a transformation of it is a
concave function. In this case, we define

Ḡ(x) =


ln p − ln[G(x)] if α = 0,
pα − [G(x)]α if α > 0,
[G(x)]α − pα if α < 0.

(4.73)

We obtain the following equivalent formulation of problem (4.72):

Min
x

c(x)

s.t. Ḡ(x) ≤ 0,

x ∈ X.

(4.74)

Assuming that c(·) is convex, we have a convex problem.
Recall that Slater’s condition is satisfied for problem (4.72) if there is a point xs ∈ intX

such that Ḡ(xs) > 0. Using optimality conditions for convex optimization problems, we
can infer the following conditions for problem (4.72).

Theorem 4.76. Assume that c(·) is a continuous convex function, the functions g : Rn ×
R
s → R

m are quasi-concave, Z has an α-concave distribution, and the set X ⊂ R
n is

closed and convex. Furthermore, let Slater’s condition be satisfied and int domG �= ∅.
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A point x̂ ∈ X is an optimal solution of problem (4.72) iff there is a number λ ∈ R+
such that λ[G(x̂)− p] = 0 and

0 ∈∂c(x̂)+ λ 1

α
G(x̂)1−α∂G(x̂)α +NX(x̂) if α �= 0,

or

0 ∈∂c(x̂)+ λG(x̂)∂( lnG(x̂)
)+NX(x̂) if α = 0.

Proof. Under the assumptions of the theorem, problem (4.72) can be reformulated in form
(4.74), which is a convex optimization problem. The optimality conditions follow from
the optimality conditions for convex optimization problems using Theorem 4.29. Due to
Slater’s condition, we have that G(x) > 0 on a set with nonempty interior, and therefore
the assumptions of Theorem 4.29 are satisfied.

4.4.1 Differentiability of Probability Functions and Optimality
Conditions

We can avoid concavity assumptions and replace them by differentiability requirements.
Under certain assumptions, we can differentiate the probability function and obtain opti-
mality conditions in a differential form. For this purpose, we assume thatZ has a probability
density function θ(z) and that the support of PZ is a closed set with a piecewise smooth
boundary such that suppPZ = cl{int(suppPZ)}. For example, it can be the union of several
disjoint sets but cannot contain isolated points, or surfaces of zero Lebesgue measure.

Consider the multifunction H : Rn ⇒ R
s , defined as follows:

H(x) = {z ∈ R
s : gi(x, z) ≥ 0, i = 1, . . . , m

}
.

We denote the boundary of a set H(x) by bdH(x). For an open set U ⊂ R
n containing the

origin, we set

HU = cl
(⋃

x∈U H(x)
)

and 'HU = cl
(⋃

x∈U bdH(x)
)
,

VU = clU ×HU and 'VU = clU ×'HU.

For any of these sets, we indicate with upper subscript r its restriction to the suppPZ , e.g.,
Hr
U = HU ∩ suppPZ . Let

Si(x) =
{
z ∈ suppPZ : gi(x, z) = 0, gj (x, z) ≥ 0, j �= i}, i = 1, . . . , m.

We use the notation

S(x) = ∪Mi=1Si(x), 'Hi = int
( ∪x∈U (∂{gi(x, z) ≥ 0} ∩Hr(x)

))
.

The (m − 1)-dimensional Lebesgue measure is denoted by Pm−1. We assume that the
functions gi(x, z), i = 1, . . . , m, are continuously differentiable and such that bdH(x) =
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S(x) with S(x) being the (s − 1)-dimensional surface of the set H(x) ⊂ R
s . The setHU is

the union of all sets H(x) when x ∈ U , and, correspondingly, 'HU contains all surfaces
S(x) when x ∈ U .

First we formulate and prove a result about the differentiability of the probability
function for a single constraint function g(x, z), that is, m = 1. In this case we omit the
index for the function g as well as for the set S(x).

Theorem 4.77. Assume that
(i) the vector functions ∇xg(x, z) and ∇zg(x, z) are continuous on 'V r

U ;
(ii) the vector functions ∇zg(x, z) > 0 (componentwise) on the set 'V r

U ;
(iii) the function ‖∇xg(x, z)‖ > 0 on 'V r

U .
Then the probability function G(x) = Pr{g(x, Z) ≥ 0} has partial derivatives for

almost all x ∈ U that can be represented as a surface integral,(
∂G(x)

∂xi

)n
i=1

=
∫

bdH(x)∩suppPZ

θ(z)

‖∇zg(x, z)‖∇xg(x, z)dS.

Proof. Without loss of generality, we shall assume that x ∈ U ⊂ R.
For two points x, y ∈ U , we consider the difference:

G(x)−G(y) =
∫
H(x)

θ(z)dz−
∫
H(y)

θ(z)dz

=
∫
Hr(x)\Hr(y)

θ(z)dz−
∫
Hr(y)\Hr(x)

θ(z)dz. (4.75)

By the implicit function theorem, the equation g(x, z) = 0 determines a differentiable
function x(z) such that

g(x(z), z) = 0 and ∇zx(z) = −∇xg(x, z)∇zg(x, z)
∣∣∣∣
x=x(z)

.

Moreover, the constraint g(x, z) ≥ 0 is equivalent to x ≥ x(z) for all (x, z) ∈ U ×'Hr
U ,

because the function g(·, z) strictly increases on this set due to the assumption (iii). Thus,
for all points x, y ∈ U such that x < y, we can write

Hr(x) \Hr(y) = {z ∈ R
s : g(x, z) ≥ 0, g(y, z) < 0} = {z ∈ R

s : x ≥ x(z) > y} = ∅,
H r(y) \Hr(x) = {z ∈ R

s : g(y, z) ≥ 0, g(x, z) < 0} = {z ∈ R
s : y ≥ x(z) > x}.

Hence, we can continue our representation of the difference (4.75) as follows:

G(x)−G(y) = −
∫
{z∈Rs :y≥x(z)>x}

θ(z)dz.

Now, we apply Schwarz [194, Vol. 1, Theorem 108] and obtain

G(x)−G(y) = −
∫ y

x

∫
{z∈Rs :x(z)=t}

θ(z)

‖∇zx(z)‖dS dt

=
∫ x

y

∫
bdH(x)r

|∇xg(t, z)|θ(z)
‖∇zg(x, z)‖ dS dt.
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By Fubini’s theorem [194, Vol. 1, Theorem 77], the inner integral converges almost ev-
erywhere with respect to the Lebesgue measure. Therefore, we can apply Schwarz [194,
Vol. 1, Theorem 90] to conclude that the difference G(x) − G(y) is differentiable almost
everywhere with respect to x ∈ U and we have

∂

∂x
G(x) =

∫
bdHr(x)

∇xg(x, z)θ(z)
‖∇zg(x, z)‖ dS.

We have used assumption (ii) to set |∇xg(x, z)| = ∇xg(x, z).

Obviously, the statement remains valid if assumption (ii) is replaced by the opposite
strict inequality, so that the function g(x, z) would be strictly decreasing on U ×'Hr

U .
We note that this result does not imply the differentiability of the function G at any

fixed pointx0 ∈ U . However, this type of differentiability is sufficient for many applications,
as is elaborated in Ermoliev [65] and Usyasev [216].

The conditions of this theorem can be slightly modified so that the result and the
formula for the derivative are valid for piecewise smooth function.

Theorem 4.78 (Raik [166]). Given a bounded open set U ⊂ R
n, we assume that

(i) the density function θ(·) is continuous and bounded on the set 'Hi for each
i = 1, . . . , m;

(ii) the vector functions∇zgi(x, z) and∇xgi(x, z) are continuous and bounded on the
set U ×'Hi for each i = 1, . . . , m;

(iii) the function ‖∇xgi(x, z)‖ ≥ δ > 0 on the set U ×'Hi for each i = 1, . . . , m;
(iv)the following conditions are satisfied for all i = 1, . . . , m and all x ∈ U :

Pm−1
{
Si(x) ∩ Sj (x)

} = 0, i �= j, Pm−1
{
bd(suppPZ ∩ Si(x))

} = 0.

Then the probability function G(x) is differentiable on U and

∇G(x) =
m∑
i=1

∫
Si (x)

θ(z)

‖∇zgi(x, z)‖∇xgi(x, z)dS. (4.76)

The precise proof of this theorem is omitted. We refer to Kibzun and Tretyakov [104] and
Kibzun and Uryasev [105] for more information on this topic.

For example, if g(x, Z) = xTZ, m = 1, and Z has a nondegenerate multivariate
normal distribution N (z̄,Σ), then g(x, Z) ∼ N

(
xTz̄, xTΣx

)
, and hence the probability

function G(x) = Pr{g(x, Z) ≥ 0} can be written in the form

G(x) = �
(

xTz̄√
xTΣx

)
,

where�(·) is the cdf of the standard normal distribution. In this case,G(x) is continuously
differentiable at every x �= 0.

For problem (4.72), we impose the following constraint qualification at a point x̂ ∈ X.
There exists a point xr ∈ X such that

m∑
i=1

∫
Si (x)

θ(z)

‖∇zgi(x̂, z)‖ (x
r − x̂)T∇xgi(x̂, z)dS < 0. (4.77)
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This condition implies Robinson’s condition. We obtain the following necessary optimality
conditions.

Theorem 4.79. Under the assumption of Theorem 4.78, let the constraint qualification
(4.77) be satisfied, let the function c(·) be continuously differentiable, and let x̂ ∈ X be an
optimal solution of problem (4.72). Then there is a multiplier λ ≥ 0 such that

0 ∈∇c(x̂)− λ
m∑
i=1

∫
Si (x)

θ(z)

‖∇zgi(x, z)‖∇xgi(x, z)dS +NX(x̂), (4.78)

λ
[
G(x̂)− p] = 0. (4.79)

Proof. The statement follows from the necessary optimality conditions for smooth opti-
mization problems and formula (4.76).

4.4.2 Approximations of Nonseparable Probabilistic Constraints

Smoothing Approximation via Steklov Transformation

In order to apply the optimality conditions formulated in Theorem 4.76, we need to calculate
the subdifferential of the probability function Ḡ defined by the formula (4.73). The calcu-
lation involves the subdifferential of the probability function and the characteristic function
of the event

{gi(x, z) ≥ 0, i = 1, . . . , m}.
The latter function may be discontinuous. To alleviate this difficulty, we shall approximate
the function G(x) by smooth functions.

Let k : R→ R be a nonnegative integrable symmetric function such that∫ +∞
−∞

k(t)dt = 1.

It can be used as a density function of a random variable K , and, thus,

FK(τ) =
∫ τ

−∞
k(t)dt.

Taking the characteristic function of the interval [0,∞), we consider the Steklov–Sobolev
average functions for ε > 0:

Fε
K(τ) =

∫ +∞
−∞

1[0,∞)(τ + εt)k(t)dt = 1

ε

∫ +∞
−∞

1[0,∞)(t)k
(
t − τ
ε

)
dt. (4.80)

We see that by the definition of Fε
K and 1[0,∞), and by the symmetry of k(·) we have

Fε
K(τ) =

∫ +∞
−∞

1[0,∞)(τ + εt)k(t)dt =
∫ +∞
−τ/ε

k(t)dt

=
∫ τ/ε

−∞
k(−t)dt =

∫ τ/ε

−∞
k(t)dt

= FK
(τ
ε

)
.

(4.81)
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Setting

gM(x, z) = min
1≤i≤m

gi(x, z),

we note that gM is quasi-concave, provided that all gi are quasi-concave functions. If the
functions gi(·, z) are continuous, then gM(·, z) is continuous as well.

Using (4.81), we can approximate the constraint function G(·) by the function

Gε(x) =
∫

Rs

F ε
K

(
gM(x, z)− c

)
dPz

=
∫

Rs

FK

(
gM(x, z)− c

ε

)
dPz

= 1

ε

∫
Rs

∫ −c
−∞

k

(
t + gM(x, z)

ε

)
dt dPz.

(4.82)

Now, we show that the functionsGε(·) uniformly converge toG(·)when ε converges to zero.

Theorem 4.80. Assume that Z has a continuous distribution, the functions gi(·, z) are
continuous for almost all z ∈ R

s and that, for certain constant c ∈ R, we have

Pr{z ∈ R
s : gM(x, z) = c} = 0.

Then for any compact set C ⊂ X the functions Gε uniformly converge on C to G when
ε→ 0, i.e.,

lim
ε↓0

max
x∈C

∣∣Gε(x)−G(x)
∣∣ = 0.

Proof. Defining δ(ε) = ε1−β with β ∈ (0, 1), we have

lim
ε→0

δ(ε) = 0 and lim
ε→0

FK

(
δ(ε)

ε

)
= 1, lim

ε→0
FK

(−δ(ε)
ε

)
= 0. (4.83)

Define for any δ > 0 the sets

A(x, δ) = {z ∈ R
s : gM(x, z)− c ≤ −δ},

B(x, δ) = {z ∈ R
s : gM(x, z)− c ≥ δ},

C(x, δ) = {z ∈ R
s : |gM(x, z)− c| ≤ δ}.

On the set A(x, δ(ε)) we have 1[0,∞)
(
gM(x, z)− c

) = 0 and, using (4.81), we obtain

Fε
K

(
gM(x, z)− c

) = FK (gM(x, z)− c
ε

)
≤ FK

(−δ(ε)
ε

)
.

On the set B(x, δ(ε)) we have 1[0,∞)
(
gM(x, z)− c

) = 1 and

Fε
K

(
gM(x, z)− c

) = FK (gM(x, z)− c
ε

)
≥ FK

(
δ(ε)

ε

)
.
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On the set C(δ(ε)) we use the fact that 0 ≤ 1[0,∞)(t) ≤ 1 and 0 ≤ FK(t) ≤ 1. We obtain
the following estimate:∣∣G(x)−Gε(x)

∣∣
≤
∫

Rs

∣∣1[0,∞)(gM(x, z)− c)− Fε
K

(
gM(x, z)− c

)∣∣dPz
≤ FK

(−δ(ε)
ε

)∫
A(x,δ(ε))

dPZ +
(

1− FK
(
δ(ε)

ε

))∫
B(x,δ(ε))

dPZ + 2
∫
C(x,δ(ε))

dPZ

≤ FK
(−δ(ε)

ε

)
+
(

1− FK
(
δ(ε)

ε

))
+ 2PZ(C(x, δ(ε))).

The first two terms on the right-hand side of the inequality converge to zero when ε → 0
by the virtue of (4.83). It remains to show that limε→0 PZ{C(x, δ(ε))} = 0 uniformly with
respect tox ∈ C. The function (x, z, δ) !→ |gM(x, z)−c|−δ is continuous in (x, δ) and mea-
surable in z. Thus, it is uniformly continuous with respect to (x, δ) on any compact set C×
[−δ0, δ0]with δ0 > 0. The probability measurePZ is continuous, and, therefore, the function

"(x, δ) = P {|gM(x, z)− c| − δ ≤ 0} = P { ∩β>δ C(x, β)}
is uniformly continuous with respect to (x, δ) on C× [−δ0, δ0]. By the assumptions of the
theorem

"(x, 0) = PZ{z ∈ R
s : |gM(x, z)− c| = 0} = 0,

and, thus,

lim
ε→0

PZ{z ∈ R
s : |gM(x, z)− c| ≤ δ(ε)} = lim

δ→0
"(x, δ) = 0.

As "(·, δ) is continuous, the convergence is uniform on compact sets with respect to the
first argument.

Now, we derive a formula for the Clarke generalized gradients of the approximation
Gε. We define the index set

I (x, z) = {i : gi(x, z) = gM(x, z), 1 ≤ i ≤ m}.

Theorem 4.81. Assume that the density function k(·) is nonnegative, bounded, and con-
tinuous. Furthermore, let the functions gi(·, z) be concave for every z ∈ R

s and their
subgradients be uniformly bounded as follows:

sup{s ∈ ∂gi(y, z), ‖y − x‖ ≤ δ} ≤ lδ(x, z), δ > 0, ∀i = 1, . . . , m,

where lδ(x, z) is an integrable function of z for all x ∈ X. ThenGε(·) is Lipschitz continuous
and Clarke-regular, and its Clarke generalized gradient set is given by

∂◦Gε(x) = 1

ε

∫
Rs

k

(
gM(x, z)− c

ε

)
conv {∂gi(x, z) : i ∈ I (x, z)} dPZ.
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Proof. Under the assumptions of the theorem, the function FK(·) is monotone and continu-
ously differentiable. The functiongM(·, z) is concave for every z ∈ R

s and its subdifferential
are given by the formula

∂gM(y, z) = conv{si ∈ ∂gi(y, z) : gi(y, z) = gM(y, z)}.
Thus the subgradients of gM are uniformly bounded:

sup{s ∈ ∂gM(y, z), ‖y − x‖ ≤ δ} ≤ lδ(x, z), δ > 0.

Therefore, the composite function FK
(
gM(x,z)−c

ε

)
is subdifferentiable and its subdifferential

can be calculated as

∂◦FK
(
gM(x, z)− c

ε

)
= 1

ε
k

(
gM(x, z)− c

ε

)
· ∂gM(x, z).

The mathematical expectation function

Gε(x) =
∫

Rs

F ε
K(gM(x, z)− c)dPz =

∫
Rs

FK

(
gM(x, z)− c

ε

)
dPz

is regular by Clarke [38, Theorem 2.7.2], and its Clarke generalized gradient set has the
form

∂◦Gε(x) =
∫

Rs

∂◦FK
(
gM(x, z)− c

ε

)
dPZ = 1

ε

∫
Rs

k

(
gM(x, z)− c

ε

)
· ∂gM(x, z)dPZ.

Using the formula for the subdifferential of gM(x, z), we obtain the statement.

Now we show that if we chooseK to have an α-concave distribution, and all assump-
tions of Theorem 4.39 are satisfied, the generalized concavity property of the approximated
probability function is preserved.

Theorem 4.82. If the density function k is α-concave (α ≥ 0),Z has γ -concave distribution
(γ ≥ 0), the functions gi(·, z), i = 1, . . . , m, are quasi-concave, then the approximate
probability function Gε has a β-concave distribution, where

β =
{
(γ−1 + (1+ sα)/α)−1 if α + γ > 0,
0 if α + γ = 0.

Proof. If the density function k is α-concave (α ≥ 0), then K has a γ -concave distribution
with γ = α/(1 + sα). If Z has γ ′-concave distribution (γ ≥ 0), then the random vector
(Z,K)T has a β-concave distribution according to Theorem 4.36, where

β =
{
(γ−1 + γ ′−1)−1 if γ + γ ′ > 0,
0 if γ + γ ′ = 0.

Using the definition Gε(x) of (4.82), we can write

Gε(x) =
∫

Rs

F ε
K

(
gM(x, z)− c

ε

)
dPZ =

∫
Rs

∫ (gM(x,z)−c)/ε

−∞
k(t)dt dPZ

=
∫

Rs

∫ ∞
−∞

1{(gM(x,z)−c)/ε>t}dPK dPz =
∫

Rs

∫
Hε(x)

dPK dPz, (4.84)
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where

Hε(x) = {(z, t) ∈ R
s+1 : gM(x, z)− εt ≥ c}.

Since gM(·, z) is quasi-concave, the set Hε(x) is convex. Representation (4.84) of Gε and
the β-concavity of (Z,K) imply the assumptions of Theorem 4.39, and, thus, the function
Gε is β-concave.

This theorem shows that if the random vectorZ has a generalized concave distribution,
we can choose a suitable generalized concave density function k(·) for smoothing and obtain
an approximate convex optimization problem.

Theorem 4.83. In addition to the assumptions of Theorems 4.80, 4.81, and 4.82. Then
on the set {x ∈ R

n : G(x) > 0}, the function Gε is Clarke-regular and the set of Clarke
generalized gradients ∂◦Gε(x

ε) converge to the set of Clarke generalized gradients of G,
∂◦G(x) in the following sense: if for any sequences ε ↓ 0, xε → x and sε ∈ ∂◦Gε(x

ε) such
that sε → s, then s ∈ ∂◦G(x).

Proof. Consider a point x such that G(x) > 0 and points xε → x as ε ↓ 0. All points xε

can be included in some compact set containing x in its interior. The function G is gener-
alized concave by virtue of Theorem 4.39. It is locally Lipschitz continuous, directionally
differentiable, and Clarke-regular due to Theorem 4.29. It follows that G(y) > 0 for all
point y in some neighborhood of x. By virtue of Theorem 4.80, this neighborhood can be
chosen small enough, so that Gε(y) > 0 for all ε small enough, as well. The functions Gε

are generalized concave by virtue of Theorem 4.82. It follows thatGε are locally Lipschitz
continuous, directionally differentiable, and Clarke-regular due to Theorem 4.29. Using
the uniform convergence of Gε on compact sets and the definition of Clarke generalized
gradient, we can pass to the limit with ε ↓ 0 in the inequality

lim
t↓0, y→xε

1

t

[
Gε(y + td)−Gε(y)

] ≥ dTsε for any d ∈ R
n.

Consequently, s ∈ ∂◦G(x).

Using the approximate probability function we can solve the following approximation
of problem (4.72):

Min
x

c(x)

s.t. Gε(x) ≥ p,
x ∈ X.

(4.85)

Under the conditions of Theorem 4.83 the function Gε is β-concave for some
β ≥ 0. We can specify the necessary and sufficient optimality conditions for the approxi-
mate problem.

Theorem 4.84. In addition to the assumptions of Theorem 4.83, assume that c(·) is a convex
function, the Slater condition for problem (4.85) is satisfied, and intGε �= ∅. A point x̂ ∈ X
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is an optimal solution of problem (4.85) iff a nonpositive number λ exists such that

0 ∈ ∂c(x̂)+ sλ
∫

Rs

k

(
gM(x̂, z)− c

ε

)
conv

{
∂gi(x̂, z) : i ∈ I (x̂, z)

}
dPZ +NX(x̂),

λ[Gε(x̂)− p] = 0.

Here

s =
{
αε−1

[
Gε(x̂)

]α−1
if β �= 0,[

εGε(x̂)
]−1

if β = 0.

Proof. We shall show the statement for β = 0. The proof for the other case is analogous.
Setting Ḡε(x) = lnGε(x), we obtain a concave function Ḡε, and formulate the problem

Min
x
c(x)

s.t. ln p − Ḡε(x) ≤ 0,

x ∈ X.

(4.86)

Clearly, x̂ is a solution of the problem (4.86) iff it is a solution of problem (4.85). Problem
(4.86) is a convex problem and Slater’s condition is satisfied for it as well. Therefore, we
can write the following optimality conditions for it. The point x̂ ∈ X is a solution iff a
number λ0 > 0 exists such that

0 ∈ ∂c(x)+ λ0∂
[− Ḡε(x̂)

]+NX(x̂), (4.87)

λ0[Gε(x̂)− p] = 0. (4.88)

We use the formula for the Clarke generalized gradients of generalized concave functions
to obtain

∂◦Ḡε(x̂) = 1

Gε(x̂)
∂◦Gε(x̂).

Moreover, we have a representation of the Clarke generalized gradient set of Gε, which
yields

∂◦Ḡε(x̂) = 1

εGε(x̂)

∫
Rs

k

(
gM(x̂, z)− c

ε

)
· ∂gM(x̂, z)dPZ.

Substituting the last expression into (4.87), we obtain the result.

Normal Approximation

In this section we analyze approximation for problems with individual probabilistic con-
straints, defined by linear inequalities. In this setting it is sufficient to consider a problem
with a single probabilistic constraint of form

Max c(x)

s.t. Pr{xTZ ≥ η} ≥ p,
x ∈ X.

(4.89)
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Before developing the normal approximation for this problem, let us illustrate its
potential on an example. We return to our Example 4.2, in which we formulated a portfolio
optimization problem under a Value-at-Risk constraint.

Max
n∑
i=1

E[Ri]xi

s.t. Pr
{ n∑
i=1

Rixi ≥ −η
}
≥ p,

n∑
i=1

xi ≤ 1,

x ≥ 0.

(4.90)

We denote the net increase of the value of our investment after a period of time by

G(x,R) =
n∑
i=1

E[Ri]xi.

Let us assume that the random return rates R1, . . . , Rn have a joint normal probability dis-
tribution. Recall that the normal distribution is log-concave and the probabilistic constraint
in problem (4.90) determines a convex feasible set, according to Theorem 4.39.

Another direct way to see that the last transformation of the probabilistic constraint
results in a convex constraint is the following. We denote r̄i = E[Ri], r̄ = (r̄1, . . . , r̄n)

T,
and assume that r̄ is not the zero-vector. Further, let Σ be the covariance matrix of the
joint distribution of the return rates. We observe that the total profit (or loss) G(x,R) is a
normally distributed random variable with expected value E

[
G(x,R)

] = r̄Tx and variance
Var
[
G(x,R)

] = xTΣx. Assuming that Σ is positive definite, the probabilistic constraint

Pr
{
G(x,R) ≥ −η} ≥ p

can be written in the form (see the discussion on page 16)

zp
√
xTΣx − r̄Tx ≤ η.

Hence problem (4.90) can be written in the following form:

Max r̄Tx

s.t. zp
√
xTΣx − r̄Tx ≤ η,

n∑
i=1

xi ≤ 1,

x ≥ 0.

(4.91)

Note that
√
xTΣx is a convex function, of x, and zp = �−1(p) is positive for p > 1/2,

and hence (4.91) is a convex programming problem.
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Now, we consider the general optimization problem (4.89). Assuming that the n-
dimensional random vectorZ has independent components and the dimension n is relatively
large, we may invoke the central limit theorem. Under mild additional assumptions, we can
conclude that the distribution of xTZ is approximately normal and convert the probabilistic
constraint into an algebraic constraint in a similar manner. Note that this approach is
appropriate if Z has a substantial number of components and the vector x has appropriately
large number of nonzero components, so that the central limit theorem would be applicable
to xTZ. Furthermore, we assume that the probability parameter p is not too close to one,
such as 0.9999.

We recall several versions of the central limit theorem (CLT). Let Zi , i = 1, 2, . . . ,
be a sequence of independent random variables defined on the same probability space. We
assume that eachZi has finite expected valueµi = E[Zi] and finite variance σ 2

i = Var[Zi].
Setting

s2
n =

n∑
i=1

σ 2
i and r3

n =
n∑
i=1

E
(|Zi − µi |3),

we assume that r3
n is finite for every n and that

lim
n→∞

rn

sn
= 0. (4.92)

Then the distribution of the random variable∑n
i=1(Zi − µi)

sn
(4.93)

converges toward the standard normal distribution as n→∞.
The condition (4.92) is called Lyapunov’s condition. In the same setting, we can

replace the Lyapunov’s condition with the following weaker condition, proposed by Linde-
berg. For every ε > 0 we define

Yin =
{
(Zi − µi)2/s2

n if |Zi − µi | > εsn,

0 otherwise.

The Lindeberg’s condition reads

lim
n→∞

n∑
i=1

E(Yin) = 0.

Let us denote z̄ = (µ1, . . . , µn)
T. Under the conditions of the CLT, the distribution

of our random variable xTZ is close to the normal distribution with expected value xTz̄ and
variance

∑n
i=1 σ

2
i x

2
i for problems of large dimensions. Our probabilistic constraint takes

on the form
z̄Tx − η√∑n
i=1 σ

2
i x

2
i

≥ zp.
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Define X = {
x ∈ R

n+ :
∑n

i=1 xi ≤ 1
}
. Denoting the matrix with diagonal elements

σ1, . . . , σn by D, problem (4.89) can be replaced by the following approximate problem:

Min
x

c(x)

s.t. zp‖Dx‖ ≤ z̄Tx − η,
x ∈ X.

The probabilistic constraint in this problem is approximated by an algebraic convex con-
straint. Due to the independence of the components of the random vector Z, the matrix D
has a simple diagonal form. There are versions of the CLT which treat the case of sums of
dependent variables, for instance, the n-dependent CLT, the martingale CLT, and the CLT
for mixing processes. These statements will not be presented here. One can follow the
same line of argument to formulate a normal approximation of the probabilistic constraint,
which is very accurate for problems with large decision space.

4.5 Semi-infinite Probabilistic Problems
In this section, we concentrate on the semi-infinite probabilistic problem (4.9). We recall
its formulation:

Min
x
c(x)

s.t. Pr
{
g(x, Z) ≥ η} ≥ Pr

{
Y ≥ η}, η ∈ [a, b],

x ∈ X.

Our goal is to derive necessary and sufficient optimality conditions for this problem.
Denote the space of regular countably additive measures on [a, b] having finite variation
by M([a, b]) and its subset of nonnegative measures by M+([a, b]).

We define the constraint functionG(x, η) = P {z : g(x, z) ≥ η}. As we shall develop
optimality conditions in differential form, we impose additional assumptions on problem
(4.9):

(i) The function c is continuously differentiable on X.
(ii) The constraint function G(·, ·) is continuous with respect to the second argument

and continuously differentiable with respect to the first argument.
(iii) The reference random variable Y has a continuous distribution.
The differentiability assumption onGmay be enforced taking into account the results

in section 4.4.1. For example, if the vector Z has a probability density θ(·), the function
g(·, ·) is continuously differentiable with nonzero gradient ∇zg(x, z) and such that the
quantity θ(z)

‖∇zg(x,z)‖∇xg(x, z) is uniformly bounded (in a neighborhood of x) by an integrable
function, then the function G is differentiable. Moreover, we can express its gradient with
respect to x a follows:

∇xG(x, η) =
∫

bdH(z,η)

θ(z)

‖∇zg(x, z)‖∇xg(x, z) dPm−1,

where bdH(z, η) is the surface of the set H(z, η) = {z : g(x, z) ≥ η} and Pm−1 refers to
Lebesgue measure on the (m− 1)-dimensional surface.
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We define the set U([a, b]) of functions u(·) satisfying the following conditions:

u(·) is nondecreasing and right continuous;
u(t) = 0, ∀t ≤ a;
u(t) = u(b), ∀t ≥ b.

It is evident that U([a, b]) is a convex cone.
First we derive a useful formula.

Lemma 4.85. For any real random variable Z and any measure µ ∈M([a, b]) we have∫ b

a

Pr
{
Z ≥ η} dµ(η) = E

[
u(Z)

]
, (4.94)

where u(z) = µ([a, z]).

Proof. We extend the measure µ to the entire real line by assigning measure 0 to sets not
intersecting [a, b]. Using the probability measure PZ induced by Z on R and applying
Fubini’s theorem, we obtain∫ b

a

Pr
{
Z ≥ η} dµ(η) = ∫ ∞

a

Pr
{
Z ≥ η} dµ(η) = ∫ ∞

a

∫ ∞
η

dPZ(z) dµ(η)

=
∫ ∞
a

∫ z

a

dµ(η) dPZ(z) =
∫ ∞
a

µ([a, z]) dPZ(z) = E
[
µ([a, Z])].

We define u(z) = µ([a, z]) and obtain the stated result.

Let us observe that if the measure µ in the above lemma is nonnegative, then u ∈
U([a, b]). Indeed, u(·) is nondecreasing since for z1 > z2 we have

u(z1) = µ([a, z1]) = µ([a, z2])+ µ((z1, z2]) ≥ µ([a, z2]) = u(z2).

Furthermore, u(z) = µ([a, z]) = µ([a, b]) = u(b) for z ≥ b.
We introduce the functional L : Rn ×U→ R associated with problem (4.9):

L(x, u) = c(x)+ E

[
u(g(x, Z))− u(Y )

]
.

We shall see that the functional L plays the role of a Lagrangian of the problem.
We also set v(η) = Pr

{
Y ≥ η}.

Definition 4.86. Problem (4.9) satisfies the differential uniform dominance condition at
the point x̂ ∈ X if there exists x0 ∈ X such that

min
a≤η≤b

[
G(x̂, η)+ ∇xG(x̂, η)(x0 − x̂)− v(η)

]
> 0.

Theorem 4.87. Assume that x̂ is an optimal solution of problem (4.9) and that the differ-
ential uniform dominance condition is satisfied at the point x̂. Then there exists a function
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û ∈ U, such that

−∇xL(x̂, û) ∈ NX(x̂), (4.95)

E
[
û(g(x̂, Z))

] = E
[
û(Y )

]
. (4.96)

Proof. We consider the mapping � : X→ C([a, b]) defined as follows:

�(x)(η) = Pr
{
g(x, Z) ≥ η}− v(η), η ∈ [a, b]. (4.97)

We define K as the cone of nonnegative functions in C([a, b]). Problem (4.9) can be
formulated as follows:

Min
x

c(x)

s.t. �(x) ∈ K,
x ∈ X.

(4.98)

At first we observe that the functions c(·) and �(·) are continuously differentiable by the as-
sumptions made at the beginning of this section. Second, the differential uniform dominance
condition is equivalent to Robinson’s constraint qualification condition:

0 ∈ int
{
�(x̂)+ ∇x�(x̂)(X− x̂)−K

}
. (4.99)

Indeed, it is easy to see that the uniform dominance condition implies Robinson’s condition.
On the other hand, if Robinson’s condition holds true, then there exists ε > 0 such that the
function identically equal to ε is an element of the set at the right-hand side of (4.99). Then
we can find x0 such that

�(x̂)(η)+ [∇x�(x̂)(η)](x0 − x̂) ≥ ε, ∀η ∈ [a, b].
Consequently, the uniform dominance condition is satisfied.

By the Riesz representation theorem, the space dual to C([a, b]) is the space M([a, b])
of regular countably additive measures on [a, b] having finite variation. The Lagrangian
� : Rn ×M([a, b])→ R for problem (4.98) is defined as follows:

�(x,µ) = c(x)+
∫ b

a

�(x)(η) dµ(η). (4.100)

The necessary optimality conditions for problem (4.98) have the form, There exists a measure
µ̂ ∈M+([a, b]) such that

−∇x�(x̂, µ̂) ∈ NX(x̂), (4.101)∫ b

a

�(x̂)(η) dµ̂(η) = 0. (4.102)

Using Lemma 4.85, we obtain the equation for all x:∫ b

a

�(x)(η) dµ̂(η) =
∫ b

a

(
Pr
{
g(x, z) ≥ η}− Pr

{
Y ≥ η}) dµ̂(η)

= E
[
û(g(x, Z))

]− E
[
û(Y )

]
,
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where û(η) = µ̂([a, η]). Since µ̂ is nonnegative, the corresponding utility function û is an
element of U([a, b]). The correspondence between nonnegative measures µ ∈ M([a, b])
and utility functions u ∈ U and the last equation imply that (4.102) is equivalent to (4.96).
Moreover,

�(x,µ) = L(x, u),
and, therefore, (4.101) is equivalent to (4.95).

We note that the functions u ∈ U([a, b]) can be interpreted as von Neumann–
Morgenstern utility functions of rational decision makers. The theorem demonstrates that
one can view the maximization of expected utility as a dual model to the model with stochas-
tic dominance constraints. Utility functions of decision makers are very difficult to elicit.
This task becomes even more complicated when there is a group of decision makers who
have to come to a consensus. Model (4.9) avoids these difficulties by requiring that a bench-
mark random outcome, considered reasonable, be specified. Our analysis, departing from
the benchmark outcome, generates the utility function of the decision maker. It is implicitly
defined by the benchmark used and by the problem under consideration.

We will demonstrate that it is sufficient to consider only the subset of U([a, b] con-
taining piecewise constant utility functions.

Theorem 4.88. Under the assumptions of Theorem 4.87 there exist piecewise constant
utility function w(·) ∈ U satisfying the necessary optimality conditions (4.95)–(4.96).
Moreover, the function w(·) has at most n + 2 jump points: there exist numbers ηi ∈
[a, b], i = 1, . . . , k, such that the function w(·) is constant on the intervals (−∞, η1],
(η1, η2], . . . , (ηk,∞), and 0 ≤ k ≤ n+ 2.

Proof. Consider the mapping � defined by (4.97). As already noted in the proof of the pre-
vious theorem, it is continuously differentiable due to the assumptions about the probability
function. Therefore, the derivative of the Lagrangian has the form

∇x�(x̂, µ̂) = ∇xc(x̂)+
∫ b

a

∇x�(x̂)(η) dµ̂(η).

The necessary condition of optimality (4.101) can be rewritten as follows:

−∇xc(x̂)−
∫ b

a

∇x�(x̂)(η) dµ̂(η) ∈ NX(x̂).

Considering the vector
g = ∇xc(x̂)− ∇x�(x̂, µ̂),

we observe that the optimal values of multipliers µ̂ have to satisfy the equation∫ b

a

∇x�(x̂)(η) dµ(η) = g. (4.103)

At the optimal solution x̂ we have �(x̂)(·) ≤ 0 and µ̂ ≥ 0. Therefore, the complementarity
condition (4.102) can be equivalently expressed as the equation∫ b

a

�(x̂)(η) dµ(η) = 0. (4.104)
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Every nonnegative solution µ of (4.103)–(4.104) can be used as the Lagrange multiplier
satisfying conditions (4.101)–(4.102) at x̂. Define

a =
∫ b

a

dµ̂(η).

We can add to (4.103)–(4.104) the condition∫ b

a

dµ(η) = a. (4.105)

The system of three equations (4.103)–(4.105) still has at least one nonnegative solution,
namely, µ̂. If µ̂ ≡ 0, then the dominance constraint is not active. In this case, we can set
w(η) ≡ 0, and the statement of the theorem follows from the fact that conditions (4.103)–
(4.104) are equivalent to (4.101)–(4.102).

Now, consider the case of µ̂ �≡ 0. In this case, we have a > 0. Normalizing by a, we
notice that (4.103)–(4.105) are equivalent to the following inclusion:[

g/a

0

]
∈ conv

{[∇x�(x̂)(η)
�(x̂)(η)

]
: η ∈ [a, b]

}
⊂ R

n+1.

By Carathéodory’s theorem, there exist numbers ηi ∈ [a, b], and αi ≥ 0, i = 1, . . . , k,
such that [

g/a

0

]
=

k∑
i=1

αi

[∇x�(x̂)(ηi)
�(x̂)(ηi)

]
,

k∑
i=1

αi = 1,

and

1 ≤ k ≤ n+ 2.

We define atomic measure ν having atoms of mass cαi at points ηi , i = 1, . . . , k. It
satisfies (4.103)–(4.104):∫ b

a

∇x�(x̂)(η) dν(η) =
k∑
i=1

∇x�(x̂)(ηi)cαi = g,
∫ b

a

�(x̂)(η) dν(η) =
k∑
i=1

�(x̂)(ηi)cαi = 0.

Recall that (4.103)–(4.104) are equivalent to (4.101)–(4.102). Now, applying Lemma 4.85,
we obtain the utility functions

w(η) = ν[a, η], η ∈ R.

It is straightforward to check that w ∈ U([a, b]) and the assertion of the theorem holds
true.



SPbook
2009/8/20
page 149

�

�

�

�

�

�

�

�

4.5. Semi-infinite Probabilistic Problems 149

It follows from Theorem 4.88 that if the dominance constraint is active, then there
exist at least one and at most n+2 target values ηi and target probabilities vi = Pr

{
Y ≥ ηi

}
,

i = 1, . . . , k, which are critical for problem (4.9). They define a relaxation of (4.9) involving
finitely many probabilistic constraints:

Min
x

c(x)

s.t. Pr
{
g(x, Z) ≥ ηi

} ≥ vi, i = 1, . . . , k,

x ∈ X.

The necessary conditions of optimality for this relaxation yield a solution of the optimality
conditions of the original problem (4.9). Unfortunately, the target values and the target
probabilities are not known in advance.

A particular situation, in which the target values and the target probabilities can be
specified in advance, occurs when Y has a discrete distribution with finite support. Denote
the realizations of Y by

η1 < η2 < · · · < ηk

and the corresponding probabilities by pi , i = 1, . . . , k. Then the dominance constraint is
equivalent to

Pr
{
g(x, Z) ≥ ηi

} ≥ k∑
j=i

pj , i = 1, . . . , k.

Here, we use the fact that the probability distribution function of g(x, Z) is continuous and
nondecreasing.

Now, we shall derive sufficient conditions of optimality for problem (4.9). We assume
additionally that the function g is jointly quasi-concave in both arguments and Z has an
α-concave probability distribution.

Theorem 4.89. Assume that a point x̂ is feasible for problem (4.9). Suppose that there exists
a function û ∈ U, û �= 0, such that conditions (4.95)–(4.96) are satisfied. If the function c
is convex, the function g satisfies the concavity assumptions above and the variable Z has
an α-concave probability distribution, then x̂ is an optimal solution of problem (4.9).

Proof. By virtue of Theorem 4.43, the feasible set of problem (4.98)) is convex and closed.
Let the operator � and the coneK be defined as in the proof of Theorem 4.87. Using

Lemma 4.85, we observe that optimality conditions (4.101)–(4.102) for problem (4.98) are
satisfied. Consider a feasible direction d at the point x̂. As the feasible set is convex, we
conclude that

�(x̂ + τd) ∈ K
for all sufficiently small τ > 0. Since � is differentiable, we have

1

τ

[
�(x̂ + τd)− �(x̂)] → ∇x�(x̂)(d) whenever τ ↓ 0.

This implies that
∇x�(x̂)(d) ∈ TK(�(x̂)),
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where TK(γ ) denotes the tangent cone to K at γ . Since

TK(γ ) = K + {tγ : t ∈ R},
there exists t ∈ R such that

∇x�(x̂)(d)+ t�(x̂) ∈ K. (4.106)

Condition (4.101) implies that there exists q ∈ NX(x̂) such that

∇xc(x̂)+
∫ b

a

∇x�(x̂)(η) dµ(η) = −q.

Applying both sides of this equation to the direction d and using the fact that q ∈ NX(x̂)

and d ∈ TX(x̂), we obtain

∇xc(x̂)(d)+
∫ b

a

(∇x�(x̂)(η))(d) dµ(η) ≥ 0. (4.107)

Condition (4.102), relation (4.106), and the nonnegativity of µ imply that∫ b

a

(∇x�(x̂)(η))(d) dµ(η) = ∫ b

a

[(∇x�(x̂)(η))(d)+ t(�(x̂))(η)] dµ(η) ≤ 0.

Substituting into (4.107) we conclude that

dT∇xc(x̂) ≥ 0

for every feasible direction d at x̂. By the convexity of c, for every feasible point x we
obtain the inequality

c(x) ≥ c(x̂)+ dT∇xc(x̂) ≥ c(x̂),
as stated.

Exercises
4.1. Are the following density functions α-concave and do they define a γ -concave prob-

ability measure? What are α and γ ?

(a) If them-dimensional random vectorZ has the normal distribution with expected
value µ = 0 and covariance matrix Σ , the random variable Y is independent
of Z and has the χ2

k distribution, then the distribution of the vector X with
components

Xi = Zi√
Y/k

, i = 1, . . . , m,

is called a multivariate Student distribution. Its density function is defined as
follows:

θm(x) = �(m+k2 )

�( k2 )
√
(2π)mdet(Σ)

(
1+ 1

k
xTΣ

1
2 x
)−(m+k)/2

.
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If m = k = 1, then this function reduces to the well-known univariate Cauchy
density

θ1(x) = 1

π

1

1+ x2
, −∞ < x <∞.

(b) The density function of the m-dimensional F -distribution with parameters
n0, . . . , nm, and n =∑m

i=1 ni , is defined as follows:

θ(x) = c
m∏
i=1

x
ni/2−1
i

(
n0 +

m∑
i=1

nixi

)−n/2
, xi ≥ 0, i = 1, . . . , m,

where c is an appropriate normalizing constant.

(c) Consider another multivariate generalization of the beta distribution, which is
obtained in the following way. Let S1 and S2 be two independent sampling
covariance matrices corresponding to two independent samples of sizes s1 + 1
and s2+1, respectively, taken from the same q-variate normal distribution with
covariance matrix Σ . The joint distribution of the elements on and above the
main diagonal of the random matrix

(S1 + S2)
1
2 S2(S1 + S2)

− 1
2

is continuous if s1 ≥ q and s2 ≥ q. The probability density function of this
distribution is defined by

θ(X) =


c(s1, q)c(s2, q)

c(s1 + s2, q) det(X)
1
2 (s2−q−1) det(I −X) 1

2 (s1−q−1)

for X, I −X positive definite,
0 otherwise.

Here I stands for the identity matrix, and the function c(·, ·) is defined as
follows:

1

c(k, q)
= 2qk/2πq(q−1)/2

q∏
i=1

�

(
k − i + 1

2

)
.

The number of independent variables in X is s = 1
2q(q + 1).

(d) The probability density function of the Pareto distribution is

θ(x) = a(a + 1) . . . (a + s − 1)

 s∏
j=1

"j

−1 s∑
j=1

"−1
j xj − s + 1

−(a+s)

for xi > "i, i = 1, . . . , s, and θ(x) = 0 otherwise. Here "i, i = 1, . . . , s
are positive constants.

4.2. Assume that P is an α-concave probability distribution and A ⊂ R
n is a convex set.

Prove that the function f (x) = P(A+ x) is α-concave.
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4.3. Prove that if θ : R → R is a log-concave probability density function, then the
functions

F(x) =
∫
t≤x

θ(t)dt and F̄ (x) = 1− F(x)
are log-concave as well.

4.4. Check that the binomial, the Poisson, the geometric, and the hypergeometric one-
dimensional probability distributions satisfy the conditions of Theorem 4.38 and are,
therefore, log-concave.

4.5. Let Z1, Z2, and Z3 be independent exponentially distributed random variables with
parameters λ1, λ2, and λ3, respectively. We define Y1 = min{Z1, Z3} and Y2 =
min{Z2, Z3}. Describe G(η1, η2) = P(Y1 ≥ η1, Y2 ≥ η2) for nonnegative scalars
η1 and η2 and prove that G(η1, η2) is log-concave on R

2.
4.6. Let Z be a standard normal random variable, W be a χ2-random variable with one

degree of freedom, and A be an n× n positive definite matrix. Is the set{
x ∈ R

n : Pr
(
Z −

√
(xTAx)W ≥ 0

) ≥ 0.9
}

convex?
4.7. If Y is an m-dimensional random vector with a log-normal distribution, and g :

R
n→ R

m is such that each component gi is a concave function, show that the set

C =
{
x ∈ R

n : Pr
(
g(x) ≥ Y ) ≥ 0.9

}
is convex.
(a) Find the set of p-efficient points for m = 1, p = 0.9 and write an equivalent

algebraic description of C.
(b) Assume thatm = 2 and the components of Y are independent. Find a disjunctive

algebraic formulation for the set C.
4.8. Consider the following optimization problem:

Min
x
cTx

s.t. Pr
{
gi(x) ≥ Yi, i = 1, 2

} ≥ 0.9,

x ≥ 0.

Here c ∈ R
n, gi : R

n → R, i = 1, 2, is a concave function, and Y1 and Y2 are
independent random variables that have the log-normal distribution with parameters
µ = 0, σ = 2.
Formulate necessary and sufficient optimality conditions for this problem.

4.9. Assuming that Y and Z are independent exponentially distributed random variables,
show that the following set is convex:{

x ∈ R
3 : Pr

(
x2

1 + x2
2 + Yx2 + x2x3 + Yx3 ≤ Z

) ≥ 0.9
}
.

4.10. Assume that the random variable Z is uniformly distributed in the interval [−1, 1]
and e = (1, . . . , 1)T. Prove that the following set is convex:{

x ∈ R
n : Pr

(
exp(xTy) ≥ (eTy)Z, ∀y ∈ R

n : ‖y‖ ≤ 1
) ≥ 0.95

}
.
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4.11. Let Z be a two-dimensional random vector with Dirichlet distribution. Show that
the following set is convex:{
x ∈ R

2 : Pr
(

min(x1 + 2x2 + Z1, x1Z2 − x2
1 − Z2

2) ≥ y
) ≥ e−y ∀y ∈ [ 14 , 4]

}
.

4.12. Let Z be an n-dimensional random vector uniformly distributed on a set A. Check
whether the set {

x ∈ R
n : Pr

(
xTZ ≤ 1

) ≥ 0.95
}

is convex for the following cases:
(a) A = {z ∈ R

n : ‖z‖ ≤ 1}.
(b) A = {z ∈ R

n : 0 ≤ zi ≤ i, i = 1, . . . , m}.
(c) A = {z ∈ R

n : T z ≤ 0, −1 ≤ zi ≤ 1, i = 1, . . . , m}, where T is an (n−1)×n
matrix of form

T =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
... · · · ...

0 0 0 · · · −1

 .
4.13. Assume that the two-dimensional random vector Z has independent components,

which have the Poisson distribution with parameters λ1 = λ2 = 2. Find all p-
efficient points of FZ for p = 0.8.
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Chapter 5

Statistical Inference

Alexander Shapiro

5.1 Statistical Properties of Sample Average
Approximation Estimators

Consider the following stochastic programming problem:

Min
x∈X
{
f (x) := E[F(x, ξ)]}. (5.1)

Here X is a nonempty closed subset of R
n, ξ is a random vector whose probability dis-

tribution P is supported on a set � ⊂ R
d , and F : X × � → R. In the framework of

two-stage stochastic programming, the objective function F(x, ξ) is given by the optimal
value of the corresponding second-stage problem. Unless stated otherwise, we assume
in this chapter that the expectation function f (x) is well defined and finite valued for all
x ∈ X. This implies, of course, that for every x ∈ X the value F(x, ξ) is finite for a.e.
ξ ∈ �. In particular, for two-stage programming this implies that the recourse is relatively
complete.

Suppose that we have a sample ξ 1, . . . , ξN of N realizations of the random vector ξ .
This random sample can be viewed as historical data of N observations of ξ , or it can be
generated in the computer by Monte Carlo sampling techniques. For any x ∈ X we can
estimate the expected value f (x) by averaging values F(x, ξ j ), j = 1, . . . , N . This leads
to the so-called sample average approximation (SAA)

Min
x∈X

f̂N (x) := 1

N

N∑
j=1

F(x, ξ j )

 (5.2)

155
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of the “true” problem (5.1). Let us observe that we can write the sample average function
as the expectation

f̂N (x) = EPN [F(x, ξ)] (5.3)

taken with respect to the empirical distribution18 (measure) PN := N−1∑N
j=1 #(ξ

j ).
Therefore, for a given sample, the SAA problem (5.2) can be considered as a stochastic
programming problem with respective scenarios ξ 1, . . . , ξN , each taken with probabil-
ity 1/N .

As with data vector ξ , the sample ξ 1, . . . , ξN can be considered from two points
of view: as a sequence of random vectors or as a particular realization of that sequence.
Which of these two meanings will be used in a particular situation will be clear from the
context. The SAA problem is a function of the considered sample and in that sense is
random. For a particular realization of the random sample, the corresponding SAA problem
is a stochastic programming problem with respective scenarios ξ 1, . . . , ξN each taken with
probability 1/N . We always assume that each random vector ξ j in the sample has the same
(marginal) distribution P as the data vector ξ . If, moreover, each ξ j , j = 1, . . . , N , is
distributed independently of other sample vectors, we say that the sample is independently
identically distributed (iid).

By the Law of Large Numbers we have that, under some regularity conditions, f̂N (x)
converges pointwise w.p. 1 to f (x) as N → ∞. In particular, by the classical LLN this
holds if the sample is iid. Moreover, under mild additional conditions the convergence is
uniform (see section 7.2.5). We also have that E[f̂N (x)] = f (x), i.e., f̂N (x) is an unbiased
estimator of f (x). Therefore, it is natural to expect that the optimal value and optimal
solutions of the SAA problem (5.2) converge to their counterparts of the true problem (5.1)
as N → ∞. We denote by ϑ∗ and S the optimal value and the set of optimal solutions,
respectively, of the true problem (5.1) and by ϑ̂N and ŜN the optimal value and the set of
optimal solutions, respectively, of the SAA problem (5.2).

We can view the sample average functions f̂N (x) as defined on a common probability
space (�,F , P ). For example, in the case of the iid sample, a standard construction is to
consider the set� := �∞ of sequences {(ξ1, . . .)}ξi∈�,i∈N, equipped with the product of the
corresponding probability measures. Assume that F(x, ξ) is a Carathéodory function, i.e.,
continuous in x and measurable in ξ . Then f̂N (x) = f̂N (x, ω) is also a Carathéodory func-
tion and hence is a random lower semicontinuous function. It follows (see section 7.2.3 and
Theorem 7.37 in particular) that ϑ̂N = ϑ̂N (ω) and ŜN = ŜN (ω) are measurable. We also
consider a particular optimal solution x̂N of the SAA problem and view it as a measurable
selection x̂N (ω) ∈ ŜN (ω). Existence of such measurable selection is ensured by the mea-
surable selection theorem (Theorem 7.34). This takes care of the measurability questions.

Next we discuss statistical properties of the SAA estimators ϑ̂N and ŜN . Let us make
the following useful observation.

Proposition 5.1. Let f : X → R and fN : X → R be a sequence of (deterministic) real
valued functions. Then the following two properties are equivalent: (i) for any x̄ ∈ X and
any sequence {xN } ⊂ X converging to x̄ it follows that fN(xN) converges to f (x̄), and
(ii) the function f (·) is continuous on X and fN(·) converges to f (·) uniformly on any
compact subset of X.

18Recall that #(ξ) denotes measure of mass one at the point ξ .
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Proof. Suppose that property (i) holds. Consider a point x̄ ∈ X, a sequence {xN } ⊂ X con-
verging to x̄ and a number ε > 0. By taking a sequence with each element equal x1, we have
by (i) that fN(x1)→ f (x1). Therefore, there exists N1 such that |fN1(x1)− f (x1)| < ε/2.
Similarly, there exists N2 > N1 such that |fN2(x2) − f (x2)| < ε/2, and so on. Consider
now a sequence, denoted x ′N , constructed as follows: x ′i = x1, i = 1, . . . , N1, x ′i = x2,
i = N1 + 1, . . . , N2, and so on. We have that this sequence x ′N converges to x̄ and hence
|fN(x ′N)−f (x̄)| < ε/2 for allN large enough. We also have that |fNk (x ′Nk )−f (xk)| < ε/2,
and hence |f (xk) − f (x̄| < ε for all k large enough. This shows that f (xk)→ f (x̄) and
hence f (·) is continuous at x̄.

Now let C be a compact subset of X. Arguing by contradiction, suppose that fN(·)
does not converge to f (·) uniformly on C. Then there exists a sequence {xN } ⊂ C and
ε > 0 such that |fN(xN)− f (xN)| ≥ ε for all N . Since C is compact, we can assume that
{xN } converges to a point x̄ ∈ C. We have

|fN(xN)− f (xN)| ≤ |fN(xN)− f (x̄)| + |f (xN)− f (x̄)|. (5.4)

The first term in the right-hand side of (5.4) tends to zero by (i) and the second term tends
to zero since f (·) is continuous, and hence these terms are less that ε/2 forN large enough.
This gives a designed contradiction.

Conversely, suppose that property (ii) holds. Consider a sequence {xN } ⊂ X con-
verging to a point x̄ ∈ X. We can assume that this sequence is contained in a compact
subset of X. By employing the inequality

|fN(xN)− f (x̄)| ≤ |fN(xN)− f (xN)| + |f (xN)− f (x̄)| (5.5)

and noting that the first term in the right-hand side of this inequality tends to zero because
of the uniform convergence of fN to f and the second term tends to zero by continuity of f ,
we obtain that property (i) holds.

5.1.1 Consistency of SAA Estimators

In this section we discuss convergence properties of the SAA estimators ϑ̂N and ŜN . It
is said that an estimator θ̂N of a parameter θ is consistent if θ̂N converges w.p. 1 to θ as
N →∞. Let us consider first consistency of the SAA estimator of the optimal value. We
have that for any fixed x ∈ X, ϑ̂N ≤ f̂N (x), and hence if the pointwise LLN holds, then

lim sup
N→∞

ϑ̂N ≤ lim
N→∞ f̂N (x) = f (x) w.p. 1.

It follows that if the pointwise LLN holds, then

lim sup
N→∞

ϑ̂N ≤ ϑ∗ w.p. 1. (5.6)

Without some additional conditions, the inequality in (5.6) can be strict.

Proposition 5.2. Suppose that f̂N (x) converges to f (x) w.p. 1, as N →∞, uniformly on
X. Then ϑ̂N converges to ϑ∗ w.p. 1 as N →∞.
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Proof. The uniform convergence w.p. 1 of f̂N (x) = f̂N (x, ω) to f (x) means that for any
ε > 0 and a.e. ω ∈ � there is N∗ = N∗(ε, ω) such that the following inequality holds for
all N ≥ N∗:

sup
x∈X

∣∣f̂N (x, ω)− f (x)∣∣ ≤ ε. (5.7)

It follows then that |ϑ̂N (ω)− ϑ∗| ≤ ε for all N ≥ N∗, which completes the proof.

In order to establish consistency of the SAA estimators of optimal solutions, we need
slightly stronger conditions. Recall that D(A,B) denotes the deviation of setA from set B.
(See (7.4) for the corresponding definition.)

Theorem 5.3. Suppose that there exists a compact set C ⊂ R
n such that: (i) the set S of

optimal solutions of the true problem is nonempty and is contained in C, (ii) the function
f (x) is finite valued and continuous onC, (iii) f̂N (x) converges to f (x)w.p. 1, asN →∞,
uniformly in x ∈ C, and (iv) w.p. 1 forN large enough the set ŜN is nonempty and ŜN ⊂ C.
Then ϑ̂N → ϑ∗ and D(ŜN , S)→ 0 w.p. 1 as N →∞.

Proof. Assumptions (i) and (iv) imply that both the true and the SAA problem can be
restricted to the set X ∩C. Therefore we can assume without loss of generality that the set
X is compact. The assertion that ϑ̂N → ϑ∗ w.p. 1 follows by Proposition 5.2. It suffices to
show now that D(ŜN (ω), S)→ 0 for every ω ∈ � such that ϑ̂N (ω)→ ϑ∗ and assumptions
(iii) and (iv) hold. This is basically a deterministic result; therefore, we omit ω for the sake
of notational convenience.

We argue now by a contradiction. Suppose that D(ŜN , S) �→ 0. Since X is compact,
by passing to a subsequence if necessary, we can assume that there exists x̂N ∈ ŜN such
that dist(x̂N , S) ≥ ε for some ε > 0 and that x̂N tends to a point x∗ ∈ X. It follows that
x∗ �∈ S and hence f (x∗) > ϑ∗. Moreover, ϑ̂N = f̂N (x̂N ) and

f̂N (x̂N )− f (x∗) = [f̂N (x̂N )− f (x̂N)] + [f (x̂N)− f (x∗)]. (5.8)

The first term in the right-hand side of (5.8) tends to zero by assumption (iii) and the
second term by continuity of f (x). That is, we obtain that ϑ̂N tends to f (x∗) > ϑ∗, a
contradiction.

Recall that by Proposition 5.1, assumptions (ii) and (iii) in the above theorem are
equivalent to the condition that for any sequence {xN } ⊂ C converging to a point x̄ it
follows that f̂N (xN) → f (x̄) w.p. 1. Assumption (iv) in the above theorem holds, in
particular, if the feasible set X is closed, the functions f̂N (x) are lower semicontinuous,
and for some α > ϑ∗ the level sets

{
x ∈ X : f̂N (x) ≤ α

}
are uniformly bounded w.p. 1.

This condition is often referred to as the inf-compactness condition. Conditions ensuring
the uniform convergence of f̂N (x) to f (x) (assumption (iii)) are given in Theorems 7.48
and 7.50, for example.

The assertion that D(ŜN , S) → 0 w.p. 1 means that for any (measurable) selection
x̂N ∈ ŜN , of an optimal solution of the SAA problem, it holds that dist(x̂N , S)→ 0 w.p. 1.
If, moreover, S = {x̄} is a singleton, i.e., the true problem has unique optimal solution x̄,



SPbook
2009/8/20
page 159

�

�

�

�

�

�

�

�

5.1. Statistical Properties of Sample Average Approximation Estimators 159

then this means that x̂N → x̄ w.p. 1. The inf-compactness condition ensures that x̂N cannot
escape to infinity as N increases.

If the problem is convex, it is possible to relax the required regularity conditions. In
the following theorem we assume that the integrand function F(x, ξ) is an extended real
valued function, i.e., can also take values ±∞. Denote

F̄ (x, ξ) := F(x, ξ)+ IX(x), f̄ (x) := f (x)+ IX(x), f̃N (x) := f̂N (x)+ IX(x), (5.9)

i.e., f̄ (x) = f (x) if x ∈ X and f̄ (x) = +∞ if x �∈ X, and similarly for functions F(·, ξ)
and f̂N (·). Clearly f̄ (x) = E[F̄ (x, ξ)] and f̃N (x) = N−1∑N

j=1 F̄ (x, ξ
j ). Note that if the

set X is convex, then the above penalization operation preserves convexity of respective
functions.

Theorem 5.4. Suppose that: (i) the integrand function F is random lower semicontinuous,
(ii) for almost every ξ ∈ � the function F(·, ξ) is convex, (iii) the set X is closed and
convex, (iv) the expected value function f is lower semicontinuous and there exists a point
x̄ ∈ X such that f (x) < +∞ for all x in a neighborhood of x̄, (v) the set S of optimal
solutions of the true problem is nonempty and bounded, and (vi) the LLN holds pointwise.
Then ϑ̂N → ϑ∗ and D(ŜN , S)→ 0 w.p. 1 as N →∞.

Proof. Clearly we can restrict both the true and the SAA problem to the affine space
generated by the convex set X. Relative to that affine space, the set X has a nonempty
interior. Therefore, without loss of generality we can assume that the setX has a nonempty
interior. Since it is assumed that f (x) possesses an optimal solution, we have that ϑ∗ is
finite and hence f (x) ≥ ϑ∗ > −∞ for all x ∈ X. Since f (x) is convex and is greater than
−∞ on an open set (e.g., interior ofX), it follows that f (·) is subdifferentiable at any point
x ∈ int(X) such that f (x) is finite. Consequently f (x) > −∞ for all x ∈ R

n, and hence
f is proper.

Observe that the pointwise LLN forF(x, ξ) (assumption (vi)) implies the correspond-
ing pointwise LLN for F̄ (x, ξ). Since X is convex and closed, it follows that f̄ is convex
and lower semicontinuous. Moreover, because of the assumption (iv) and since the interior
ofX is nonempty, we have that domf̄ has a nonempty interior. By Theorem 7.49 it follows
then that f̃N

e→ f̄ w.p. 1. Consider a compact set K with a nonempty interior and such
that it does not contain a boundary point of domf̄ , and f̄ (x) is finite valued on K . Since
domf̄ has a nonempty interior, such a set exists. Then it follows from f̃N

e→ f̄ that f̃N (·)
converge to f̄ (·) uniformly on K , all w.p. 1 (see Theorem 7.27). It follows that w.p. 1 for
N large enough the functions f̃N (x) are finite valued on K and hence are proper.

Now letC be a compact subset of R
n such that the setS is contained in the interior ofC.

Such set exists since it is assumed that the setS is bounded. Consider the set S̃N of minimizers
of f̃N (x) over C. Since C is nonempty and compact and f̃N (x) is lower semicontinuous
and proper for N large enough, and because by the pointwise LLN we have that for any
x ∈ S, f̃N (x) is finite w.p. 1 for N large enough, the set S̃N is nonempty w.p. 1 for N large
enough. Let us show that D(S̃N , S)→ 0 w.p. 1. Let ω ∈ � be such that f̃N (·, ω) e→ f̄ (·).
We have that this happens for a.e. ω ∈ �. We argue now by a contradiction. Suppose
that there exists a minimizer x̃N = x̃N (ω) of f̃N (x, ω) over C such that dist(x̃N , S) ≥ ε

for some ε > 0. Since C is compact, by passing to a subsequence if necessary, we can
assume that x̃N tends to a point x∗ ∈ C. It follows that x∗ �∈ S. On the other hand, we have
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by Proposition 7.26 that x∗ ∈ arg minx∈C f̄ (x). Since arg minx∈C f̄ (x) = S, we obtain a
contradiction.

Now because of the convexity assumptions, any minimizer of f̃N (x) over C which
lies inside the interior ofC is also an optimal solution of the SAA problem (5.2). Therefore,
w.p. 1 for N large enough we have that S̃N = ŜN . Consequently, we can restrict both the
true and the SAA optimization problems to the compact set C, and hence the assertions of
the above theorem follow.

Let us make the following observations. Lower semicontinuity of f (·) follows from
lower semicontinuity F(·, ξ), provided that F(x, ·) is bounded from below by an integrable
function. (See Theorem 7.42 for a precise formulation of this result.) It was assumed in the
above theorem that the LLN holds pointwise for all x ∈ R

n. Actually, it suffices to assume
that this holds for all x in some neighborhood of the set S. Under the assumptions of the
above theorem we have that f (x) > −∞ for every x ∈ R

n. The above assumptions do not
prevent, however, f (x) from taking value +∞ at some points x ∈ X. Nevertheless, it was
possible to push the proof through because in the considered convex case local optimality
implies global optimality. There are two possible reasons f (x) can be +∞. Namely, it
can be that F(x, ·) is finite valued but grows sufficiently fast so that its integral is +∞, or
it can be that F(x, ·) is equal +∞ on a set of positive measure. Of course, it can be both.
For example, in the case of two-stage programming it may happen that for some x ∈ X the
corresponding second stage problem is infeasible with a positive probability p. Then w.p. 1
forN large enough, for at least one of the sample points ξ j the corresponding second-stage
problem will be infeasible, and hence f̂N (x) = +∞. Of course, if the probability p is very
small, then the required sample size for such event to happen could be very large.

We assumed so far that the feasible set X of the SAA problem is fixed, i.e., inde-
pendent of the sample. However, in some situations it also should be estimated. Then the
corresponding SAA problem takes the form

Min
x∈XN

f̂N(x), (5.10)

where XN is a subset of R
n depending on the sample and therefore is random. As before

we denote by ϑ̂N and ŜN the optimal value and the set of optimal solutions, respectively, of
the SAA problem (5.10).

Theorem 5.5. Suppose that in addition to the assumptions of Theorem 5.3 the following
conditions hold:

(a) If xN ∈ XN and xN converges w.p. 1 to a point x, then x ∈ X.
(b) For some point x ∈ S there exists a sequence xN ∈ XN such that xN → x w.p. 1.

Then ϑ̂N → ϑ∗ and D(ŜN , S)→ 0 w.p. 1 as N →∞.

Proof. Consider an x̂N ∈ ŜN . By compactness arguments we can assume that x̂N converges
w.p. 1 to a point x∗ ∈ R

n. Since ŜN ⊂ XN , we have that x̂N ∈ XN , and hence it follows
by condition (a) that x∗ ∈ X. We also have (see Proposition 5.1) that ϑ̂N = f̂N (x̂N ) tends
w.p. 1 to f (x∗), and hence lim infN→∞ ϑ̂N ≥ ϑ∗ w.p. 1. On the other hand, by condition
(b), there exists a sequence xN ∈ XN converging to a point x ∈ S w.p. 1. Consequently,
ϑ̂N ≤ f̂N (x̂N ) → f (x) = ϑ∗ w.p. 1, and hence lim supN→∞ ϑ̂N ≤ ϑ∗. It follows that
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ϑ̂N → ϑ∗ w.p. 1. The remainder of the proof can be completed by the same arguments as
in the proof of Theorem 5.3.

The SAA problem (5.10) is convex if the functions f̂N (·) and the sets XN are convex
w.p. 1. It is also possible to show consistency of the SAA estimators of problem (5.10)
under the assumptions of Theorem 5.4 together with conditions (a) and (b) of the above
Theorem 5.5, and convexity of the set XN .

Suppose, for example, that the set X is defined by the constraints

X := {x ∈ X0 : gi(x) ≤ 0, i = 1, . . . , p} , (5.11)

where X0 is a nonempty closed subset of R
n and the constraint functions are given as the

expected value functions

gi(x) := E[Gi(x, ξ)], i = 1, . . . , p, (5.12)

with Gi(x, ξ), i = 1, . . . , p, being random lower semicontinuous functions. Then the set
X can be estimated by

XN :=
{
x ∈ X0 : ĝiN (x) ≤ 0, i = 1, . . . , p

}
, (5.13)

where

ĝiN (x) := 1

N

N∑
j=1

Gi(x, ξ
j ).

If for a given point x ∈ X0, every function ĝiN converges uniformly to gi w.p. 1 on a
neighborhood of x and the functions gi are continuous, then condition (a) of Theorem 5.5
holds.

Remark 5. Let us note that the samples used in construction of the SAA functions f̂N and
ĝiN , i = 1, . . . , p, can be the same or can be different, independent of each other. That is,
for random samples ξ i1, . . . , ξ iNi , possibly of different sample sizes Ni , i = 1, . . . , p, and
independent of each other and of the random sample used in f̂N , the corresponding SAA
functions are

ĝiNi (x) :=
1

Ni

Ni∑
j=1

Gi(x, ξ
ij ), i = 1, . . . , p.

The question of how to generate the respective random samples is especially relevant for
Monte Carlo sampling methods discussed later. For consistency type results we only need
to verify convergence w.p. 1 of the involved SAA functions to their true (expected value)
counterparts, and this holds under appropriate regularity conditions in both cases—of the
same and independent samples. However, from a variability point of view, it is advantageous
to use independent samples (see Remark 9 on page 173).

In order to ensure condition (b) of Theorem 5.5, one needs to impose a constraint
qualification (on the true problem). Consider, for example, X := {x ∈ R : g(x) ≤ 0} with
g(x) := x2. ClearlyX = {0}, while an arbitrary small perturbation of the function g(·) can
result in the corresponding set XN being empty. It is possible to show that if a constraint
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qualification for the true problem is satisfied at x, then condition (b) follows. For instance,
if the set X0 is convex and for every ξ ∈ � the functions Gi(·, ξ) are convex, and hence
the corresponding expected value functions gi(·), i = 1, . . . , p, are also convex, then such
a simple constraint qualification is the Slater condition. Recall that it is said that the Slater
condition holds if there exists a point x∗ ∈ X0 such that gi(x∗) < 0, i = 1, . . . , p.

As another example, suppose that the feasible set is given by probabilistic (chance)
constraints in the form

X = {x ∈ R
n : Pr

(
Ci(x, ξ) ≤ 0

) ≥ 1− αi, i = 1, . . . , p
}
, (5.14)

where αi ∈ (0, 1) and Ci : Rn × � → R, i = 1, . . . , p, are Carathéodory functions. Of
course, we have that19

Pr
(
Ci(x, ξ) ≤ 0

) = E
[
1(−∞,0]

(
Ci(x, ξ)

)]
. (5.15)

Consequently, we can write the above set X in the form (5.11)–(5.12) with X0 := R
n and

Gi(x, ξ) := 1− αi − 1(−∞,0]
(
Ci(x, ξ)

)
. (5.16)

The corresponding set XN can be written as

XN =
x ∈ R

n : 1

N

N∑
j=1

1(−∞,0]
(
Ci(x, ξ

j )
) ≥ 1− αi, i = 1, . . . , p

 . (5.17)

Note that
∑N

j=1 1(−∞,0]
(
Ci(x, ξ

j )
)
, in the above formula, counts the number of times

that the event “Ci(x, ξ j ) ≤ 0”, j = 1, . . . , N , happens. The additional difficulty here is
that the (step) function 1(−∞,0](t) is discontinuous at t = 0. Nevertheless, suppose that the
sample is iid and for every x in a neighborhood of the set X and i = 1, . . . , p, the event
“Ci(x, ξ) = 0” happens with probability zero, and hence Gi(·, ξ) is continuous at x for
a.e. ξ . By Theorem 7.48 this implies that the expectation function gi(x) is continuous and
ĝiN (x) converge uniformly w.p. 1 on compact neighborhoods to gi(x), and hence condition
(a) of Theorem 5.5 holds. Condition (b) could be verified by ad hoc methods.

Remark 6. As pointed out in Remark 5, it is possible to use different, independent of each
other, random samples ξ i1, . . . , ξ iNi , possibly of different sample sizesNi , i = 1, . . . , p, for
constructing the corresponding SAA functions. That is, constraints Pr

(
Ci(x, ξ) > 0

) ≤ αi
are approximated by

1

Ni

Ni∑
j=1

1(0,∞)
(
Ci(x, ξ

ij )
) ≤ αi, i = 1, . . . , p. (5.18)

From the point of view of reducing variability of the respective SAA estimators, it could be
preferable to use this approach of independent, rather than the same, samples.

19Recall that 1(−∞,0](t) = 1 if t ≤ 0 and 1(−∞,0](t) = 0 if t > 0.
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5.1.2 Asymptotics of the SAA Optimal Value

Consistency of the SAA estimators gives a certain assurance that the error of the estimation
approaches zero in the limit as the sample size grows to infinity. Although important
conceptually, this does not give any indication of the magnitude of the error for a given
sample. Suppose for the moment that the sample is iid and let us fix a point x ∈ X. Then
we have that the sample average estimator f̂N (x), of f (x), is unbiased and has variance
σ 2(x)/N , where σ 2(x) := Var [F(x, ξ)] is supposed to be finite. Moreover, by the CLT
we have that

N1/2
[
f̂N (x)− f (x)

]
D→ Yx, (5.19)

where
D→ denotes convergence in distribution and Yx has a normal distribution with mean 0

and variance σ 2(x), written Yx ∼ N
(
0, σ 2(x)

)
. That is, f̂N (x) has asymptotically normal

distribution, i.e., for largeN , f̂N (x) has approximately normal distribution with mean f (x)
and variance σ 2(x)/N .

This leads to the following (approximate) 100(1−α)% confidence interval for f (x):[
f̂N (x)− zα/2σ̂ (x)√

N
, f̂N(x)+ zα/2σ̂ (x)√

N

]
, (5.20)

where zα/2 := �−1(1− α/2) and20

σ̂ 2(x) := 1

N − 1

N∑
j=1

[
F(x, ξ j )− f̂N (x)

]2
(5.21)

is the sample variance estimate of σ 2(x). That is, the error of estimation of f (x) is (stochas-
tically) of order Op(N

−1/2).
Consider now the optimal value ϑ̂N of the SAA problem (5.2). Clearly we have that

for any x ′ ∈ X the inequality f̂N (x ′) ≥ inf x∈X f̂N(x) holds. By taking the expected value
of both sides of this inequality and minimizing the left-hand side over all x ′ ∈ X, we obtain

inf
x∈XE

[
f̂N (x)

]
≥ E

[
inf
x∈X f̂N(x)

]
. (5.22)

Note that the inequality (5.22) holds even if f (x) = +∞ or f (x) = −∞ for some x ∈ X.
Since E[f̂N (x)] = f (x), it follows that ϑ∗ ≥ E[ϑ̂N ]. In fact, typically, E[ϑ̂N ] is strictly
less than ϑ∗, i.e., ϑ̂N is a downward biased estimator of ϑ∗. As the following result shows,
this bias decreases monotonically with increase of the sample size N .

Proposition 5.6. Let ϑ̂N be the optimal value of the SAA problem (5.2), and suppose that
the sample is iid. Then E[ϑ̂N ] ≤ E[ϑ̂N+1] ≤ ϑ∗ for any N ∈ N.

20Here�(·) denotes the cdf of the standard normal distribution. For example, to 95% confidence intervals
corresponds z0.025 = 1.96.
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Proof. It was already shown above that E[ϑ̂N ] ≤ ϑ∗ for any N ∈ N. We can write

f̂N+1(x) = 1

N + 1

N+1∑
i=1

 1

N

∑
j �=i

F (x, ξ j )

 .
Moreover, since the sample is iid we have

E[ϑ̂N+1] = E

[
inf x∈X f̂N+1(x)

]
= E

[
inf x∈X 1

N+1

∑N+1
i=1

(
1
N

∑
j �=i F (x, ξ j )

)]
≥ E

[
1

N+1

∑N+1
i=1

(
inf x∈X 1

N

∑
j �=i F (x, ξ j )

)]
= 1

N+1

∑N+1
i=1 E

[
inf x∈X 1

N

∑
j �=i F (x, ξ j )

]
= 1

N+1

∑N+1
i=1 E[ϑ̂N ] = E[ϑ̂N ],

which completes the proof.

First Order Asymptotics of the SAA Optimal Value

We use the following assumptions about the integrand F :

(A1) For some point x̃ ∈ X the expectation E[F(x̃, ξ)2] is finite.

(A2) There exists a measurable function C : �→ R+ such that E[C(ξ)2] is finite and∣∣F(x, ξ)− F(x ′, ξ)∣∣ ≤ C(ξ)‖x − x ′‖ (5.23)

for all x, x ′ ∈ X and a.e. ξ ∈ �.

The above assumptions imply that the expected value f (x) and variance σ 2(x) are finite
valued for all x ∈ X. Moreover, it follows from (5.23) that

|f (x)− f (x ′)| ≤ κ‖x − x ′‖, ∀x, x ′ ∈ X,
where κ := E[C(ξ)], and hence f (x) is Lipschitz continuous on X. If X is compact, we
have then that the set S, of minimizers of f (x) over X, is nonempty.

Let Yx be random variables defined in (5.19). These variables depend on x ∈ X and
we also use notation Y (x) = Yx . By the (multivariate) CLT we have that for any finite
set {x1, . . . , xm} ⊂ X, the random vector (Y (x1), . . . , Y (xm)) has a multivariate normal
distribution with zero mean and the same covariance matrix as the covariance matrix of
(F (x1, ξ), . . . , F (xm, ξ)). Moreover, by assumptions (A1) and (A2), compactness of X,
and since the sample is iid, we have thatN1/2(f̂N−f ) converges in distribution to Y , viewed
as a random element21 of C(X). This is a so-called functional CLT (see, e.g., Araujo and
Giné [4, Corollary 7.17]).

21Recall that C(X) denotes the space of continuous functions equipped with the sup-norm. A random
element of C(X) is a mapping Y : � → C(X) from a probability space (�,F , P ) into C(X) which is
measurable with respect to the Borel sigma algebra ofC(X), i.e., Y (x) = Y (x, ω) can be viewed as a random
function.
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Theorem 5.7. Let ϑ̂N be the optimal value of the SAA problem (5.2). Suppose that the
sample is iid, the set X is compact, and assumptions (A1) and (A2) are satisfied. Then the
following holds:

ϑ̂N = inf
x∈S f̂N (x)+ op(N

−1/2), (5.24)

N1/2
(
ϑ̂N − ϑ∗

)
D→ inf

x∈S Y (x). (5.25)

If, moreover, S = {x̄} is a singleton, then

N1/2
(
ϑ̂N − ϑ∗

)
D→ N (0, σ 2(x̄)). (5.26)

Proof. Proof is based on the functional CLTand the Delta theorem (Theorem 7.59). Consider
Banach space C(X) of continuous functions ψ : X → R equipped with the sup-norm
‖ψ‖ := supx∈X |ψ(x)|. Define the min-value function V (ψ) := inf x∈X ψ(x). Since X is
compact, the function V : C(X) → R is real valued and measurable (with respect to the
Borel sigma algebra of C(X)). Moreover, it is not difficult to see that |V (ψ1)− V (ψ2)| ≤
‖ψ1−ψ2‖ for anyψ1, ψ2 ∈ C(X), i.e., V (·) is Lipschitz continuous with Lipschitz constant
one. By the Danskin theorem (Theorem 7.21), V (·) is directionally differentiable at any
µ ∈ C(X) and

V ′µ(δ) = inf
x∈X̄(µ)

δ(x), ∀δ ∈ C(X), (5.27)

where X̄(µ) := arg minx∈X µ(x). Since V (·) is Lipschitz continuous, directional differen-
tiability in the Hadamard sense follows (see Proposition 7.57). As discussed above, we also
have here under assumptions (A1) and (A2) and since the sample is iid that N1/2(f̂N − f )
converges in distribution to the random element Y of C(X). Noting that ϑ̂N = V (f̂N),
ϑ∗ = V (f ), and X̄(f ) = S, and by applying the Delta theorem to the min-function V (·) at
µ := f and using (5.27), we obtain (5.25) and that

ϑ̂N − ϑ∗ = inf
x∈S
[
f̂N (x)− f (x)

]+ op(N−1/2). (5.28)

Since f (x) = ϑ∗ for any x ∈ S, we have that assertions (5.24) and (5.28) are equivalent.
Finally, (5.26) follows from (5.25).

Under mild additional conditions (see Remark 32 on page 382), it follows from (5.25)
that N1/2

E
[
ϑ̂N − ϑ∗

]
tends to E

[
inf x∈S Y (x)

]
as N →∞, that is,

E[ϑ̂N ] − ϑ∗ = N−1/2
E

[
inf
x∈S Y (x)

]
+ o(N−1/2). (5.29)

In particular, if S = {x̄} is a singleton, then by (5.26) the SAA optimal value ϑ̂N has
asymptotically normal distribution and, since E[Y (x̄)] = 0, we obtain that in this case
the bias E[ϑ̂N ] − ϑ∗ is of order o(N−1/2). On the other hand, if the true problem has
more than one optimal solution, then the right-hand side of (5.25) is given by the minimum
of a number of random variables. Although each Y (x) has mean zero, their minimum
inf x∈S Y (x) typically has a negative mean if the set S has more than one element. Therefore,
if S is not a singleton, then the bias E[ϑ̂N ] − ϑ∗ typically is strictly less than zero and is of
order O(N−1/2). Moreover, the bias tends to be bigger the larger the set S is. For a further
discussion of the bias issue, see Remark 7 on page 168.
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5.1.3 Second Order Asymptotics

Formula (5.24) gives a first order expansion of the SAA optimal value ϑ̂N . In this section
we discuss a second order term in an expansion of ϑ̂N . It turns out that the second order
analysis of ϑ̂N is closely related to deriving (first order) asymptotics of optimal solutions of
the SAAproblem. We assume in this section that the true (expected value) problem (5.1) has
unique optimal solution x̄ and denote by x̂N an optimal solution of the corresponding SAA
problem. In order to proceed with the second order analysis we need to impose considerably
stronger assumptions.

Our analysis is based on the second order Delta theorem, Theorem 7.62, and second
order perturbation analysis of section 7.1.5. As in section 7.1.5, we consider a convex
compact set U ⊂ R

n such that X ⊂ int(U), and we work with the space W 1,∞(U) of
Lipschitz continuous functions ψ : U → R equipped with the norm

‖ψ‖1,U := sup
x∈U
|ψ(x)| + sup

x∈U ′
‖∇ψ(x)‖, (5.30)

where U ′ ⊂ int(U) is the set of points where ψ(·) is differentiable.
We make the following assumptions about the true problem:

(S1) The function f (x) is Lipschitz continuous on U , has unique minimizer x̄ over x ∈ X,
and is twice continuously differentiable at x̄.

(S2) The set X is second order regular at x̄.

(S3) The quadratic growth condition (7.70) holds at x̄.

Let K be the subset of W 1,∞(U) formed by differentiable at x̄ functions. Note that
the set K forms a closed (in the norm topology) linear subspace of W 1,∞(U). Assumption
(S1) ensures that f ∈ K . In order to ensure that f̂N ∈ K w.p. 1, we make the following
assumption:

(S4) Function F(·, ξ) is Lipschitz continuous on U and differentiable at x̄ for a.e. ξ ∈ �.

We view f̂N as a random element of W 1,∞(U), and assume, further, that N1/2(f̂N − f )
converges in distribution to a random element Y of W 1,∞(U).

Consider the min-function V : W 1,∞(U)→ R defined as

V (ψ) := inf
x∈X ψ(x), ψ ∈ W 1,∞(U).

By Theorem 7.23, under assumptions (S1)–(S3), the min-function V (·) is second order
Hadamard directionally differentiable at f tangentially to the set K and we have the fol-
lowing formula for the second order directional derivative in a direction δ ∈K:

V ′′f (δ) = inf
h∈C(x̄)

{
2hT∇δ(x̄)+ hT∇2f (x̄)h− s

(− ∇f (x̄),T 2
X (x̄, h)

)}
. (5.31)

Here C(x̄) is the critical cone of the true problem, T 2
X (x̄, h) is the second order tangent set

to X at x̄ and s(·, A) denotes the support function of set A. (See page 386 for the definition
of second order directional derivatives.)
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Moreover, suppose that the set X is given in the form

X := {x ∈ R
n : G(x) ∈ K}, (5.32)

where G : R
n → R

m is a twice continuously differentiable mapping and K ⊂ R
m is a

closed convex cone. Then, under Robinson constraint qualification, the optimal value of
the right-hand side of (5.31) can be written in a dual form (compare with (7.84)), which
results in the following formula for the second order directional derivative in a direction
δ ∈K:

V ′′f (δ) = inf
h∈C(x̄)

sup
λ∈�(x̄)

{
2hT∇δ(x̄)+ hT∇2

xxL(x̄, λ)h− s
(
λ,T(h)

)}
. (5.33)

Here
T(h) := T 2

K

(
G(x̄), [∇G(x̄)]h), (5.34)

andL(x, λ) is the Lagrangian and�(x̄) is the set of Lagrange multipliers of the true problem.

Theorem 5.8. Suppose that the assumptions (S1)–(S4) hold and N1/2(f̂N − f ) converges
in distribution to a random element Y of W 1,∞(U). Then

ϑ̂N = f̂N (x̄)+ 1
2V
′′
f (f̂N − f )+ op(N−1), (5.35)

and
N
[
ϑ̂N − f̂N (x̄)

] D→ 1
2V
′′
f (Y ). (5.36)

Moreover, suppose that for every δ ∈ K the problem in the right-hand side of (5.31)
has unique optimal solution h̄ = h̄(δ). Then

N1/2
(
x̂N − x̄

) D→ h̄(Y ). (5.37)

Proof. By the second order Delta theorem, Theorem 7.62, we have that

ϑ̂N = ϑ∗ + V ′f (f̂N − f )+ 1
2V
′′
f (f̂N − f )+ op(N−1)

and
N
[
ϑ̂N − ϑ∗ − V ′f (f̂N − f )

] D→ 1
2V
′′
f (Y ).

We also have (compare with formula (5.27)) that

V ′f (f̂N − f ) = f̂N (x̄)− f (x̄) = f̂N (x̄)− ϑ∗,
and hence (5.35) and (5.36) follow.

Now consider a (measurable) mapping x : W 1,∞(U)→ R
n such that

x(ψ) ∈ arg min
x∈X ψ(x), ψ ∈ W 1,∞(U).

We have that x(f ) = x̄, and by (7.82) of Theorem 7.23 we have that x(·) is Hadamard
directionally differentiable at f tangentially to K , and for δ ∈ K the directional deriva-
tive x′(f, δ) is equal to the optimal solution in the right-hand side of (5.31), provided
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that it is unique. By applying the Delta theorem, Theorem 7.61, this completes the proof
of (5.37).

One of the difficulties in applying the above theorem is verification of convergence
in distribution ofN1/2(f̂N − f ) in the spaceW 1,∞(X). Actually, it could be easier to prove
asymptotic results (5.35)–(5.37) by direct methods. Note that formulas (5.31) and (5.33),
for the second order directional derivatives V ′′f (f̂N − f ), involve statistical properties of

f̂N (x) only at the (fixed) point x̄. Note also that by the (finite dimensional) CLT we have that
N1/2

[∇f̂N (x̄)−∇f (x̄)] converges in distribution to normal N (0,Σ) with the covariance
matrix

Σ = E
[(∇F(x̄, ξ)− ∇f (x̄))(∇F(x̄, ξ)− ∇f (x̄))T], (5.38)

provided that this covariance matrix is well defined and E[∇F(x̄, ξ)] = ∇f (x̄), i.e., the
differentiation and expectation operators can be interchanged (see Theorem 7.44).

LetZ be a random vector having normal distribution, Z ∼ N (0,Σ), with covariance
matrixΣ defined in (5.38), and let the setX be given in the form (5.32). Then by the above
discussion and formula (5.33), we have that under appropriate regularity conditions,

N
[
ϑ̂N − f̂N (x̄)

] D→ 1
2v(Z), (5.39)

where v(Z) is the optimal value of the problem

Min
h∈C(x̄)

sup
λ∈�(x̄)

{
2hTZ + hT∇2

xxL(x̄, λ)h− s
(
λ,T(h)

)}
, (5.40)

with T(h) being the second order tangent set defined in (5.34). Moreover, if for all Z,
problem (5.40) possesses unique optimal solution h̄ = h(Z), then

N1/2
(
x̂N − x̄

) D→ h(Z). (5.41)

Recall also that if the cone K is polyhedral, then the curvature term s
(
λ,T(h)

)
vanishes.

Remark 7. Note that E
[
f̂N (x̄)

] = f (x̄) = ϑ∗. Therefore, under the respective regularity
conditions, in particular under the assumption that the true problem has unique optimal
solution x̄, we have by (5.39) that the expected value of the term 1

2N
−1v(Z) can be viewed

as the asymptotic bias of ϑ̂N . This asymptotic bias is of order O(N−1). This can be
compared with formula (5.29) for the asymptotic bias of order O(N−1/2) when the set of
optimal solutions of the true problem is not a singleton. Note also that v(·) is nonpositive;
to see this, just take h = 0 in (5.40).

As an example, consider the case where the set X is defined by a finite number of
constraints:

X := {x ∈ R
n : gi(x) = 0, i = 1, . . . , q, gi(x) ≤ 0, i = q + 1, . . . , p

}
(5.42)

with the functions gi(x), i = 1, . . . , p, being twice continuously differentiable. This is a
particular form of (5.32) withG(x) := (g1(x), . . . , gp(x)) andK := {0q} ×R

p−q
− . Denote

I(x̄) := {i : gi(x̄) = 0, i = q + 1, . . . , p}
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the index set of active at x̄ inequality constraints. Suppose that the linear independence
constraint qualification (LICQ) holds at x̄, i.e., the gradient vectors∇gi(x̄), i ∈ {1, . . . , q}∪
I(x̄), are linearly independent. Then the corresponding set of Lagrange multipliers is a
singleton, �(x̄) = {λ̄}. In that case

C(x̄) = {h : hT∇gi(x̄) = 0, i ∈ {1, . . . , q} ∪ I+(λ̄), hT∇gi(x̄) ≤ 0, i ∈ I0(λ̄)
}
,

where

I0(λ̄) :=
{
i ∈ I(x̄) : λ̄i = 0

}
and I+(λ̄) :=

{
i ∈ I(x̄) : λ̄i > 0

}
.

Consequently problem (5.40) takes the form

Min
h∈Rn

2hTZ + hT∇2
xxL(x̄, λ̄)h

s.t. hT∇gi(x̄) = 0, i ∈ {1, . . . , q} ∪ I+(λ̄), hT∇gi(x̄) ≤ 0, i ∈ I0(λ̄).
(5.43)

This is a quadratic programming problem. The linear independence constraint qualification
implies that problem (5.43) has a unique vector α(Z) of Lagrange multipliers and that it has
a unique optimal solution h(Z) if the Hessian matrix H := ∇2

xxL(x̄, λ̄) is positive definite
over the linear space defined by the first q + |I+(λ̄)| (equality) linear constraints in (5.43).

If, furthermore, the strict complementarity condition holds, i.e., λ̄i > 0 for all i ∈
I+(λ̄), or in other words I0(λ̄) = ∅ , then h = h(Z) and α = α(Z) can be obtained as
solutions of the following system of linear equations[

H A

AT 0

] [
h

α

]
=
[
Z

0

]
. (5.44)

Here H = ∇2
xxL(x̄, λ̄) and A is the n× (q + |I(x̄)|) matrix whose columns are formed by

vectors ∇gi(x̄), i ∈ {1, . . . , q} ∪ I(x̄). Then

N1/2

[
x̂N − x̄
λ̂N − λ̄

]
D→ N

(
0, J−1ϒJ−1

)
, (5.45)

where

J :=
[
H A

AT 0

]
and ϒ :=

[
Σ 0
0 0

]
,

provided that the matrix J is nonsingular.
Under the linear independence constraint qualification and strict complementarity

condition, we have by the second order necessary conditions that the Hessian matrix H =
∇2
xxL(x̄, λ̄) is positive semidefinite over the linear space {h : ATh = 0}. Note that this linear

space coincides here with the critical cone C(x̄). It follows that the matrix J is nonsingular
iffH is positive definite over this linear space. That is, here the nonsingularity of the matrix
J is equivalent to the second order sufficient conditions at x̄.

Remark 8. As mentioned earlier, the curvature term s
(
λ,T(h)

)
in the auxiliary problem

(5.40) vanishes if the coneK is polyhedral. In particular, this happens ifK = {0q}×R
p−q
− ,

and hence the feasible set X is given in the form (5.42). This curvature term can also
be written in an explicit form for some nonpolyhedral cones, in particular for the cone of
positive semidefinite matrices (see [22, section 5.3.6]).
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5.1.4 Minimax Stochastic Programs

Sometimes it is worthwhile to consider minimax stochastic programs of the form

Min
x∈X sup

y∈Y

{
f (x, y) := E[F(x, y, ξ)]}, (5.46)

whereX ⊂ R
n and Y ⊂ R

m are closed sets, F : X×Y ×�→ R and ξ = ξ(ω) is a random
vector whose probability distribution is supported on set� ⊂ R

d . The corresponding SAA
problem is obtained by using the sample average as an approximation of the expectation
f (x, y), that is,

Min
x∈X sup

y∈Y

f̂N (x, y) := 1

N

N∑
j=1

F(x, y, ξ j )

 . (5.47)

As before, denote by, ϑ∗ and ϑ̂N the optimal values of (5.46) and (5.47), respectively,
and by Sx ⊂ X and Ŝx,N ⊂ X the respective sets of optimal solutions. Recall thatF(x, y, ξ)
is said to be a Carathéodory function if F(x, y, ξ(·)) is measurable for every (x, y) and
F(·, ·, ξ) is continuous for a.e. ξ ∈ �. We make the following assumptions:

(A′1) F(x, y, ξ) is a Carathéodory function.

(A′2) The sets X and Y are nonempty and compact.

(A′3) F(x, y, ξ) is dominated by an integrable function, i.e., there is an open setN ⊂ R
n+m

containing the setX×Y and an integrable, with respect to the probability distribution
of the random vector ξ , function h(ξ) such that |F(x, y, ξ)| ≤ h(ξ) for all (x, y) ∈ N
and a.e. ξ ∈ �.

By Theorem 7.43 it follows that the expected value function f (x, y) is continuous on
X × Y . Since Y is compact, this implies that the max-function

φ(x) := sup
y∈Y

f (x, y)

is continuous onX. It also follows that the function f̂N (x, y) = f̂N (x, y, ω) is a Carathéodory
function. Consequently, the sample average max-function

φ̂N (x, ω) := sup
y∈Y

f̂N(x, y, ω)

is a Carathéodory function. Since ϑ̂N = ϑ̂N (ω) is given by the minimum of the Carathéodory
function φ̂N (x, ω), it follows that it is measurable.

Theorem 5.9. Suppose that assumptions (A′1)–(A′3) hold and the sample is iid. Then
ϑ̂N → ϑ∗ and D(Ŝx,N , Sx)→ 0 w.p. 1 as N →∞.

Proof. By Theorem 7.48 we have that under the specified assumptions, f̂N (x, y) converges
to f (x, y) w.p. 1 uniformly on X × Y . That is, #N → 0 w.p. 1 as N →∞, where

#N := sup
(x,y)∈X×Y

∣∣∣f̂N (x, y)− f (x, y)∣∣∣ .
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Consider φ̂N (x) := supy∈Y f̂N(x, y) and φ(x) := supy∈Y f (x, y). We have that

sup
x∈X

∣∣∣φ̂N (x)− φ(x)∣∣∣ ≤ #N,

and hence
∣∣ϑ̂N − ϑ∗∣∣ ≤ #N. It follows that ϑ̂N → ϑ∗ w.p. 1.

The function φ(x) is continuous and φ̂N (x) is continuous w.p. 1. Consequently, the
set Sx is nonempty and Ŝx,N is nonempty w.p. 1. Now to prove that D(Ŝx,N , Sx)→ 0 w.p. 1,
one can proceed exactly in the same way as in the proof of Theorem 5.3.

We discuss now asymptotics of ϑ̂N in the convex–concave case. We make the fol-
lowing additional assumptions:

(A′4) The sets X and Y are convex, and or a.e. ξ ∈ � the function F(·, ·, ξ) is convex–
concave on X × Y , i.e., the function F(·, y, ξ) is convex on X for every y ∈ Y , and
the function F(x, ·, ξ) is concave on Y for every x ∈ X.

It follows that the expected value function f (x, y) is convex concave and continuous
on X × Y . Consequently, problem (5.46) and its dual

Max
y∈Y inf

x∈X f (x, y) (5.48)

have nonempty and bounded sets of optimal solutions Sx ⊂ X and Sy ⊂ Y , respectively.
Moreover, the optimal values of problems (5.46) and (5.48) are equal to each other and
Sx × Sy forms the set of saddle points of these problems.

(A′5) For some point (x, y) ∈ X × Y , the expectation E[F(x, y, ξ)2] is finite, and there
exists a measurable function C : � → R+ such that E[C(ξ)2] is finite and the
inequality

|F(x, y, ξ)− F(x ′, y ′, ξ)| ≤ C(ξ)(‖x − x ′‖ + ‖y − y ′‖) (5.49)

holds for all (x, y), (x ′, y ′) ∈ X × Y and a.e. ξ ∈ �.

The above assumption implies that f (x, y) is Lipschitz continuous on X × Y with
Lipschitz constant κ = E[C(ξ)].

Theorem 5.10. Consider the minimax stochastic problem (5.46) and the SAA problem
(5.47) based on an iid sample. Suppose that assumptions (A′1)–(A′2) and (A′4)–(A′5) hold.
Then

ϑ̂N = inf
x∈Sx

sup
y∈Sy

f̂N (x, y)+ op(N−1/2). (5.50)

Moreover, if the sets Sx = {x̄} and Sy = {ȳ} are singletons, then N1/2(ϑ̂N − ϑ∗) converges
in distribution to normal with zero mean and variance σ 2 = Var[F(x̄, ȳ, ξ)].

Proof. Consider the space C(X, Y ) of continuous functions ψ : X × Y → R equipped
with the sup-norm ‖ψ‖ = supx∈X,y∈Y |ψ(x, y)|, and set K ⊂ C(X, Y ) formed by convex–
concave on X × Y functions. It is not difficult to see that the set K is a closed (in the
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norm topology of C(X, Y )) and convex cone. Consider the optimal value function V :
C(X, Y )→ R defined as

V (ψ) := inf
x∈X sup

y∈Y
ψ(x, y) for ψ ∈ C(X, Y ). (5.51)

Recall that it is said thatV (·) is Hadamard directionally differentiable atf ∈K , tangentially
to the set K , if the following limit exists for any γ ∈ TK(f ):

V ′f (γ ) := lim
t↓0,η→γ
f+tη∈K

V (f + tη)− V (f )
t

. (5.52)

By Theorem 7.24 we have that the optimal value function V (·) is Hadamard directionally
differentiable at f tangentially to the set K and

V ′f (γ ) = inf
x∈Sx

sup
y∈Sy

γ (x, y) (5.53)

for any γ ∈ TK(f ).
By the assumption (A′5) we have that N1/2(f̂N − f ), considered as a sequence of

random elements of C(X, Y ), converges in distribution to a random element of C(X, Y ).
Then by noting that ϑ∗ = f (x∗, y∗) for any (x∗, y∗) ∈ Sx × Sy and using Hadamard
directional differentiability of the optimal value function, tangentially to the set K , together
with formula (5.53) and a version of the Delta method given in Theorem 7.61, we can
complete the proof.

Suppose now that the feasible set X is defined by constraints in the form (5.11). The
Lagrangian function of the true problem is

L(x, λ) := f (x)+
p∑
i=1

λigi(x).

Suppose also that the problem is convex, that is, the set X0 is convex and for all ξ ∈ � the
functionsF(·, ξ) andGi(·, ξ), i = 1, . . . , p, are convex. Suppose, further, that the functions
f (x) and gi(x) are finite valued on a neighborhood of the set S (of optimal solutions of the
true problem) and the Slater condition holds. Then with every optimal solution x̄ ∈ S is
associated a nonempty and bounded set� of Lagrange multipliers vectors λ = (λ1, . . . , λp)

satisfying the optimality conditions

x̄ ∈ arg min
x∈X0

L(x, λ), λi ≥ 0 and λigi(x̄) = 0, i = 1, . . . , p. (5.54)

The set � coincides with the set of optimal solutions of the dual of the true problem and
therefore is the same for any optimal solution x̄ ∈ S.

Let ϑ̂N be the optimal value of the SAA problem (5.10) with XN given in the form
(5.13). That is, ϑ̂N is the optimal value of the problem

Min
x∈X0

f̂N (x) subject to ĝiN (x) ≤ 0, i = 1, . . . , p, (5.55)

with f̂N (x) and ĝiN (x) being the SAA functions of the respective integrands F(x, ξ) and
Gi(x, ξ), i = 1, . . . , p. Assume that conditions (A1) and (A2), formulated on page 164,
are satisfied for the integrands F and Gi , i = 1, . . . , p, i.e., finiteness of the corresponding
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second order moments and the Lipschitz continuity condition of assumption (A2) hold for
each function. It follows that the corresponding expected value functions f (x) and gi(x) are
finite valued and continuous onX. As in Theorem 5.7, we denote by Y (x) random variables
which are normally distributed and have the same covariance structure as F(x, ξ). We
also denote by Yi(x) random variables which are normally distributed and have the same
covariance structure as Gi(x, ξ), i = 1, . . . , p.

Theorem 5.11. Let ϑ̂N be the optimal value of the SAA problem (5.55). Suppose that the
sample is iid, the problem is convex, and the following conditions are satisfied: (i) the set S,
of optimal solutions of the true problem, is nonempty and bounded, (ii) the functions f (x)
and gi(x) are finite valued on a neighborhood of S, (iii) the Slater condition for the true
problem holds, and (iv) the assumptions (A1) and (A2) hold for the integrands F and Gi ,
i = 1, . . . , p. Then

N1/2
(
ϑ̂N − ϑ∗

)
D→ inf

x∈S sup
λ∈�

[
Y (x)+

p∑
i=1

λiYi(x)

]
. (5.56)

If, moreover, S = {x̄} and � = {λ̄} are singletons, then

N1/2
(
ϑ̂N − ϑ∗

)
D→ N (0, σ 2) (5.57)

with

σ 2 := Var

[
F(x̄, ξ)+

p∑
i=1

λ̄iGi(x̄, ξ)

]
. (5.58)

Proof. Since the problem is convex and the Slater condition (for the true problem) holds,
we have that ϑ∗ is equal to the optimal value of the (Lagrangian) dual

Max
λ≥0

inf
x∈X0

L(x, λ), (5.59)

and the set of optimal solutions of (5.59) is nonempty and compact and coincides with
the set of Lagrange multipliers �. Since the problem is convex and S is nonempty and
bounded, the problem can be considered on a bounded neighborhood of S, i.e., without loss
of generality it can be assumed that the set X is compact. The proof can now be completed
by applying Theorem 5.10.

Remark 9. There are two possible approaches to generating random samples in construction
of SAA problems of the form (5.55) by Monte Carlo sampling techniques. One is to use
the same sample ξ 1, . . . , ξN for estimating the functions f (x) and gi(x), i = 1, . . . , p,
by their SAA counterparts. The other is to use independent samples, possibly of different
sizes, for each of these functions (see Remark 5 on page 161). The asymptotic results of
Theorem 5.11 are for the case of the same sample. The (asymptotic) variance σ 2, given
in (5.58), is equal to the sum of the variances of F(x̄, ξ) and λ̄iGi(x̄, ξ), i = 1, . . . , p, and
all their covariances. If we use the independent samples construction, then a similar result
holds but without the corresponding covariance terms. Since in the case of the same sample
these covariance terms could be expected to be positive, it would be advantageous to use the
independent, rather than the same, samples approach in order to reduce variability of the
SAA estimates.
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5.2 Stochastic Generalized Equations
In this section we discuss the following so-called stochastic generalized equations. Consider
a random vector ξ whose distribution is supported on a set� ⊂ R

d , a mapping� : Rn×�→
R
n, and a multifunction � : Rn ⇒ R

n. Suppose that the expectation φ(x) := E[�(x, ξ)]
is well defined and finite valued. We refer to

φ(x) ∈ �(x) (5.60)

as true, or expected value, generalized equation and say that a point x̄ ∈ R
n is a solution of

(5.60) if φ(x̄) ∈ �(x̄).
The above abstract setting includes the following cases. If �(x) = {0} for every

x ∈ R
n, then (5.60) becomes the ordinary equation φ(x) = 0. As another example, let

�(·) := NX(·), where X is a nonempty closed convex subset of R
n and NX(x) denotes the

(outward) normal cone toX at x. Recall that, by the definition, NX(x) = ∅ if x �∈ X. In that
case x̄ is a solution of (5.60) iff x̄ ∈ X and the following so-called variational inequality
holds:

(x − x̄)Tφ(x̄) ≤ 0, ∀x ∈ X. (5.61)

Since the mapping φ(x) is given in the form of the expectation, we refer to such variational
inequalities as stochastic variational inequalities. Note that if X = R

n, then NX(x) = {0}
for any x ∈ R

n, and hence in that case the above variational inequality is reduced to the
equation φ(x) = 0. Let us also remark that if�(x, ξ) := −∇xF (x, ξ) for some real valued
function F(x, ξ), and the interchangeability formula E[∇xF (x, ξ)] = ∇f (x) holds, i.e.,
φ(x) = −∇f (x), where f (x) := E[F(x, ξ)], then (5.61) represents first order necessary,
and iff (x) is convex, sufficient conditions for x̄ to be an optimal solution for the optimization
problem (5.1).

If the feasible set X of the optimization problem (5.1) is defined by constraints in the
form

X := {x ∈ R
n : gi(x) = 0, i = 1, . . . , q, gi(x) ≤ 0, i = q + 1, . . . , p

}
(5.62)

with gi(x) := E[Gi(x, ξ)], i = 1, . . . , p, then the corresponding first-order Karush–Kuhn–
Tucker (KKT) optimality conditions can be written in a form of variational inequality. That
is, let z := (x, λ) ∈ R

n+p and

L(z, ξ) := F(x, ξ)+∑p

i=1 λiGi(x, ξ),

�(z) := E[L(z, ξ)] = f (x)+∑p

i=1 λigi(x)

be the corresponding Lagrangians. Define

�(z, ξ) :=
 ∇xL(z, ξ)G1(x, ξ)

· · ·
Gp(x, ξ)

 and �(z) := NK(z), (5.63)

where K := R
n × R

q × R
p−q
+ ⊂ R

n+p. Note that if z ∈ K , then

NK(z) =
{
(v, γ ) ∈ R

n+p : v = 0 and γi = 0, i = 1, . . . , q,
γi = 0, i ∈ I+(λ), γi ≤ 0, i ∈ I0(λ)

}
, (5.64)
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where
I0(λ) := {i : λi = 0, i = q + 1, . . . , p} ,
I+(λ) := {i : λi > 0, i = q + 1, . . . , p} , (5.65)

and NK(z) = ∅ if z �∈ K . Consequently, assuming that the interchangeability formula
holds, and hence E[∇xL(z, ξ)] = ∇�x(z) = ∇f (x)+∑p

i=1 λi∇gi(x), we have that

φ(z) := E[�(z, ξ)] =
 ∇x�(z)g1(x)

· · ·
gp(x)

 , (5.66)

and variational inequality φ(z) ∈ NK(z) represents the KKT optimality conditions for the
true optimization problem.

We make the following assumption about the multifunction �(x):

(E1) The multifunction �(x) is closed, that is, the following holds: if xk → x, yk ∈ �(xk)
and yk → y, then y ∈ �(x).

The above assumption implies that the multifunction �(x) is closed valued, i.e., for any
x ∈ R

n the set �(x) is closed. For variational inequalities, assumption (E1) always holds,
i.e., the multifunction x !→ NX(x) is closed.

Now let ξ 1, . . . , ξN be a random sample ofN realizations of the random vector ξ and
let φ̂N (x) := N−1∑N

j=1 �(x, ξ
j ) be the corresponding sample average estimate of φ(x).

We refer to
φ̂N (x) ∈ �(x) (5.67)

as the SAA generalized equation. There are standard numerical algorithms for solving
nonlinear equations which can be applied to (5.67) in the case �(x) ≡ {0}, i.e., when (5.67)
is reduced to the ordinary equation φ̂N (x) = 0. There are also numerical procedures for
solving variational inequalities. We are not going to discuss such numerical algorithms but
rather concentrate on statistical properties of solutions of SAA equations. We denote by S
and ŜN the sets of (all) solutions of the true (5.60) and SAA (5.67) generalized equations,
respectively.

5.2.1 Consistency of Solutions of the SAA Generalized Equations

In this section we discuss convergence properties of the SAA solutions.

Theorem 5.12. Let C be a compact subset of R
n such that S ⊂ C. Suppose that: (i) the

multifunction �(x) is closed (assumption (E1)), (ii) the mapping φ(x) is continuous on C,
(iii) w.p. 1 forN large enough the set ŜN is nonempty and ŜN ⊂ C, and (iv) φ̂N (x) converges
to φ(x) w.p. 1 uniformly on C as N →∞. Then D(ŜN , S)→ 0 w.p. 1 as N →∞.

Proof. The above result basically is deterministic in the sense that if we view φ̂N (x) =
φ̂N (x, ω) as defined on a common probability space, then it should be verified for a.e. ω.
Therefore we omit saying “w.p. 1.” Consider a sequence x̂N ∈ ŜN . Because of assumption
(iii), by passing to a subsequence if necessary, we need to show only that if x̂N converges
to a point x∗, then x∗ ∈ S (compare with the proof of Theorem 5.3). Now since it is
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assumed that φ(·) is continuous and φ̂N (x) converges to φ(x) uniformly, it follows that
φ̂N (x̂N )→ φ(x∗) (see Proposition 5.1). Since φ̂N (x̂N ) ∈ �(x̂N), it follows by assumption
(E1) that φ(x∗) ∈ �(x∗), which completes the proof.

A few remarks about the assumptions involved in the above consistency result are
now in order. By Theorem 7.48 we have that, in the case of iid sampling, the assumptions
(ii) and (iv) of the above proposition are satisfied for any compact set C if the following
assumption holds:

(E2) For every ξ ∈ � the function �(·, ξ) is continuous on C and ‖�(x, ξ)‖x∈C is domi-
nated by an integrable function.

There are two parts to assumption (iii) of Theorem 5.12, namely, that the SAA generalized
equations do not have a solution which escapes to infinity, and that they possess at least
one solution w.p. 1 for N large enough. The first of these assumptions often can be verified
by ad hoc methods. The second assumption is more subtle. We will discuss it next. The
following concept of strong regularity is due to Robinson [170].

Definition 5.13. Suppose that the mapping φ(x) is continuously differentiable. We say that
a solution x̄ ∈ S is strongly regular if there exist neighborhoods N1 and N2 of 0 ∈ R

n and
x̄, respectively, such that for every δ ∈ N1 the (linearized) generalized equation

δ + φ(x̄)+ ∇φ(x̄)(x − x̄) ∈ �(x) (5.68)

has a unique solution in N2, denoted x̃ = x̃(δ), and x̃(·) is Lipschitz continuous on N1.

Note that it follows from the above conditions that x̃(0) = x̄. In the case �(x) ≡ {0},
strong regularity simply means that the n× n Jacobian matrix J := ∇φ(x̄) is invertible or,
in other words, nonsingular. Also in the case of variational inequalities, the strong regularity
condition was investigated extensively, we discuss this later.

Let V be a convex compact neighborhood of x̄, i.e., x̄ ∈ int(V). Consider the space
C1(V,Rn) of continuously differentiable mappings ψ : V → R

n equipped with the norm

‖ψ‖1,V := sup
x∈V
‖φ(x)‖ + sup

x∈V
‖∇φ(x)‖.

The following (deterministic) result is essentially due to Robinson [171].
Suppose that φ(x) is continuously differentiable on V, i.e., φ ∈ C1(V,Rn). Let x̄

be a strongly regular solution of the generalized equation (5.60). Then there exists ε > 0
such that for any u ∈ C1(V,Rn) satisfying ‖u − φ‖1,V ≤ ε, the generalized equation
u(x) ∈ �(x) has a unique solution x̂ = x̂(u) in a neighborhood of x̄, such that x̂(·) is
Lipschitz continuous (with respect the norm ‖ · ‖1,V), and

x̂(u) = x̃(u(x̄)− φ(x̄))+ o(‖u− φ‖1,V). (5.69)

Clearly, we have that x̂(φ) = x̄ and x̂
(
φ̂N
)

is a solution, in a neighborhood of x̄, of the SAA

generalized equation provided that ‖φ̂N − φ‖1,V ≤ ε. Therefore, by employing the above
results for the mapping u(·) := φ̂N (·) we immediately obtain the following.
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Theorem 5.14. Let x̄ be a strongly regular solution of the true generalized equation (5.60),
and suppose that φ(x) and φ̂N (x) are continuously differentiable in a neighborhood V of
x̄ and ‖φ̂N − φ‖1,V → 0 w.p. 1 as N → ∞. Then w.p. 1 for N large enough the SAA
generalized equation (5.67) possesses a unique solution x̂N in a neighborhood of x̄, and
x̂N → x̄ w.p. 1 as N →∞.

The assumption that ‖φ̂N − φ‖1,V → 0 w.p. 1, in the above theorem, means that
φ̂N (x) and ∇φ̂N (x) converge w.p. 1 to φ(x) and ∇φ(x), respectively, uniformly on V. By
Theorem 7.48, in the case of iid sampling this is ensured by the following assumption:

(E3) For a.e. ξ the mapping�(·, ξ) is continuously differentiable on V, and ‖�(x, ξ)‖x∈V
and ‖∇x�(x, ξ)‖x∈V are dominated by an integrable function.

Note that the assumption that �(·, ξ) is continuously differentiable on a neighborhood of
x̄ is essential in the above analysis. By combining Theorems 5.12 and 5.14 we obtain the
following result.

Theorem 5.15. Let C be a compact subset of R
n and let x̄ be a unique in C solution of

the true generalized equation (5.60). Suppose that: (i) the multifunction �(x) is closed
(assumption (E1)), (ii) for a.e. ξ the mapping �(·, ξ) is continuously differentiable on C,
and ‖�(x, ξ)‖x∈C and ‖∇x�(x, ξ)‖x∈C are dominated by an integrable function, (iii) the
solution x̄ is strongly regular, and (iv) φ̂N (x) and ∇φ̂N (x) converge w.p. 1 to φ(x) and
∇φ(x), respectively, uniformly on C. Then w.p. 1 for N large enough the SAA generalized
equation possesses unique in C solution x̂N converging to x̄ w.p. 1 as N →∞.

Note again that if the sample is iid, then assumption (iv) in the above theorem is
implied by assumption (ii) and hence is redundant.

5.2.2 Asymptotics of SAA Generalized Equations Estimators

By using the first order approximation (5.69) it is also possible to derive asymptotics of x̂N .
Suppose for the moment that �(x) ≡ {0}. Then strong regularity means that the Jacobian
matrix J := ∇φ(x̄) is nonsingular and x̃(δ) is the solution of the corresponding linear
equations and hence can be written in the form

x̃(δ) = x̄ − J−1δ. (5.70)

By using (5.70) and (5.69) with u(·) := φ̂N (·), we obtain under certain regularity conditions,
which ensure that the remainder in (5.69) is of order op(N−1/2), that

N1/2(x̂N − x̄) = −J−1YN + op(1), (5.71)

where YN := N1/2
[
φ̂N (x̄)− φ(x̄)

]
. Moreover, in the case of iid sample, we have by

the CLT that YN
D→ N (0,Σ), where Σ is the covariance matrix of the random vector

�(x̄, ξ). Consequently, x̂N has asymptotically normal distribution with mean vector x̄ and
the covariance matrix N−1J−1ΣJ−1.
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Suppose now that �(·) := NX(·) with the set X being nonempty closed convex and
polyhedral, and let x̄ be a strongly regular solution of (5.60). Let x̃(δ) be the (unique)
solution, of the corresponding linearized variational inequality (5.68), in a neighborhood of
x̄. Consider the cone

CX(x̄) :=
{
y ∈ TX(x̄) : yTφ(x̄) = 0

}
, (5.72)

called the critical cone, and the Jacobian matrix J := ∇φ(x̄). Then for all δ sufficiently
close to 0 ∈ R

n, we have that x̃(δ) − x̄ coincides with the solution d̃(δ) of the variational
inequality

δ + Jd ∈ NCX(x̄)(d). (5.73)

Note that the mapping d̃(·) is positively homogeneous, i.e., for any δ ∈ R
n and t ≥ 0,

it follows that d̃(tδ) = t d̃(δ). Consequently, under the assumption that the solution x̄
is strongly regular, we obtain by (5.69) that d̃(·) is the directional derivative of x̂(u), at
u = φ, in the Hadamard sense. Therefore, under appropriate regularity conditions ensuring
functional CLT forN1/2(φ̂N−φ) in the spaceC1(V,Rn), it follows by the Delta theorem that

N1/2(x̂N − x̄) D→ d̃(Y ), (5.74)

where Y ∼ N (0,Σ) and Σ is the covariance matrix of �(x̄, ξ). Consequently, x̂N is
asymptotically normal iff the mapping d̃(·) is linear. This, in turn, holds if the cone CX(x̄)
is a linear space.

In the case �(·) := NX(·), with the setX being nonempty closed convex and polyhe-
dral, there is a complete characterization of the strong regularity in terms of the so-called
coherent orientation associated with the matrix (mapping) J := ∇φ(x̄) and the critical cone
CX(x̄). The interested reader is referred to [172], [79] for a discussion of this topic. Let us
just remark that if CX(x̄) is a linear subspace of R

n, then the variational inequality (5.73)
can be written in the form

Pδ + PJd = 0, (5.75)

where P denotes the orthogonal projection matrix onto the linear space CX(x̄). Then x̄ is
strongly regular iff the matrix (mapping)PJ restricted to the linear space CX(x̄) is invertible
or, in other words, nonsingular.

Suppose now that S = {x̄} is such that φ(x̄) belongs to the interior of the set �(x̄).
Then, since φ̂N (x̄) converges w.p. 1 to φ(x̄), it follows that the event “φ̂N (x̄) ∈ �(x̄)”
happens w.p. 1 for N large enough. Moreover, by the LD principle (see (7.191)) we have
that this event happens with probability approaching one exponentially fast. Of course,
φ̂N (x̄) ∈ �(x̄) means that x̂N = x̄ is a solution of the SAA generalized equation (5.67).
Therefore, in such case one may compute an exact solution of the true problem (5.60) by
solving the SAAproblem, with probability approaching one exponentially fast with increase
of the sample size. Note that if �(·) := NX(·) and x̄ ∈ S, then φ(x̄) ∈ int �(x̄) iff the
critical cone CX(x̄) is equal to {0}. In that case, the variational inequality (5.73) has solution
d̄ = 0 for any δ, i.e., d̃(δ) ≡ 0.

The above asymptotics can be applied, in particular, to the generalized equation (vari-
ational inequality) φ(z) ∈ NK(z), where K := R

n × R
q × R

p−q
+ and NK(z) and φ(z) are

given in (5.64) and (5.66), respectively. Recall that this variational inequality represents
the KKT optimality conditions of the expected value optimization problem (5.1) with the
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feasible setX given in the form (5.62). (We assume that the expectation functions f (x) and
gi(x), i = 1, . . . , p, are continuously differentiable.) Let x̄ be an optimal solution of the
(expected value) problem (5.1). It is said that the LICQ holds at the point x̄ if the gradient
vectors ∇gi(x̄), i ∈ {i : gi(x̄) = 0, i = 1, . . . , p}, (of active at x̄ constraints) are linearly
independent. Under the LICQ, to x̄ corresponds a unique vector λ̄ of Lagrange multipliers,
satisfying the KKT optimality conditions. Let z̄ = (x̄, λ̄) and I0(λ) and I+(λ) be the index
sets defined in (5.65). Then

TK(z̄) = R
n × R

q × {γ ∈ R
p−q : γi ≥ 0, i ∈ I0(λ̄)

}
. (5.76)

In order to simplify notation, let us assume that all constraints are active at x̄, i.e., gi(x̄) = 0,
i = 1, . . . , p. Since for sufficiently small perturbations of x inactive constraints remain
inactive, we do not lose generality in the asymptotic analysis by considering only active
at x̄ constraints. Then φ(z̄) = 0, and hence CK(z̄) = TK(z̄).

Assuming, further, that f (x) and gi(x), i = 1, . . . , p, are twice continuously differ-
entiable, we have that the following second order necessary conditions hold at x̄:

hT∇2
xx�(z̄)h ≥ 0, ∀h ∈ CX(x̄), (5.77)

where

CX(x̄) :=
{
h : hT∇gi(x̄) = 0, i ∈ {1, . . . , q} ∪ I+(λ̄), hT∇gi(x̄) ≤ 0, i ∈ I0(λ̄)

}
.

The corresponding second order sufficient conditions are

hT∇2
xx�(z̄)h > 0, ∀h ∈ CX(x̄) \ {0}. (5.78)

Moreover, z̄ is a strongly regular solution of the corresponding generalized equation iff the
LICQ holds at x̄ and the following (strong) form of second order sufficient conditions is
satisfied:

hT∇2
xx�(z̄)h > 0, ∀h ∈ lin(CX(x̄)) \ {0}, (5.79)

where

lin(CX(x̄)) :=
{
h : hT∇gi(x̄) = 0, i ∈ {1, . . . , q} ∪ I+(λ̄)

}
. (5.80)

Under the LICQ, the set defined in the right-hand side of (5.80) is, indeed, the linear space
generated by the cone CX(x̄). We also have here

J := ∇φ(z̄) =
[
H A

AT 0

]
, (5.81)

where H := ∇2
xx�(z̄) and A := [∇g1(x̄), . . . ,∇gp(x̄)

]
.

It is said that the strict complementarity condition holds at x̄ if the index set I0(λ̄)

is empty, i.e., all Lagrange multipliers corresponding to active at x̄ inequality constraints
are strictly positive. We have here that CK(z̄) is a linear space, and hence the SAA es-
timator ẑN = [x̂N , λ̂N ] is asymptotically normal iff the strict complementarity condition
holds. If the strict complementarity condition holds, then CK(z̄) = R

n+p (recall that it is
assumed that all constraints are active at x̄), and hence the normal cone to CK(z̄), at every
point, is {0}. Consequently, the corresponding variational inequality (5.73) takes the form
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δ + Jd = 0. Under the strict complementarity condition, z̄ is strongly regular iff the ma-
trix J is nonsingular. It follows that under the above assumptions together with the strict
complementarity condition, the following asymptotics hold (compare with (5.45)):

N1/2
(
ẑN − z̄

) D→ N
(
0, J−1ΣJ−1

)
, (5.82)

where Σ is the covariance matrix of the random vector �(z̄, ξ) defined in (5.63).

5.3 Monte Carlo Sampling Methods
In this section we assume that a random sample ξ 1, . . . , ξN ofN realizations of the random
vector ξ can be generated in the computer. In the Monte Carlo sampling method this
is accomplished by generating a sequence U 1, U 2, . . . of independent random (or rather
pseudorandom) numbers uniformly distributed on the interval [0,1], and then constructing
the sample by an appropriate transformation. In that way we can consider the sequence
ω := {U 1, U 2, . . .} as an element of the probability space equipped with the corresponding
product probability measure, and the sample ξ j = ξ j (ω), i = 1, 2, . . . , as a function
of ω. Since computer is a finite deterministic machine, sooner or later the generated sample
will start to repeat itself. However, modern random numbers generators have a very large
cycle period, and this method was tested in numerous applications. We view now the
corresponding SAA problem (5.2) as a way of approximating the true problem (5.1) while
drastically reducing the number of generated scenarios. For a statistical analysis of the
constructed SAAproblems, a particular numerical algorithm applied to solve these problems
is irrelevant.

Let us also remark that values of the sample average function f̂N (x) can be computed
in two somewhat different ways. The generated sample ξ 1, . . . , ξN can be stored in the
computer memory and called every time a new value (at a different point x) of the sample
average function should be computed. Alternatively, the same sample can be generated by
using a common seed number in an employed pseudorandom numbers generator. (This is
why this approach is called the common random number generation method.)

The idea of common random number generation is well known in simulation. That is,
suppose that we want to compare values of the objective function at two points x1, x2 ∈ X.
In that case we are interested in the difference f (x1)− f (x2) rather than in the individual
values f (x1) and f (x2). If we use sample average estimates f̂N (x1) and f̂N (x2) based on
independent samples, both of size N , then f̂N (x1) and f̂N (x2) are uncorrelated and

Var
[
f̂N (x1)− f̂N (x2)

] = Var
[
f̂N (x1)

]+ Var
[
f̂N (x2)

]
. (5.83)

On the other hand, if we use the same sample for the estimators f̂N (x1) and f̂N (x2), then

Var
[
f̂N (x1)− f̂N (x2)

] = Var
[
f̂N (x1)

]+Var
[
f̂N (x2)

]− 2Cov
(
f̂N (x1), f̂N (x2)

)
. (5.84)

In both cases, f̂N (x1) − f̂N (x2) is an unbiased estimator of f (x1) − f (x2). However,
in the case of the same sample, the estimators f̂N (x1) and f̂N (x2) tend to be positively
correlated with each other, in which case the variance in (5.84) is smaller than the one in
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(5.83). The difference between the independent and the common random number generated
estimators of f (x1) − f (x2) can be especially dramatic when the points x1 and x2 are
close to each other and hence the common random number generated estimators are highly
positively correlated.

By the results of section 5.1.1 we have that under mild regularity conditions, the
optimal value and optimal solutions of the SAA problem (5.2) converge w.p. 1, as the
sample size increases, to their true counterparts. These results, however, do not give any
indication of quality of solutions for a given sample of size N . In the next section we
discuss exponential rates of convergence of optimal and nearly optimal solutions of the
SAA problem (5.2). This allows us to give an estimate of the sample size which is required
to solve the true problem with a given accuracy by solving the SAA problem. Although
such estimates of the sample size typically are too conservative for a practical use, they
give insight into the complexity of solving the true (expected value) problem.

Unless stated otherwise, we assume in this section that the random sample ξ 1, . . . , ξN

is iid, and make the following assumption:

(M1) The expectation function f (x) is well defined and finite valued for all x ∈ X.

For ε ≥ 0 we denote by

Sε := {x ∈ X : f (x) ≤ ϑ∗ + ε} and ŜεN :=
{
x ∈ X : f̂N (x) ≤ ϑ̂N + ε

}
the sets of ε-optimal solutions of the true and the SAA problems, respectively.

5.3.1 Exponential Rates of Convergence and Sample Size Estimates in
the Case of a Finite Feasible Set

In this section we assume that the feasible setX is finite, although its cardinality |X| can be
very large. Since X is finite, the sets Sε and ŜεN are nonempty and finite. For parameters
ε ≥ 0 and δ ∈ [0, ε], consider the event {ŜδN ⊂ Sε}. This event means that any δ-optimal
solution of the SAA problem is an ε-optimal solution of the true problem. We estimate now
the probability of that event.

We can write {
ŜδN �⊂ Sε

}
=
⋃

x∈X\Sε

⋂
y∈X

{
f̂N (x) ≤ f̂N (y)+ δ

}
, (5.85)

and hence

Pr
(
ŜδN �⊂ Sε

)
≤
∑

x∈X\Sε
Pr

⋂
y∈X

{
f̂N (x) ≤ f̂N (y)+ δ

} . (5.86)

Consider a mapping u : X \ Sε → X. If the set X \ Sε is empty, then any feasible
point x ∈ X is an ε-optimal solution of the true problem. Therefore we assume that this set
is nonempty. It follows from (5.86 ) that

Pr
(
ŜδN �⊂ Sε

)
≤
∑

x∈X\Sε
Pr
{
f̂N (x)− f̂N (u(x)) ≤ δ

}
. (5.87)
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We assume that the mapping u(·) is chosen in such a way that

f (u(x)) ≤ f (x)− ε∗, ∀x ∈ X \ Sε, (5.88)

and for some ε∗ ≥ ε. Note that such a mapping always exists. For example, if we use a
mapping u : X \ Sε → S, then (5.88) holds with

ε∗ := min
x∈X\Sε f (x)− ϑ

∗ (5.89)

and that ε∗ > ε since the set X is finite. Different choices of u(·) give a certain flexibility
to the following derivations.

For each x ∈ X \ Sε, define

Y (x, ξ) := F(u(x), ξ)− F(x, ξ). (5.90)

Note that E[Y (x, ξ)] = f (u(x))− f (x), and hence E[Y (x, ξ)] ≤ −ε∗ for all x ∈ X \ Sε.
The corresponding sample average is

ŶN (x) := 1

N

N∑
j=1

Y (x, ξ j ) = f̂N (u(x))− f̂N (x).

By (5.87) we have

Pr
(
ŜδN �⊂ Sε

)
≤
∑

x∈X\Sε
Pr
{
ŶN (x) ≥ −δ

}
. (5.91)

Let Ix(·) denote the (large deviations) rate function of the random variable Y (x, ξ). The
inequality (5.91) together with the LD upper bound (7.173) implies

1− Pr
(
ŜδN ⊂ Sε

)
≤
∑

x∈X\Sε
e−NIx(−δ). (5.92)

Note that inequality (5.92) is valid for any random sample of size N . Let us make the
following assumption:

(M2) For every x ∈ X \ Sε, the moment-generating function E
[
etY (x,ξ)

]
of the random

variable Y (x, ξ) = F(u(x), ξ)−F(x, ξ) is finite valued in a neighborhood of t = 0.

Assumption (M2) holds, for example, if the support� of ξ is a bounded subset of R
d ,

or if Y (x, ·) grows at most linearly and ξ has a distribution from an exponential family.

Theorem 5.16. Let ε and δ be nonnegative numbers. Then

1− Pr(ŜδN ⊂ Sε) ≤ |X| e−Nη(δ,ε), (5.93)

where
η(δ, ε) := min

x∈X\Sε Ix(−δ). (5.94)

Moreover, if δ < ε∗ and assumption (M2) holds, then η(δ, ε) > 0.
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Proof. Inequality (5.93) is an immediate consequence of inequality (5.92). If δ < ε∗,
then −δ > −ε∗ ≥ E[Y (x, ξ)], and hence it follows by assumption (M2) that Ix(−δ) > 0
for every x ∈ X \ Sε. (See the discussion above equation (7.178).) This implies that
η(δ, ε) > 0.

The following asymptotic result is an immediate consequence of inequality (5.93):

lim sup
N→∞

1

N
ln
[
1− Pr(ŜδN ⊂ Sε)

]
≤ −η(δ, ε). (5.95)

It means that the probability of the event that any δ-optimal solution of the SAA problem
provides an ε-optimal solution of the true problem approaches one exponentially fast as
N →∞. Note that since it is possible to employ a mapping u : X \ Sε → S with ε∗ > ε

(see (5.89)), this exponential rate of convergence holds even if δ = ε, and in particular if
δ = ε = 0. However, if δ = ε and the difference ε∗ − ε is small, then the constant η(δ, ε)
could be close to zero. Indeed, for δ close to −E[Y (x, ξ)], we can write by (7.178) that

Ix(−δ) ≈
(− δ − E[Y (x, ξ)])2

2σ 2
x

≥ (ε∗ − δ)2
2σ 2

x

, (5.96)

where
σ 2
x := Var[Y (x, ξ)] = Var[F(u(x), ξ)− F(x, ξ)]. (5.97)

Let us make now the following assumption:

(M3) There is a constant σ > 0 such that for any x ∈ X \ Sε the moment-generating
function Mx(t) of the random variable Y (x, ξ)− E[Y (x, ξ)] satisfies

Mx(t) ≤ exp
(
σ 2t2/2

)
, ∀t ∈ R. (5.98)

It follows from assumption (M3) that

ln E
[
etY (x,ξ)

]− tE[Y (x, ξ)] = lnMx(t) ≤ σ 2t2/2, (5.99)

and hence the rate function Ix(·), of Y (x, ξ), satisfies

Ix(z) ≥ sup
t∈R

{
t (z− E[Y (x, ξ)])− σ 2t2/2

} = (z− E[Y (x, ξ)])2
2σ 2

, ∀z ∈ R. (5.100)

In particular, it follows that

Ix(−δ) ≥
(− δ − E[Y (x, ξ)])2

2σ 2
≥ (ε∗ − δ)2

2σ 2
≥ (ε − δ)2

2σ 2
. (5.101)

Consequently the constant η(δ, ε) satisfies

η(δ, ε) ≥ (ε − δ)2
2σ 2

, (5.102)

and hence the bound (5.93) of Theorem 5.16 takes the form

1− Pr(ŜδN ⊂ Sε) ≤ |X| e−N(ε−δ)
2/(2σ 2). (5.103)
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This leads to the following result giving an estimate of the sample size which guarantees
that any δ-optimal solution of the SAA problem is an ε-optimal solution of the true problem
with probability at least 1− α.

Theorem 5.17. Suppose that assumptions (M1) and (M3) hold. Then for ε > 0, 0 ≤ δ < ε,
and α ∈ (0, 1), and for the sample size N satisfying

N ≥ 2σ 2

(ε − δ)2 ln

( |X|
α

)
, (5.104)

it follows that

Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.105)

Proof. By setting the right-hand side of the estimate (5.103) to≤ α and solving the obtained
inequality, we obtain (5.104).

Remark 10. Akey characteristic of the estimate (5.104) is that the required sample sizeN de-
pends logarithmically both on the size (cardinality) of the feasible setX and on the tolerance
probability (significance level)α. The constant σ , postulated in assumption (M3), measures,
in a sense, variability of a considered problem. If, for some x ∈ X, the random variable
Y (x, ξ) has a normal distribution with meanµx and variance σ 2

x , then its moment-generating
function is equal to exp

(
µxt + σ 2

x t
2/2
)
, and hence the moment-generating functionMx(t),

specified in assumption (M3), is equal to exp
(
σ 2
x t

2/2
)
. In that case, σ 2 := maxx∈X\Sε σ 2

x

gives the smallest possible value for the corresponding constant in assumption (M3). If
Y (x, ξ) is bounded w.p. 1, i.e., there is constant b > 0 such that∣∣Y (x, ξ)− E[Y (x, ξ)]∣∣ ≤ b, ∀x ∈ X and a.e. ξ ∈ �,
then by Hoeffding inequality (see Proposition 7.63 and estimate (7.186)) we have that
Mx(t) ≤ exp

(
b2t2/2

)
. In that case we can take σ 2 := b2.

In any case for small ε > 0 we have by (5.96) that Ix(−δ) can be approximated from
below by (ε − δ)2/(2σ 2

x ).

Remark 11. For, say, δ := ε/2, the right-hand side of the estimate (5.104) is proportional
to (σ/ε)2. For Monte Carlo sampling based methods, such dependence on σ and ε seems to
be unavoidable. In order to see that, consider a simple case when the feasible setX consists
of just two elements, i.e., X = {x1, x2} with f (x2) − f (x1) > ε > 0. By solving the
corresponding SAA problem we make the (correct) decision that x1 is the ε-optimal solution
if f̂N (x2)−f̂N (x1) > 0. If the random variableF(x2, ξ)−F(x1, ξ) has a normal distribution
with mean µ = f (x2) − f (x1) and variance σ 2, then f̂N (x2) − f̂N (x1) ∼ N (µ, σ 2/N)

and the probability of the event {f̂N (x2) − f̂N (x1) > 0} (i.e., of the correct decision) is
�(µ
√
N/σ), where �(z) is the cumulative distribution function of N (0, 1). We have that

�(ε
√
N/σ) < �(µ

√
N/σ), and in order to make the probability of the incorrect decision

less than α we have to take the sample size N > z2
ασ

2/ε2, where zα := �−1(1− α). Even
if F(x2, ξ) − F(x1, ξ) is not normally distributed, the sample size of order σ 2/ε2 could
be justified asymptotically, say, by applying the CLT. It also could be mentioned that if
F(x2, ξ) − F(x1, ξ) has a normal distribution (with known variance), then the uniformly
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most powerful test for testing H0 : µ ≤ 0 versus Ha : µ > 0 is of the form “reject H0

if f̂N (x2) − f̂N (x1) is bigger than a specified critical value” (this is a consequence of the
Neyman–Pearson lemma). In other words, in such situations, if we only have access to a
random sample, then solving the corresponding SAA problem is in a sense a best way to
proceed.

Remark 12. Condition (5.98) of assumption (M3) can be replaced by a more general
condition,

Mx(t) ≤ exp (ψ(t)) , ∀t ∈ R, (5.106)

where ψ(t) is a convex even function with ψ(0) = 0. Then, similar to (5.100), we have

Ix(z) ≥ sup
t∈R

{t (z− E[Y (x, ξ)])− ψ(t)} = ψ∗(z− E[Y (x, ξ)]), ∀z ∈ R, (5.107)

where ψ∗ is the conjugate of function ψ . Consequently, the estimate (5.93) takes the form

1− Pr(ŜδN ⊂ Sε) ≤ |X| e−Nψ
∗(ε−δ), (5.108)

and hence the estimate (5.104) takes the form

N ≥ 1

ψ∗(ε − δ) ln

( |X|
α

)
. (5.109)

For example, instead of assuming that condition (5.98) of assumption (M3) holds for all
t ∈ R, we may assume that this holds for all t in a finite interval [−a, a], where a > 0
is a given constant. That is, we can take ψ(t) := σ 2t2/2 if |t | ≤ a and ψ(t) := +∞
otherwise. In that case ψ∗(z) = z2/(2σ 2) for |z| ≤ aσ 2 and ψ∗(z) = a|z| − a2σ 2 for
|z| > aσ 2. Consequently, the estimate (5.104) of Theorem 5.17 still holds provided that
0 < ε − δ ≤ aσ 2.

5.3.2 Sample Size Estimates in the General Case

Suppose now thatX is a bounded, not necessarily finite, subset of R
n, and that f (x) is finite

valued for all x ∈ X. Then we can proceed in a way similar to the derivations of section
7.2.9. Let us make the following assumptions:

(M4) For any x ′, x ∈ X there exists constant σx ′,x > 0 such that the moment-generating
function Mx ′,x(t) = E[etYx′ ,x ] of random variable Yx ′,x := [F(x ′, ξ) − f (x ′)] −
[F(x, ξ)− f (x)] satisfies

Mx ′,x(t) ≤ exp
(
σ 2
x ′,x t

2/2
)
, ∀t ∈ R. (5.110)

(M5) There exists a (measurable) function κ : �→ R+ such that its moment-generating
function Mκ(t) is finite valued for all t in a neighborhood of zero and

|F(x ′, ξ)− F(x, ξ)| ≤ κ(ξ)‖x ′ − x‖ (5.111)

for a.e. ξ ∈ � and all x ′, x ∈ X.
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Of course, it follows from (5.110) that

Mx ′,x(t) ≤ exp
(
σ 2t2/2

)
, ∀x ′, x ∈ X, ∀t ∈ R, (5.112)

where
σ 2 := supx ′,x∈X σ 2

x ′,x . (5.113)

Assumption (M4) is slightly stronger than assumption (M3), i.e., assumption (M3) follows
from (M4) by taking x ′ = u(x). Note that E[Yx ′,x] = 0 and recall that if Yx ′,x has a normal
distribution, then equality in (5.110) holds with σ 2

x ′,x := Var[Yx ′,x].
The assumption (M5) implies that the expectation E[κ(ξ)] is finite and the function

f (x) is Lipschitz continuous onX with Lipschitz constant L = E[κ(ξ)]. It follows that the
optimal value ϑ∗ of the true problem is finite, provided the set X is bounded. (Recall that
it was assumed that X is nonempty and closed.) Moreover, by Cramér’s large deviation
theorem we have that for any L′ > E[κ(ξ)] there exists a positive constant β = β(L′) such
that

Pr
(
κ̂N > L′

) ≤ exp(−Nβ), (5.114)

where κ̂N := N−1∑N
j=1 κ(ξ

j ). Note that it follows from (5.111) that w.p. 1∣∣f̂N (x ′)− f̂N (x)∣∣ ≤ κ̂N‖x ′ − x‖, ∀x ′, x ∈ X, (5.115)

i.e., f̂N (·) is Lipschitz continuous on X with Lipschitz constant κ̂N .
ByD := supx,x ′∈X ‖x ′ −x‖we denote the diameter of the setX. Of course, the setX

is bounded iff its diameter is finite. We also use notation a ∨ b := max{a, b} for numbers
a, b ∈ R.

Theorem 5.18. Suppose that assumptions (M1) and (M4)–(M5) hold, with the correspond-
ing constant σ 2 defined in (5.113) being finite, the set X has a finite diameter D, and let
ε > 0, δ ∈ [0, ε), α ∈ (0, 1), L′ > L := E[κ(ξ)], and β = β(L′) be the corresponding
constants and % > 0 be a constant specified below in (5.118). Then for the sample size N
satisfying

N ≥ 8σ 2

(ε − δ)2
[
n ln

(
8%L′D
ε − δ

)
+ ln

(
2

α

)]∨[
β−1 ln

(
2

α

)]
, (5.116)

it follows that

Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.117)

Proof. Let us set ν := (ε − δ)/(4L′), ε′ := ε − L′ν, and δ′ := δ + L′ν. Note that ν > 0,
ε′ = 3ε/4+δ/4 > 0, δ′ = ε/4+3δ/4 > 0 and ε′−δ′ = (ε−δ)/2 > 0. Let x̄1, . . . , x̄M ∈ X
be such that for every x ∈ X there exists x̄i , i ∈ {1, . . . ,M}, such that ‖x − x̄i‖ ≤ ν, i.e.,
the set X′ := {x̄1, . . . , x̄M} forms a ν-net in X. We can choose this net in such a way that

M ≤ (%D/ν)n (5.118)

for a constant % > 0. If the X′ \ Sε′ is empty, then any point of X′ is an ε′-optimal solution
of the true problem. Otherwise, choose a mapping u : X′ \ Sε′ → S and consider the sets
S̃ := ∪x∈X′ {u(x)} and X̃ := X′ ∪ S̃. Note that X̃ ⊂ X and |X̃| ≤ (2%D/ν)n. Now let
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us replace the set X by its subset X̃. We refer to the obtained true and SAA problems as
respective reduced problems. We have that S̃ ⊂ S, any point of the set S̃ is an optimal
solutions of the true reduced problem and the optimal value of the true reduced problem is
equal to the optimal value of the true (unreduced) problem. By Theorem 5.17 we have that
with probability at least 1− α/2 any δ′-optimal solution of the reduced SAA problem is an
ε′-optimal solutions of the reduced (and hence unreduced) true problem provided that

N ≥ 8σ 2

(ε − δ)2
[
n ln

(
8%L′D
ε − δ

)
+ ln

(
2

α

)]
. (5.119)

(Note that the right-hand side of (5.119) is greater than or equal to the estimate

2σ 2

(ε′ − δ′)2 ln

(
2|X̃|
α

)
required by Theorem 5.17.) We also have by (5.114) that for

N ≥ β−1 ln

(
2

α

)
, (5.120)

the Lipschitz constant κ̂N of the function f̂N (x) is less than or equal to L′ with probability
at least 1− α/2.

Now let x̂ be a δ-optimal solution of the (unreduced) SAA problem. Then there is
a point x ′ ∈ X̃ such that ‖x̂ − x ′‖ ≤ ν, and hence f̂N (x ′) ≤ f̂N (x̂) + L′ν, provided that
κ̂N ≤ L′. We also have that the optimal value of the (unreduced) SAA problem is smaller
than or equal to the optimal value of the reduced SAA problem. It follows that x ′ is a
δ′-optimal solution of the reduced SAA problem, provided that κ̂N ≤ L′. Consequently,
we have that x ′ is an ε′-optimal solution of the true problem with probability at least 1− α
provided that N satisfies both inequalities (5.119) and (5.120). It follows that

f (x̂) ≤ f (x ′)+ Lν ≤ f (x ′)+ L′ν ≤ ϑ∗ + ε′ + L′ν = ϑ∗ + ε.
We obtain that if N satisfies both inequalities (5.119) and (5.120), then with probability at
least 1− α, any δ-optimal solution of the SAA problem is an ε-optimal solution of the true
problem. The required estimate (5.116) follows.

It is also possible to derive sample size estimates of the form (5.116) directly from
the uniform exponential bounds derived in section 7.2.9; see Theorem 7.67 in particular.

Remark 13. If instead of assuming that condition (5.110) of assumption (M4) holds for all
t ∈ R, we assume that it holds for all t ∈ [−a, a], where a > 0 is a given constant, then
the estimate (5.116) of the above theorem still holds provided that 0 < ε − δ ≤ aσ 2. (See
Remark 12 on page 185.)

In a sense, the above estimate (5.116) of the sample size gives an estimate of complex-
ity of solving the corresponding true problem by the SAA method. Suppose, for instance,
that the true problem represents the first stage of a two-stage stochastic programming prob-
lem. For decomposition-type algorithms, the total number of iterations required to solve the
SAAproblem typically is independent of the sample sizeN (this is an empirical observation)
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and the computational effort at every iteration is proportional to N . Anyway, size of the
SAA problem grows linearly with increase of N . For δ ∈ [0, ε/2], say, the right-hand side
of (5.116) is proportional to σ 2/ε2, which suggests complexity of order σ 2/ε2 with respect
to the desirable accuracy. This is in a sharp contrast to deterministic (convex) optimization,
where complexity usually is bounded in terms of ln(ε−1). It seems that such dependence
on σ and ε is unavoidable for Monte Carlo sampling based methods. On the other hand,
the estimate (5.116) is linear in the dimension n of the first-stage problem. It also depends
linearly on ln(α−1). This means that by increasing confidence, say, from 99% to 99.99%,
we need to increase the sample size by the factor of ln 100 ≈ 4.6 at most. Assumption (M4)
requires the probability distribution of the random variable F(x, ξ)−F(x ′, ξ) to have suffi-
ciently light tails. In a sense, the constant σ 2 can be viewed as a bound reflecting variability
of the random variables F(x, ξ)−F(x ′, ξ) for x, x ′ ∈ X. Naturally, larger variability of the
data should result in more difficulty in solving the problem. (See Remark 11 on page 184.)

This suggests that by using Monte Carlo sampling techniques one can solve two-stage
stochastic programs with a reasonable accuracy, say, with relative accuracy of 1% or 2%,
in a reasonable time, provided that: (a) its variability is not too large, (b) it has relatively
complete recourse, and (c) the corresponding SAA problem can be solved efficiently. Indeed,
this was verified in numerical experiments with two-stage problems having a linear second-
stage recourse. Of course, the estimate (5.116) of the sample size is far too conservative
for actual calculations. For practical applications there are techniques which allow us to
estimate (statistically) the error of a considered feasible solution x̄ for a chosen sample
size N ; we will discuss this in section 5.6.

Next we discuss some modifications of the sample size estimate. It will be convenient
in the following estimates to use notation O(1) for a generic constant independent of the
data. In that way we avoid denoting many different constants throughout the derivations.

(M6) There exists constant λ > 0 such that for any x ′, x ∈ X the moment-generating
functionMx ′,x(t) of random variable Yx ′,x := [F(x ′, ξ)− f (x ′)]− [F(x, ξ)− f (x)]
satisfies

Mx ′,x(t) ≤ exp
(
λ2‖x ′ − x‖2t2/2

)
, ∀t ∈ R. (5.121)

The above assumption (M6) is a particular case of assumption (M4) with

σ 2
x ′,x = λ2‖x ′ − x‖2,

and we can set the corresponding constant σ 2 = λ2D2. The following corollary follows
from Theorem 5.18.

Corollary 5.19. Suppose that assumptions (M1) and (M5)–(M6) hold, the setX has a finite
diameter D, and let ε > 0, δ ∈ [0, ε), α ∈ (0, 1), and L = E[κ(ξ)] be the corresponding
constants. Then for the sample size N satisfying

N ≥ O(1)λ2D2

(ε − δ)2
[
n ln

(
O(1)LD

ε − δ
)
+ ln

(
1

α

)]
, (5.122)

it follows that

Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.123)
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For example, suppose that the Lipschitz constant κ(ξ) in assumption (M5) can be
taken independent of ξ . That is, there exists a constant L > 0 such that

|F(x ′, ξ)− F(x, ξ)| ≤ L‖x ′ − x‖ (5.124)

for a.e. ξ ∈ � and all x ′, x ∈ X. It follows that the expectation function f (x) is also
Lipschitz continuous on X with Lipschitz constant L, and hence the random variable Yx ′,x
of assumption (M6) can be bounded as |Yx ′,x | ≤ 2L‖x ′ −x‖w.p. 1. Moreover, we have that
E[Yx ′,x] = 0, and hence it follows by Hoeffding’s inequality (see the estimate (7.186)) that

Mx ′,x(t) ≤ exp
(
2L2‖x ′ − x‖2t2

)
, ∀t ∈ R. (5.125)

Consequently, we can take λ = 2L in (5.121) and the estimate (5.122) takes the form

N ≥
(
O(1)LD

ε − δ
)2 [

n ln

(
O(1)LD

ε − δ
)
+ ln

(
1

α

)]
. (5.126)

Remark 14. It was assumed in Theorem 5.18 that the setX has a finite diameter, i.e., thatX
is bounded. For convex problems, this assumption can be relaxed. Assume that the problem
is convex, the optimal value ϑ∗ of the true problem is finite, and for some a > ε the set Sa

has a finite diameter D∗a . (Recall that Sa := {x ∈ X : f (x) ≤ ϑ∗ + a}.) We refer here to
the respective true and SAA problems, obtained by replacing the feasible setX by its subset
Sa , as reduced problems. Note that the set Sε, of ε-optimal solutions, of the reduced and
original true problems are the same. Let N∗ be an integer satisfying the inequality (5.116)
with D replaced by D∗a . Then, under the assumptions of Theorem 5.18, we have that with
probability at least 1−α all δ-optimal solutions of the reduced SAA problem are ε-optimal
solutions of the true problem. Let us observe now that in this case the set of δ-optimal
solutions of the reduced SAA problem coincides with the set of δ-optimal solutions of the
original SAA problem. Indeed, suppose that the original SAA problem has a δ-optimal
solution x∗ ∈ X \ Sa . Let x̄ ∈ arg minx∈Sa f̂N (x), such a minimizer does exist since
Sa is compact and f̂N (x) is real valued convex and hence continuous. Then x̄ ∈ Sε and
f̂N (x

∗) ≤ f̂N (x̄)+δ. By convexity of f̂N (x) it follows that f̂N (x) ≤ max
{
f̂N (x̄), f̂N (x

∗)
}

for all x on the segment joining x̄ and x∗. This segment has a common point x̂ with the set
Sa \ Sε. We obtain that x̂ ∈ Sa \ Sε is a δ-optimal solutions of the reduced SAA problem,
a contradiction.

That is, with such sample size N∗ we are guaranteed with probability at least 1 − α
that any δ-optimal solution of the SAA problem is an ε-optimal solution of the true problem.
Also, assumptions (M4) and (M5) should be verified for x, x ′ in the set Sa only.

Remark 15. Suppose that the set S of optimal solutions of the true problem is nonempty.
Then it follows from the proof of Theorem 5.18 that it suffices in assumption (M4) to verify
condition (5.110) only for every x ∈ X \ Sε′ and x ′ := u(x), where u : X \ Sε′ → S

and ε′ := 3/4ε + δ/4. If the set S is closed, we can use, for instance, a mapping u(x)
assigning to each x ∈ X \ Sε′ a point of S closest to x. If, moreover, the set S is convex
and the employed norm is strictly convex (e.g., the Euclidean norm), then such mapping
(called metric projection onto S) is defined uniquely. If, moreover, assumption (M6) holds,
then for such x and x ′ we have σ 2

x ′,x ≤ λ2D̄2, where D̄ := supx∈X\Sε′ dist(x, S). Suppose,
further, that the problem is convex. Then (see Remark 14) for any a > ε, we can use Sa
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instead of X. Therefore, if the problem is convex and the assumption (M6) holds, we can
write the following estimate of the required sample size:

N ≥ O(1)λ2D̄2
a,ε

ε − δ
[
n ln

(
O(1)LD∗a
ε − δ

)
+ ln

(
1

α

)]
, (5.127)

where D∗a is the diameter of Sa and D̄a,ε := supx∈Sa\Sε′ dist(x, S).

Corollary 5.20. Suppose that assumptions (M1) and (M5)–(M6) hold, the problem is
convex, the “true” optimal set S is nonempty, and for some γ ≥ 1, c > 0, and r > 0, the
following growth condition holds:

f (x) ≥ ϑ∗ + c [dist(x, S)]γ , ∀x ∈ Sr . (5.128)

Let α ∈ (0, 1), ε ∈ (0, r), and δ ∈ [0, ε/2] and suppose, further, that for a := min{2ε, r}
the diameter D∗a of Sa is finite.

Then for the sample size N satisfying

N ≥ O(1)λ2

c2/γ ε2(γ−1)/γ

[
n ln

(
O(1)LD∗a

ε

)
+ ln

(
1

α

)]
, (5.129)

it follows that

Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.130)

Proof. It follows from (5.128) that for any a ≤ r and x ∈ Sa , the inequality dist(x, S) ≤
(a/c)1/γ holds. Consequently, for any ε ∈ (0, r), by taking a := min{2ε, r} and δ ∈ [0, ε/2]
we obtain from (5.127) the required sample size estimate (5.129).

Note that since a = min{2ε, r} ≤ r , we have that Sa ⊂ Sr , and if S = {x∗} is a
singleton, then it follows from (5.128) that D∗a ≤ 2(a/c)1/γ . In particular, if γ = 1 and
S = {x∗} is a singleton (in that case it is said that the optimal solution x∗ is sharp), thenD∗a
can be bounded by 4c−1ε and hence we obtain the following estimate:

N ≥ O(1)c−2λ2
[
n ln
(
O(1)c−1L

)+ ln
(
α−1
)]
, (5.131)

which does not depend on ε. For γ = 2, condition (5.128) is called the second order or
quadratic growth condition. Under the quadratic growth condition, the first term in the
right-hand side of (5.129) becomes of order c−1ε−1λ2.

The following example shows that the estimate (5.116) of the sample size cannot be
significantly improved for the class of convex stochastic programs.

Example 5.21. Consider the true problem with F(x, ξ) := ‖x‖2m − 2mξTx, where m is
a positive constant, ‖ · ‖ is the Euclidean norm, and X := {x ∈ R

n : ‖x‖ ≤ 1}. Suppose,
further, that random vector ξ has normal distribution N (0, σ 2In), where σ 2 is a positive
constant and In is the n × n identity matrix, i.e., components ξi of ξ are independent and
ξi ∼ N (0, σ 2), i = 1, . . . , n. It follows that f (x) = ‖x‖2m, and hence for ε ∈ [0, 1] the set
of ε-optimal solutions of the true problem is given by {x : ‖x‖2m ≤ ε}. Now let ξ 1, . . . , ξN
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be an iid random sample of ξ and ξ̄N := (ξ 1 + · · · + ξN)/N . The corresponding sample
average function is

f̂N (x) = ‖x‖2m − 2m ξ̄ T
Nx, (5.132)

and the optimal solution x̂N of the SAA problem is x̂N = ‖ξ̄N‖−bξ̄N , where

b :=
{ 2m−2

2m−1 if ‖ξ̄N‖ ≤ 1,
1 if ‖ξ̄N‖ > 1.

It follows that for ε ∈ (0, 1), the optimal solution of the corresponding SAA problem is
an ε-optimal solution of the true problem iff ‖ξ̄N‖ν ≤ ε, where ν := 2m

2m−1 . We have that
ξ̄N ∼ N (0, σ 2N−1In), and hence N‖ξ̄N‖2/σ 2 has a chi-square distribution with n degrees
of freedom. Consequently, the probability that ‖ξ̄N‖ν > ε is equal to the probability
Pr
(
χ2
n > Nε2/ν/σ 2

)
. Moreover, E[χ2

n ] = n and the probability Pr(χ2
n > n) increases and

tends to 1/2 as n increases. Consequently, for α ∈ (0, 0.3) and ε ∈ (0, 1), for example, the
sample size N should satisfy

N >
nσ 2

ε2/ν
(5.133)

in order to have the property, “with probability 1−α an (exact) optimal solution of the SAA
problem is an ε-optimal solution of the true problem.” Compared with (5.116), the lower
bound (5.133) also grows linearly in n and is proportional to σ 2/ε2/ν . It remains to note
that the constant ν decreases to 1 as m increases.

Note that in this example the growth condition (5.128) holds with γ = 2m and that
the power constant of ε in the estimate (5.133) is in accordance with the estimate (5.129).
Note also that here

[F(x ′, ξ)− f (x ′)] − [F(x, ξ)− f (x)] = 2mξT(x − x ′)
has normal distribution with zero mean and variance 4m2σ 2‖x ′ − x‖2. Consequently,
assumption (M6) holds with λ2 = 4m2σ 2.

Of course, in this example the “true” optimal solution is x̄ = 0, and one does not
need sampling in order to solve this problem. Note, however, that the sample average
function f̂N (x) here depends on the random sample only through the data average vector
ξ̄N . Therefore, any numerical procedure based on averaging will need a sample of size N
satisfying the estimate (5.133) in order to produce an ε-optimal solution.

5.3.3 Finite Exponential Convergence

We assume in this section that the problem is convex and the expectation function f (x) is
finite valued.

Definition 5.22. It is said that x∗ ∈ X is a sharp (optimal) solution of the true problem
(5.1) if there exists constant c > 0 such that

f (x) ≥ f (x∗)+ c‖x − x∗‖, ∀x ∈ X. (5.134)
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Condition (5.134) corresponds to growth condition (5.128) with the power constant
γ = 1 and S = {x∗}. Since f (·) is convex finite valued, we have that the directional
derivatives f ′(x∗, h) exist for all h ∈ R

n, f ′(x∗, ·) is (locally Lipschitz) continuous, and
formula (7.17) holds. Also, by convexity of the setX we have that the tangent cone TX(x

∗),
to X at x∗, is given by the topological closure of the corresponding radial cone. By using
these facts, it is not difficult to show that condition (5.134) is equivalent to

f ′(x∗, h) ≥ c‖h‖, ∀h ∈ TX(x
∗). (5.135)

Since condition (5.135) is local, we have that it actually suffices to verify (5.134) for all
x ∈ X in a neighborhood of x∗.

Theorem 5.23. Suppose that the problem is convex and assumption (M1) holds, and let
x∗ ∈ X be a sharp optimal solution of the true problem. Then ŜN = {x∗} w.p. 1 forN large
enough. Suppose, further, that assumption (M4) holds. Then there exist constants C > 0
and β > 0 such that

1− Pr
(
ŜN = {x∗}

) ≤ Ce−Nβ; (5.136)

i.e., the probability of the event that “x∗ is the unique optimal solution of the SAA problem”
converges to 1 exponentially fast with the increase of the sample size N .

Proof. By convexity of F(·, ξ) we have that f̂ ′N(x∗, ·) converges to f ′(x∗, ·) w.p. 1 uni-
formly on the unit sphere (see the proof of Theorem 7.54). It follows w.p. 1 for N large
enough that

f̂ ′N(x
∗, h) ≥ (c/2)‖h‖, ∀h ∈ TX(x

∗), (5.137)

which implies that x∗ is the sharp optimal solution of the corresponding SAA problem.
Now, under the assumptions of convexity and (M1) and (M4), we have that f̂ ′N(x∗, ·)

converges to f ′(x∗, ·) exponentially fast on the unit sphere. (See inequality (7.219) of
Theorem 7.69.) By taking ε := c/2 in (7.219), we can conclude that (5.136) follows.

It is also possible to consider the growth condition (5.128) with γ = 1 and the set S
not necessarily being a singleton. That is, it is said that the set S of optimal solutions of the
true problem is sharp if for some c > 0 the following condition holds:

f (x) ≥ ϑ∗ + c [dist(x, S)], ∀x ∈ X. (5.138)

Of course, if S = {x∗} is a singleton, then conditions (5.134) and (5.138) do coincide. The
set of optimal solutions of the true problem is always nonempty and sharp if its optimal
value is finite and the problem is piecewise linear in the sense that the following conditions
hold:

(P1) The set X is a convex closed polyhedron.

(P2) The support set � = {ξ1, . . . , ξK} is finite.

(P3) For every ξ ∈ � the function F(·, ξ) is polyhedral.

Conditions (P1)–(P3) hold in the case of two-stage linear stochastic programming problems
with a finite number of scenarios.
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Under conditions (P1)–(P3) the true and SAA problems are polyhedral, and hence
their sets of optimal solutions are polyhedral. By using polyhedral structure and finiteness
of the set �, it is possible to show the following result (cf. [208]).

Theorem 5.24. Suppose that conditions (P1)–(P3) hold and the set S is nonempty and
bounded. Then S is polyhedral and there exist constants C > 0 and β > 0 such that

1− Pr
(
ŜN �= ∅ and ŜN is a face of S

) ≤ Ce−Nβ; (5.139)

i.e., the probability of the event that “ŜN is nonempty and forms a face of the setS” converges
to 1 exponentially fast with the increase of the sample size N .

5.4 Quasi–Monte Carlo Methods
In the previous section we discussed an approach to evaluating (approximating) expecta-
tions by employing random samples generated by Monte Carlo techniques. It should be
understood, however, that when dimension d (of the random data vector ξ ) is small, the
Monte Carlo approach may not be a best way to proceed. In this section we give a brief
discussion of the so-called quasi–Monte Carlo methods. It is beyond the scope of this book
to give a detailed discussion of that subject. This section is based on Niederreiter [138], to
which the interested reader is referred for a further reading on that topic. Let us start our
discussion by considering a one-dimensional case (of d = 1).

Let ξ be a real valued random variable having cdf H(z) = Pr(ξ ≤ z). Suppose that
we want to evaluate the expectation

E[F(ξ)] =
∫ +∞
−∞

F(z)dH(z), (5.140)

where F : R→ R is a measurable function. Let U ∼ U [0, 1], i.e., U is a random variable
uniformly distributed on [0, 1]. Then random variable22 H−1(U) has cdf H(·). Therefore,
by making a change of variables we can write the expectation (5.140) as

E[ψ(U)] =
∫ 1

0
ψ(u)du, (5.141)

where ψ(u) := F(H−1(u)).
Evaluation of the above expectation by the Monte Carlo method is based on generating

an iid sample U 1, . . . , UN ofN replications of U ∼ U [0, 1] and consequently approximat-
ing E[ψ(U)] by the average ψ̄N := N−1∑N

j=1 ψ(U
j ). Alternatively, one can employ the

Riemann sum approximation ∫ 1

0
ψ(u)du ≈ 1

N

N∑
j=1

ψ(uj ) (5.142)

by using some points uj ∈ [(j − 1)/N, j/N ], j = 1, . . . , N , e.g., taking midpoints
uj := (2j−1)/(2N) of equally spaced partition intervals [(j−1)/N, j/N ], j = 1, . . . , N .

22Recall that H−1(u) := inf {z : H(z) ≥ u}.



SPbook
2009/8/20
page 194

�

�

�

�

�

�

�

�

194 Chapter 5. Statistical Inference

If the function ψ(u) is Lipschitz continuous on [0,1], then the error of the Riemann sum
approximation23 is of order O(N−1), while the Monte Carlo sample average error is of
(stochastic) order Op(N

−1/2). An explanation of this phenomenon is rather clear, an iid
sample U 1, . . . , UN will tend to cluster in some areas while leaving other areas of the
interval [0,1] uncovered.

One can argue that the Monte Carlo sampling approach has an advantage in the
possibility of estimating the approximation error by calculating the sample variance,

s2 := (N − 1)−1
N∑
j=1

[
ψ(Uj )− ψ̄N

]2
,

and consequently constructing a corresponding confidence interval. It is possible, however,
to employ a similar procedure for the Riemann sums by making them random. That is, each
point uj in the right-hand side of (5.142) is generated randomly, say, uniformly distributed,
on the corresponding interval [(j − 1)/N, j/N ], independently of other points uk , k �= j .
This will make the right-hand side of (5.142) a random variable. Its variance can be estimated
by using several independently generated batches of such approximations.

It does not make sense to use Monte Carlo sampling methods in case of one-dimensional
random data. The situation starts to change quickly with an increase of the dimension d.
By making an appropriate transformation we may assume that the random data vector is
distributed uniformly on the d-dimensional cube I d = [0, 1]d . For d > 1 we denote by
(bold-faced) U a random vector uniformly distributed on I d . Suppose that we want to eval-
uate the expectation E[ψ(U)] = ∫

I d
ψ(u)du, where ψ : I d → R is a measurable function.

We can partition each coordinate of I d intoM equally spaced intervals, and hence partition
I d into the corresponding N = Md subintervals24 and use a corresponding Riemann sum
approximationN−1∑N

j=1 ψ(uj ). The resulting error is of orderO(M−1), provided that the
function ψ(u) is Lipschitz continuous. In terms of the total number N of function evalua-
tions, this error is of orderO(N−1/d). For d = 2 it is still compatible with the Monte Carlo
sample average approximation approach. However, for larger values of d the Riemann sums
approach quickly becomes unacceptable. On the other hand, the rate of convergence (error
bounds) of the Monte Carlo sample average approximation of E[ψ(U)] does not depend
directly on dimensionality d but only on the corresponding variance Var[ψ(U)]. Yet the
problem of uneven covering of I d by an iid sample U j , j = 1, . . . , N , remains persistent.

Quasi–Monte Carlo methods employ the approximation

E[ψ(U)] ≈ 1

N

N∑
j=1

ψ(uj ) (5.143)

for a carefully chosen (deterministic) sequence of points u1, . . . ,uN ∈ I d . From the
numerical point of view, it is important to be able to generate such a sequence iteratively
as an infinite sequence of points uj , j = 1, . . . , in I d . In that way, one does not need
to recalculate already calculated function values ψ(uj ) with the increase of N . A basic
requirement for this sequence is that the right-hand side of (5.143) converges to E[ψ(U)]

23If ψ(u) is continuously differentiable, then, e.g., the trapezoidal rule gives even a slightly better approx-
imation error of orderO(N−2). Also, one should be careful in making the assumption of Lipschitz continuity
of ψ(u). If the distribution of ξ is supported on the whole real line, e.g., is normal, then H−1(u) tends to∞
as u tends to 0 or 1. In that case, ψ(u) typically will be discontinuous at u = 0 and u = 1.

24A set A ⊂ R
d is said to be a (d-dimensional) interval if A = [a1, b1] × · · · × [ad, bd ].
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as N →∞. It is not difficult to show that this holds (for any Riemann-integrable function
ψ(u)) if

lim
N→∞

1

N

N∑
j=1

1A(uj ) = Vd(A) (5.144)

for any intervalA ⊂ I d . HereVd(A)denotes thed-dimensional Lebesgue measure (volume)
of set A ⊂ R

d .

Definition 5.25. The star discrepancy of a point set {u1, . . . ,uN } ⊂ I d is defined by

D∗(u1, . . . ,uN) := sup
A∈I

∣∣∣∣∣∣ 1

N

N∑
j=1

1A(uj )− Vd(A)
∣∣∣∣∣∣ , (5.145)

where I is the family of all subintervals of I d of the form
∏d
i=1[0, bi).

It is possible to show that for a sequence uj ∈ I d , j = 1, . . . , condition (5.144) holds
iff limN→∞D∗(u1, . . . ,uN) = 0. A more important property of the star discrepancy is
that it is possible to give error bounds in terms of D∗(u1, . . . ,uN) for quasi–Monte Carlo
approximations. Let us start with the one-dimensional case. Recall that variation of a
function ψ : [0, 1] → R is the sup

∑m
i=1 |ψ(ti)− ψ(ti−1)|, where the supremum is taken

over all partitions 0 = t0 < t1 < · · · < tm = 1 of the interval [0,1]. It is said that ψ has
bounded variation if its variation is finite.

Theorem 5.26 (Koksma). If ψ : [0, 1] → R has bounded variation V (ψ), then for any
u1, . . . , uN ∈ [0, 1] we have∣∣∣∣∣∣ 1

N

N∑
j=1

ψ(uj )−
∫ 1

0
ψ(u)du

∣∣∣∣∣∣ ≤ V (ψ)D∗(u1, . . . , uN). (5.146)

Proof. We can assume that the sequence u1, . . . , uN is arranged in increasing order, and we
set u0 = 0 and uN+1 = 1. That is, 0 = u0 ≤ u1 ≤ · · · ≤ uN+1 = 1. Using integration by
parts we have∫ 1

0
ψ(u)du = uψ(u)∣∣10 − ∫ 1

0
udψ(u) = ψ(1)−

∫ 1

0
udψ(u),

and using summation by parts we have

1

N

N∑
j=1

ψ(uj ) = ψ(uN+1)−
N∑
j=0

j

N
[ψ(uj+1)− ψ(uj )];

we can write

1
N

∑N
j=1 ψ(uj )−

∫ 1
0 ψ(u)du = −∑N

j=0
j

N
[ψ(uj+1)− ψ(uj )] +

∫ 1
0 udψ(u)

= ∑N
j=0

∫ uj+1

uj

(
u− j

N

)
dψ(u).
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Also for any u ∈ [uj , uj+1], j = 0, . . . , N , we have∣∣∣∣u− j

N

∣∣∣∣ ≤ D∗(u1, . . . , uN).

It follows that∣∣∣ 1
N

∑N
j=1 ψ(uj )−

∫ 1
0 ψ(u)du

∣∣∣ ≤ ∑N
j=0

∫ uj+1

uj

∣∣∣u− j

N

∣∣∣ dψ(u)
≤ D∗(u1, . . . , uN)

∑N
j=0

∣∣ψ(uj+1)− ψ(uj )
∣∣ ,

and, of course,
∑N

j=0

∣∣ψ(uj+1)− ψ(uj )
∣∣ ≤ V (ψ). This completes the proof.

This can be extended to a multidimensional setting as follows. Consider a function
ψ : I d → R. The variation of ψ , in the sense of Vitali, is defined as

V (d)(ψ) := sup
P∈J

∑
A∈P
|#ψ(A)|, (5.147)

where J denotes the family of all partitions P of I d into subintervals, and for A ∈ P the
notation #ψ(A) stands for an alternating sum of the values of ψ at the vertices of A (i.e.,
function values at adjacent vertices have opposite signs). The variation of ψ , in the sense
of Hardy and Krause, is defined as

V (ψ) :=
d∑
k=1

∑
1≤i1<i2<···ik≤d

V (k)(ψ; i1, . . . , ik), (5.148)

where V (k)(ψ; i1, . . . , ik) is the variation in the sense of Vitali of restriction of ψ to the
k-dimensional face of I d defined by uj = 1 for j �∈ {i1, . . . , ik}.

Theorem 5.27 (Hlawka). If ψ : I d → R has bounded variation V (ψ) on I d in the sense
of Hardy and Krause, then for any u1, . . . ,uN ∈ I d we have∣∣∣∣∣∣ 1

N

N∑
j=1

ψ(uj )−
∫
I d
ψ(u)du

∣∣∣∣∣∣ ≤ V (ψ)D∗(u1, . . . ,uN). (5.149)

In order to see how good the above error estimates could be, let us consider the one-
dimensional case with uj := (2j − 1)/(2N), j = 1, . . . , N . Then D∗(u1, . . . , uN) =
1/(2N), and hence the estimate (5.146) leads to the error bound V (ψ)/(2N). This error
bound gives the correct orderO(N−1) for the error estimates (provided that ψ has bounded
variation), but the involved constant V (ψ)/2 typically is far too large for practical calcula-
tions. Even worse, the inverse functionH−1(u) is monotonically nondecreasing, and hence
its variation is given by the difference of the limits limu→+∞H−1(u) and limu→−∞H−1(u).
Therefore, if one of these limits is infinite, i.e., the support of the corresponding random
variable is unbounded, then the associated variation is infinite. Typically, this variation
unboundedness will carry over to the function ψ(u) = F(H−1(u)). For example, if the
function F(·) is monotonically nondecreasing, then

V (ψ) = F
(

lim
u→+∞H

−1(u)

)
− F
(

lim
u→−∞H

−1(u)

)
.
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This overestimation of the corresponding constant becomes even worse with an increase in
the dimension d .

A sequence {uj }j∈N ⊂ I d is called a low-discrepancy sequence if D∗(u1, . . . , uN)

is “small” for all N ≥ 1. We proceed now to a description of classical constructions of
low-discrepancy sequences. Let us start with the one-dimensional case. It is not difficult to
show that D∗(u1, . . . , uN) always greater than or equal to 1/(2N) and this lower bound is
attained for uj := (2j − 1)/2N , j = 1, . . . , N . While the lower bound of orderO(N−1) is
attained for someN -element point sets from [0,1], there does not exist a sequence u1, . . . , in
[0,1] such that D∗(u1, . . . , uN) ≤ c/N for some c > 0 and allN ∈ N. It is possible to show
that a best possible for D∗(u1, . . . , uN), for a sequence of points uj ∈ [0, 1], j = 1, . . . ,
is of order O

(
N−1 lnN

)
. We are now going to construct a sequence for which this rate is

attained.
For any integer n ≥ 0 there is a unique digit expansion

n =
∑
i≥0

ai(n)b
i (5.150)

in integer base b ≥ 2, where ai(n) ∈ {0, 1, . . . , b−1}, i = 0, 1, . . . , and ai(n) = 0 for all i
large enough, i.e., the sum (5.150) is finite. The associated radical-inverse function φb(n),
in base b, is defined by

φb(n) :=
∑
i≥0

ai(n)b
−i−1. (5.151)

Note that

φb(n) ≤ (b − 1)
∞∑
i=0

b−i−1 = 1,

and hence φb(n) ∈ [0, 1] for any integer n ≥ 0.

Definition 5.28. For an integer b ≥ 2, the van der Corput sequence in base b is the sequence
uj := φb(j), j = 0, 1, . . . .

It is possible to show that to every van der Corput sequence u1, . . . , in base b, corre-
sponds constant Cb such that

D∗(u1, . . . , un) ≤ Cb N−1 lnN ∀N ∈ N.

A classical extension of van der Corput sequences to multidimensional settings is the
following. Let p1 = 2, p2 = 3, . . . , pd be the first d prime numbers. Then the Halton
sequence, in the bases p1, . . . , pd , is defined as

uj := (φp1(j), . . . , φpd (j)) ∈ I d, j = 0, 1, . . . . (5.152)

It is possible to show that for that sequence,

D∗(u1, . . . ,uN) ≤ AdN−1(lnN)d +O(N−1(lnN)d−1) ∀N ≥ 2, (5.153)

where Ad = ∏d
i=1

pi−1
2 ln pi

. By bound (5.149) of Theorem 5.27, this implies that the error of

the corresponding quasi–Monte Carlo approximation is of orderO
(
N−1(lnN)d

)
, provided

that variation V (ψ) is finite. This compares favorably with the bound Op(N
−1/2) of the
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Monte Carlo sampling. Note, however, that by the prime number theorem we have that
lnAd
d ln d tends to 1 as d →∞. That is, the coefficient Ad , of the leading term in the right-hand
side of (5.153), grows superexponentially with increase of the dimension d. This makes the
corresponding error bounds useless for larger values of d. It should be noticed that the above
are upper bounds for the rates of convergence and in practice convergence rates could be
much better. It seems that for low dimensional problems, say, d ≤ 20, quasi–Monte Carlo
methods are advantageous over Monte Carlo methods. With increase of the dimension d
this advantage becomes less apparent. Of course, all this depends on a particular class of
problems and applied quasi–Monte Carlo method. This issue requires a further investigation.

A drawback of (deterministic) quasi–Monte Carlo sequences {uj }j∈N is that there is
no easy way to estimate the error of the corresponding approximationsN−1∑N

j=1 ψ(uj ). In
that respect, bounds like (5.149) typically are too loose and impossible to calculate anyway.
A way of dealing with this problem is to use a randomization of the set {u1, . . . ,uN }, of gen-
erating points in I d without destroying its regular structure. Such a simple randomization
procedure was suggested by Cranley and Patterson [39]. That is, generate a random point
u uniformly distributed over I d , and use the randomization25 ũj := (uj + u) mod 1, j =
1, . . . , N . It is not difficult to show that (marginal) distribution of each random vector ũj is
uniform on I d . Therefore, eachψ(ũj ), and henceN−1∑N

j=1 ψ(ũj ), is an unbiased estima-

tor of the corresponding expectation E[ψ(U)]. Variance of the estimatorN−1∑N
j=1 ψ(ũj )

can be significantly smaller than variance of the corresponding Monte Carlo estimator based
on samples of the same size. This randomization procedure can be applied in batches.
That is, it can be repeated M times for independently generated uniformly distributed
vectors u = ui , i = 1, . . . ,M , and consequently averaging the obtained replications of
N−1∑N

j=1 ψ(ũj ). Simultaneously, variance of this estimator can be evaluated by calculat-

ing the sample variance of the obtained M independent replications of N−1∑N
j=1 ψ(ũj ).

5.5 Variance-Reduction Techniques

Consider the sample average estimators f̂N (x). We have that if the sample is iid, then
the variance of f̂N (x) is equal to σ 2(x)/N , where σ 2(x) := Var[F(x, ξ)]. In some cases
it is possible to reduce the variance of generated sample averages, which in turn enhances
convergence of the corresponding SAAestimators. In section 5.4 we discussed quasi–Monte
Carlo techniques for enhancing rates of convergence of sample average approximations. In
this section we briefly discuss some other variance-reduction techniques which seem to be
useful in the SAA method.

5.5.1 Latin Hypercube Sampling

Suppose that the random data vector ξ = ξ(ω) is one-dimensional with the corresponding
cumulative distribution function (cdf) H(·). We can then write

E[F(x, ξ)] =
∫ +∞
−∞

F(x, ξ)dH(ξ). (5.154)

25For a number a ∈ R the notation “a mod 1” denotes the fractional part of a, i.e., a mod 1 = a − �a�,
where �a� denotes the largest integer less than or equal to a. In the vector case, the “modulo 1” reduction is
understood coordinatewise.
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In order to evaluate the above integral numerically, it will be much better to generate
sample points evenly distributed than to use an iid sample. (This was already discussed in
section 5.4.) That is, we can generate independent random points26

Uj ∼ U [(j − 1)/N, j/N ] , j = 1, . . . , N, (5.155)

and then construct the random sample of ξ by the inverse transformation ξ j := H−1(Uj ),
j = 1, . . . , N (compare with (5.141)).

Now suppose that j is chosen at random from the set {1, . . . , N} (with equal probabil-
ity for each element of that set). Then conditional on j , the corresponding random variable
Uj is uniformly distributed on the interval [(j − 1)/N, j/N ], and the unconditional distri-
bution of Uj is uniform on the interval [0, 1]. Consequently, let {j1, . . . , jN } be a random
permutation of the set {1, . . . , N}. Then the random variables ξ j1 , . . . , ξ jN have the same
marginal distribution, with the same cdfH(·), and are negatively correlated with each other.
Therefore, the expected value of

f̂N (x) = 1

N

N∑
i=1

F(x, ξ j ) = 1

N

N∑
s=1

F(x, ξ js ) (5.156)

is f (x), while

Var
[
f̂N (x)

]
= N−1σ 2(x)+ 2N−2

∑
s<t

Cov
(
F(x, ξ js ), F (x, ξ jt )

)
. (5.157)

If the function F(x, ·) is monotonically increasing or decreasing, than the random variables
F(x, ξ js ) and F(x, ξ jt ), s �= t , are also negatively correlated. Therefore, the variance of
f̂N (x) tends to be smaller, and in some cases much smaller, than σ 2(x)/N .

Suppose now that the random vector ξ = (ξ1, . . . , ξd) is d-dimensional and that its
components ξi , i = 1, . . . , d, are distributed independently of each other. Then we can use
the above procedure for each component ξi . That is, a random sampleUj of the form (5.155)
is generated, and consequently N replications of the first component of ξ are computed by
the corresponding inverse transformation applied to randomly permuted Ujs . The same
procedure is applied to every component of ξ with the corresponding random samples of
the form (5.155) and random permutations generated independently of each other. This
sampling scheme is called the Latin hypercube (LH) sampling.

If the function F(x, ·) is decomposable, i.e., F(x, ξ) := F1(x, ξ1)+ · · · + Fd(x, ξd),
then E[F(x, ξ)] = E[F1(x, ξ1)]+ · · ·+E[Fd(x, ξd)], where each expectation is calculated
with respect to a one-dimensional distribution. In that case, the LH sampling ensures
that each expectation E[Fi(x, ξi)] is estimated in a nearly optimal way. Therefore, the LH
sampling works especially well in cases where the functionF(x, ·) tends to have a somewhat
decomposable structure. In any case, the LH sampling procedure is easy to implement and
can be applied to SAA optimization procedures in a straightforward way. Since in LH
sampling the random replications of F(x, ξ) are correlated with each other, one cannot
use variance estimates like (5.21). Therefore, the LH method usually is applied in several
independent batches in order to estimate variance of the corresponding estimators.

26For an interval [a, b] ⊂ R, we denote by U [a, b] the uniform probability distribution on that interval.
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5.5.2 Linear Control Random Variables Method

Suppose that we have a measurable functionA(x, ξ) such that E[A(x, ξ)] = 0 for all x ∈ X.
Then, for any t ∈ R, the expected value of F(x, ξ)+ tA(x, ξ) is f (x), while

Var
[
F(x, ξ)+ tA(x, ξ)] = Var [F(x, ξ)]+ t2Var [A(x, ξ)]+ 2t Cov

(
F(x, ξ), A(x, ξ)

)
.

It follows that the above variance attains its minimum, with respect to t , for

t∗ := −ρF,A(x)
[

Var(F (x, ξ))

Var(A(x, ξ))

]1/2

, (5.158)

where ρF,A(x) := Corr
(
F(x, ξ), A(x, ξ)

)
, and with

Var
[
F(x, ξ)+ t∗A(x, ξ)] = Var [F(x, ξ)]

[
1− ρF,A(x)2

]
. (5.159)

For a given x ∈ X and generated sample ξ 1, . . . , ξN , one can estimate, in the standard
way, the covariance and variances appearing in the right-hand side of (5.158), and hence
construct an estimate t̂ of t∗. Then f (x) can be estimated by

f̂ AN (x) :=
1

N

N∑
j=1

[
F(x, ξ j )+ t̂A(x, ξ j )] . (5.160)

By (5.159), the linear control estimator f̂ AN (x) has a smaller variance than f̂N (x) if F(x, ξ)
and A(x, ξ) are highly correlated with each other.

Let us make the following observations. The estimator t̂ , of the optimal value t∗,
depends on x and the generated sample. Therefore, it is difficult to apply linear control
estimators in an SAA optimization procedure. That is, linear control estimators are mainly
suitable for estimating expectations at a fixed point. Also, if the same sample is used in
estimating t̂ and f̂ AN (x), then f̂ AN (x) can be a slightly biased estimator of f (x).

Of course, the above linear control procedure can be successful only if a function
A(x, ξ), with mean zero and highly correlated with F(x, ξ), is available. Choice of such
a function is problem dependent. For instance, one can use a linear function A(x, ξ) :=
λ(ξ)Tx. Consider, for example, two-stage stochastic programming problems with recourse
of the form (2.1)–(2.2). Suppose that the random vector h = h(ω) and matrix T = T (ω),
in the second-stage problem (2.2), are independently distributed, and let µ := E[h]. Then

E
[
(h− µ)TT ] = E [(h− µ)]T

E [T ] = 0,

and hence one can use A(x, ξ) := (h− µ)TT x as the control variable.
Let us finally remark that the above procedure can be extended in a straightforward

way to a case where several functions A1(x, ξ), . . . , Am(x, ξ), each with zero mean and
highly correlated with F(x, ξ), are available.

5.5.3 Importance Sampling and Likelihood Ratio Methods

Suppose that ξ has a continuous distribution with probability density function (pdf) h(·).
Let ψ(·) be another pdf such that the so-called likelihood ratio function L(·) := h(·)

ψ(·) is
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well defined. That is, if ψ(z) = 0 for some z ∈ R
d , then h(z) = 0, and by the definition,

0/0 = 0, i.e., we do not divide a positive number by zero. Then we can write

f (x) =
∫
F(x, ξ)h(ξ)dξ =

∫
F(x, ζ )L(ζ )ψ(ζ )dζ = Eψ [F(x, Z)L(Z)], (5.161)

where the integration is performed over the space R
d and the notation Eψ emphasizes that

the expectation is taken with respect to the random vector Z having pdf ψ(·).
Let us show that for a fixed x, the variance of F(x, Z)L(Z) attains its minimal value

for ψ(·) proportional to |F(x, ·)h(·)|, i.e., for

ψ∗(·) := |F(x, ·)h(·)|∫ |F(x, ζ )h(ζ )|dζ . (5.162)

Since Eψ [F(x, Z)L(Z)] = f (x) and does not depend on ψ(·), we have that the variance
of F(x, Z)L(Z) is minimized if

Eψ [F(x, Z)2L(Z)2] =
∫
F(x, ζ )2h(ζ )2

ψ(ζ )
dζ (5.163)

is minimized. Furthermore, by the Cauchy inequality we have(∫
|F(x, ζ )h(ζ )|dζ

)2

≤
(∫

F(x, ζ )2h(ζ )2

ψ(ζ )
dζ

)(∫
ψ(ζ )dζ

)
. (5.164)

It remains to note that
∫
ψ(ζ )dζ = 1 and the left-hand side of (5.164) is equal to the

expected value of squared F(x, Z)L(Z) for ψ(·) = ψ∗(·).
Note that if F(x, ·) is nonnegative valued, then ψ∗(·) = F(x, ·)h(·)/f (x) and for

that choice of the pdf ψ(·), the function F(x, ·)L(·) is identically equal to f (x). Of course,
in order to achieve such absolute variance reduction to zero, we need to know the expecta-
tion f (x), which was our goal in the first place. Nevertheless, it gives the idea that if we
can construct a pdf ψ(·) roughly proportional to |F(x, ·)h(·)|, then we may achieve a con-
siderable variance reduction by generating a random sample ζ 1, . . . , ζN from the pdf ψ(·),
and then estimating f (x) by

f̃
ψ

N (x) :=
1

N

N∑
j=1

F(x, ζ j )L(ζ j ). (5.165)

The estimator f̃ ψN (x) is an unbiased estimator of f (x) and may have significantly smaller
variance than f̂N (x), depending on a successful choice of the pdf ψ(·).

Similar analysis can be performed in cases where ξ has a discrete distribution by
replacing the integrals with the corresponding summations.

Let us remark that the above approach, called importance sampling, is extremely
sensitive to a choice of the pdfψ(·) and is notorious for its instability. This is understandable
since the likelihood ratio function in the tail is the ratio of two very small numbers. For a
successful choice of ψ(·), the method may work very well while even a small perturbation
of ψ(·) may be disastrous. This is why a single choice of ψ(·) usually does not work for
different points x and consequently cannot be used for a whole optimization procedure.
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Note also that Eψ [L(Z)] = 1. Therefore, L(ζ )− 1 can be used as a linear control variable
for the likelihood ratio estimator f̃ ψN (x).

In some cases it is also possible to use the likelihood ratio method for estimating first
and higher order derivatives of f (x). Consider, for example, the optimal value Q(x, ξ) of
the second-stage linear program (2.2). Suppose that the vector q and matrixW are fixed, i.e.,
not stochastic, and for the sake of simplicity that h = h(ω) and T = T (ω) are distributed
independently of each other. We have then that Q(x, ξ) = Q(h− T x), where

Q(z) := inf
{
qTy : Wy = z, y ≥ 0

}
.

Suppose, further, that h has a continuous distribution with pdf η(·). We have that

E[Q(x, ξ)] = ET

{
Eh|T [Q(x, ξ)]

}
,

and by using the transformation z = h− T x, since h and T are independent we obtain

Eh|T [Q(x, ξ)] = Eh[Q(x, ξ)]
= ∫

Q(h− T x)η(h)dh = ∫ Q(z)η(z+ T x)dz
= ∫

Q(ζ )L(x, ζ )ψ(ζ )dζ = Eψ [L(x,Z)Q(Z)] ,
(5.166)

whereψ(·) is a chosen pdf and L(x, ζ ) := η(ζ +T x)/ψ(ζ ). If the function η(·) is smooth,
then the likelihood ratio function L(·, ζ ) is also smooth. In that case, under mild additional
conditions, first and higher order derivatives can be taken inside the expected value in the
right-hand side of (5.166) and consequently can be estimated by sampling. Note that the first
order derivatives of Q(·, ξ) are piecewise constant, and hence its second order derivatives
are zeros whenever defined. Therefore, second order derivatives cannot be taken inside the
expectation E[Q(x, ξ)] even if ξ has a continuous distribution.

5.6 Validation Analysis
Suppose that we are given a feasible point x̄ ∈ X as a candidate for an optimal solution
of the true problem. For example, x̄ can be an output of a run of the corresponding SAA
problem. In this section we discuss ways to evaluate quality of this candidate solution. This
is important, in particular, for a choice of the sample size and stopping criteria in simulation
based optimization. There are basically two approaches to such validation analysis. We
can either try to estimate the optimality gap f (x̄) − ϑ∗ between the objective value at the
considered point x̄ and the optimal value of the true problem, or to evaluate first order (KKT)
optimality conditions at x̄.

Let us emphasize that the following analysis is designed for the situations where the
value f (x̄), of the true objective function at the considered point, is finite. In the case of two
stage programming this requires, in particular, that the second-stage problem, associated
with first-stage decision vector x̄, is feasible for almost every realization of the random data.

5.6.1 Estimation of the Optimality Gap

In this section we consider the problem of estimating the optimality gap

gap(x̄) := f (x̄)− ϑ∗ (5.167)
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associated with the candidate solution x̄. Clearly, for any feasible x̄ ∈ X, gap(x̄) is non-
negative and gap(x̄) = 0 iff x̄ is an optimal solution of the true problem.

Consider the optimal value ϑ̂N of the SAA problem (5.2). We have that ϑ∗ ≥ E[ϑ̂N ].
(See the discussion following (5.22).) This means that ϑ̂N provides a valid statistical
lower bound for the optimal value ϑ∗ of the true problem. The expectation E[ϑ̂N ] can be
estimated by averaging. That is, one can solve M times sample average approximation
problems based on independently generated samples each of size N . Let ϑ̂1

N, . . . , ϑ̂
M
N be

the computed optimal values of these SAA problems. Then

v̄N,M := 1

M

M∑
m=1

ϑ̂mN (5.168)

is an unbiased estimator of E[ϑ̂N ]. Since the samples, and hence ϑ̂ 1
N, . . . , ϑ̂

M
N , are indepen-

dent and have the same distribution, we have that Var
[
v̄N,M

] = M−1
Var
[
ϑ̂N
]
, and hence

we can estimate variance of v̄N,M by

σ̂ 2
N,M :=

1

M

[ 1

M − 1

M∑
m=1

(
ϑ̂mN − v̄N,M

)2

︸ ︷︷ ︸
estimate of Var[ϑ̂N ]

]
. (5.169)

Note that the above make sense only if the optimal value ϑ∗ of the true problem is finite.
Note also that the inequality ϑ∗ ≥ E[ϑ̂N ] holds and ϑ̂N gives a valid statistical lower bound
even if f (x) = +∞ for some x ∈ X. Note finally that the samples do not need to be iid
(for example, one can use LH sampling); they only should be independent of each other in
order to use estimate (5.169) of the corresponding variance.

In general, the random variable ϑ̂N , and hence its replications ϑ̂ j

N , does not have a
normal distribution, even approximately. (See Theorem 5.7 and the discussion that fol-
lows.) However, by the CLT, the probability distribution of the average v̄N,M becomes
approximately normal as M increases. Therefore, we can use

LN,M := v̄N,M − tα,M−1σ̂N,M (5.170)

as an approximate 100(1− α)% confidence27 lower bound for the expectation E[ϑ̂N ].
We can also estimate f (x̄) by sampling. That is, let f̂N ′(x̄) be the sample average

estimate of f (x̄), based on a sample of sizeN ′ generated independently of samples involved
in computing x̄. Let σ̂ 2

N ′(x̄) be an estimate of the variance of f̂N ′(x̄). In the case of the iid
sample, one can use the sample variance estimate

σ̂ 2
N ′(x̄) :=

1

N ′(N ′ − 1)

N ′∑
j=1

[
F(x̄, ξ j )− f̂N ′(x̄)

]2
. (5.171)

Then

UN ′(x̄) := f̂N ′(x̄)+ zασ̂N ′(x̄) (5.172)

27Here tα,ν is the α-critical value of t-distribution with ν degrees of freedom. This critical value is slightly
bigger than the corresponding standard normal critical value zα , and tα,ν quickly approaches zα as ν increases.
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gives an approximate 100(1 − α)% confidence upper bound for f (x̄). Note that since N ′
typically is large, we use here critical value zα from the standard normal distribution rather
than a t-distribution.

We have that

E

[
f̂N ′(x̄)− v̄N,M

]
= f (x̄)− E[ϑ̂N ] = gap(x̄)+ ϑ∗ − E[ϑ̂N ] ≥ gap(x̄),

i.e., f̂N ′(x̄)− v̄N,M is a biased estimator of the gap(x̄). Also the variance of this estimator
is equal to the sum of the variances of f̂N ′(x̄) and v̄N,M , and hence

f̂N ′(x̄)− v̄N,M + zα
√
σ̂ 2
N ′(x̄)+ σ̂ 2

N,M (5.173)

provides a conservative 100(1− α)% confidence upper bound for the gap(x̄). We say that
this upper bound is “conservative” since in fact it gives a 100(1 − α)% confidence upper
bound for the gap(x̄)+ ϑ∗ − E[ϑ̂N ], and we have that ϑ∗ − E[ϑ̂N ] ≥ 0.

In order to calculate the estimate f̂N ′(x̄), one needs to compute the value F(x̄, ξ j ) of
the objective function for every generated sample realization ξ j , j = 1, . . . , N ′. Typically
it is much easier to compute F(x̄, ξ) for a given ξ ∈ � than to solve the corresponding SAA
problem. Therefore, often one can use a relatively large sample size N ′ and hence estimate
f (x̄) quite accurately. Evaluation of the optimal value ϑ∗ by employing the estimator v̄N,M
is a more delicate problem.

There are two types of error in using v̄N,M as an estimator of ϑ∗, namely, the bias
ϑ∗−E[ϑ̂N ] and variability of v̄N,M measured by its variance. Both errors can be reduced by
increasingN , and the variance can be reduced by increasingN andM . Note, however, that
the computational effort in computing v̄N,M is proportional to M , since the corresponding
SAA problems should be solved M times, and to the computational time for solving a
single SAA problem based on a sample of size N . Naturally one may ask what is the best
way of distributing computational resources between increasing the sample size N and the
number of repetitions M . This question is, of course, problem dependent. In cases where
computational complexity of SAA problems grows fast with increase of the sample sizeN ,
it may be more advantageous to use a larger number of repetitionsM . On the other hand, it
was observed empirically that the computational effort in solving SAA problems by “good”
subgradient algorithms grows only linearly with the sample size N . In such cases, one can
use a largerN and make only a few repetitionsM in order to estimate the variance of v̄N,M .

The biasϑ∗−E[ϑ̂N ] does not depend onM , of course. It was shown in Proposition 5.6
that if the sample is iid, then E[ϑ̂N ] ≤ E[ϑ̂N+1] for any N ∈ N. It follows that the bias
ϑ∗−E[ϑ̂N ] decreases monotonically with an increase of the sample sizeN . By Theorem 5.7
we have that, under mild regularity conditions,

ϑ̂N = inf
x∈S f̂N (x)+ op(N

−1/2). (5.174)

Consequently, if the set S of optimal solutions of the true problem is not a singleton, then
the bias ϑ∗ − E[ϑ̂N ] typically converges to zero, as N increases, at a rate of O(N−1/2),
and tends to be bigger for a larger set S. (See (5.29) and the following discussion.) On
the other hand, in well conditioned problems, where the optimal set S is a singleton, the
bias typically is of order O(N−1) (see Theorem 5.8), and the bias tends to be of a lesser
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problem. Moreover, if the true problem has a sharp optimal solution x∗, then the event
x̂N = x∗, and hence the event ϑ̂N = f̂N (x

∗), happens with probability approaching one
exponentially fast (see Theorem 5.23). Since E

[
f̂N (x

∗)
] = f (x∗), in such cases the bias

ϑ∗ − E[ϑ̂N ] = f (x∗)− E[ϑ̂N ] tends to be much smaller.
In the above approach, the upper and lower statistical bounds were computed inde-

pendently of each other. Alternatively, it is possible to use the same sample for estimating
f (x̄) and E[ϑ̂N ]. That is, for M generated samples each of size N , the gap is estimated by

ĝapN,M(x̄) :=
1

M

M∑
m=1

[
f̂ mN (x̄)− ϑ̂mN

]
, (5.175)

where f̂ mN (x̄) and ϑ̂mN are computed from the same samplem = 1, . . . ,M . We have that the
expected value of ĝapN,M(x̄) is f (x̄)− E[ϑ̂N ], i.e., the estimator ĝapN,M(x̄) has the same

bias as f̂N (x̄) − v̄N,M . On the other hand, for a problem with sharp optimal solution x∗ it
happens with high probability that ϑ̂mN = f̂ mN (x∗) and as a consequence f̂ mN (x̄) tends to be
highly positively correlated with ϑ̂mN , provided that x̄ is close to x∗. In such cases variability
of ĝapN,M(x̄) can be considerably smaller than variability of f̂N ′(x̄) − v̄N,M . This is the
idea of common random number generated estimators.

Remark 16. Of course, in order to obtain a valid statistical lower bound for the optimal
value ϑ∗ we can use any (deterministic) lower bound for the optimal value ϑ̂N of the
corresponding SAA problem instead of ϑ̂N itself. For example, suppose that the problem is
convex. By convexity of f̂N (·) we have that for any x ′ ∈ X and γ ∈ ∂f̂N(x ′) it holds that

f̂N (x) ≥ f̂N (x ′)+ γ T(x − x ′), ∀x ∈ R
n. (5.176)

Therefore, we can proceed as follows. Choose points x1, . . . , xr ∈ X, calculate
subgradients γ̂iN ∈ ∂f̂N(xi), i = 1, . . . , r , and solve the problem

Min
x∈X max

1≤i≤r

{
f̂N (xi)+ γ̂ T

iN (x − xi)
}
. (5.177)

Denote by λ̂N the optimal value of (5.177). By (5.176) we have that λ̂N is less than or equal
to the optimal value ϑ̂N of the corresponding SAAproblem and hence gives a valid statistical
lower bound for ϑ∗. A possible advantage of λ̂N over ϑ̂N is that it could be easier to solve
(5.177) than the corresponding SAA problem. For instance, if the set X is polyhedral, then
(5.177) can be formulated as a linear programming problem.

Of course, this approach raises the question of how to choose the points x1, . . . , xr ∈
X. Suppose that the expectation function f (x) is differentiable at the points x1, . . . , xr .
Then for any choice of γ̂iN ∈ ∂f̂N(xi) we have that subgradients γ̂iN converge to ∇f (xi)
w.p. 1. Therefore λ̂N converges w.p. 1 to the optimal value of the problem

Min
x∈X max

1≤i≤r
{
f (xi)+ ∇f (xi)T(x − xi)

}
, (5.178)

provided that the set X is bounded. Again by convexity arguments, the optimal value of
(5.178) is less than or equal to the optimal value ϑ∗ of the true problem. If we can find such
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points x1, . . . , xr ∈ X that the optimal value of (5.178) is less than ϑ∗ by a small amount,
then it could be advantageous to use λ̂N instead of ϑ̂N . We also should keep in mind that the
number r should be relatively small; otherwise we may loose the advantage of solving the
easier problem (5.177).

A natural approach to choosing the required points and hence to applying the above
procedure is the following. By solving (once) an SAA problem, find points x1, . . . , xr ∈ X
such that the optimal value of the corresponding problem (5.177) provides us with high
accuracy an estimate of the optimal value of this SAA problem. Use some (all) of these
points to calculate lower bound estimates λ̂mN ,m = 1, . . . ,M , probably with a larger sample
size N . Calculate the average λ̄N,M together with the corresponding sample variance and
construct the associated 100(1− α)% confidence lower bound similar to (5.170).

Estimation of Optimality Gap of Minimax and Expectation-Constrained Problems

Consider a minimax problem of the form (5.46). Let ϑ∗ be the optimal value of this (true)
minimax problem. Clearly for any ȳ ∈ Y we have that

ϑ∗ ≥ inf
x∈X f (x, ȳ). (5.179)

Now for the optimal value of the right-hand side of (5.179) we can construct a valid sta-
tistical lower bound, and hence a valid statistical lower bound for ϑ∗, as before by solving
the corresponding SAA problems several times and averaging calculated optimal values.
Suppose, further, that the minimax problem (5.46) has a nonempty set Sx × Sy ⊂ X× Y of
saddle points, and hence its optimal value is equal to the optimal value of its dual problem
(5.48). Then for any x̄ ∈ X we have that

ϑ∗ ≤ sup
y∈Y

f (x̄, y), (5.180)

and the equalities in (5.179) and/or (5.180) hold iff ȳ ∈ Sy and/or x̄ ∈ Sx . By (5.180) we
can construct a valid statistical upper bound for ϑ∗ by averaging optimal values of sample
average approximations of the right-hand side of (5.180). Of course, the quality of these
bounds will depend on a good choice of the points ȳ and x̄. A natural construction for the
candidate solutions ȳ and x̄ will be to use optimal solutions of a run of the corresponding
minimax SAA problem (5.47).

Similar ideas can be applied to validation of stochastic problems involving constraints
given as expected value functions (See (5.11)–(5.13)). That is, consider the problem

Min
x∈X0

f (x) s.t. gi(x) ≤ 0, i = 1, . . . , p, (5.181)

where X0 is a nonempty subset of R
n, f (x) := E[F(x, ξ)], and gi(x) := E[Gi(x, ξ)],

i = 1, . . . , p. We have that
ϑ∗ = inf

x∈X0

sup
λ≥0

L(x, λ), (5.182)

where ϑ∗ is the optimal value and L(x, λ) := f (x) +∑p

i=1 λigi(x) is the Lagrangian of
problem (5.181). Therefore, for any λ̄ ≥ 0, we have that

ϑ∗ ≥ inf
x∈X0

L(x, λ̄), (5.183)
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and the equality in (5.183) is attained if the problem (5.179) is convex and λ̄ is a Lagrange
multipliers vector satisfying the corresponding first order optimality conditions. Of course,
a statistical lower bound for the optimal value of the problem in the right-hand side of
(5.183) is also a statistical lower bound for ϑ∗.

Unfortunately, an upper bound which can be obtained by interchanging the “inf” and
“sup” operators in (5.182) cannot be used in a straightforward way . This is because if, for
a chosen x̄ ∈ X0, it happens that ĝiN (x̄) > 0 for some i ∈ {1, . . . , p}, then

sup
λ≥0

{
f̂N (x̄)+

p∑
i=1

λiĝiN (x̄)

}
= +∞. (5.184)

Of course, in such a case the obtained upper bound+∞ is useless. This typically will be the
case if x̄ is constructed as a solution of an SAA problem and some of the SAA constraints
are active at x̄. Note also that if ĝiN (x̄) ≤ 0 for all i ∈ {1, . . . , p}, then the supremum in
the left-hand side of (5.184) is equal to f̂N (x̄).

If we can ensure, with a high probability 1−α, that a chosen point x̄ is a feasible point
of the true problem 5.179), then we can construct an upper bound by estimating f (x̄) using
a relatively large sample. This, in turn, can be approached by verifying, for an independent
sample of size N ′, that ĝiN ′(x̄) + κσ̂iN ′(x̄) ≤ 0, i = 1, . . . , p, where σ̂ 2

iN ′(x̄) is a sample
variance of ĝiN ′(x̄) and κ is a positive constant chosen in such a way that the probability of
gi(x̄) being bigger that ĝiN ′(x̄)+ κσ̂iN ′(x̄) is less than α/p for all i ∈ {1, . . . , p}.

5.6.2 Statistical Testing of Optimality Conditions

Suppose that the feasible set X is defined by (equality and inequality) constraints in the
form

X := {x ∈ R
n : gi(x) = 0, i = 1, . . . , q; gi(x) ≤ 0, i = q + 1, . . . , p

}
, (5.185)

where gi(x) are smooth (at least continuously differentiable) deterministic functions. Let
x∗ ∈ X be an optimal solution of the true problem and suppose that the expected value
function f (·) is differentiable at x∗. Then, under a constraint qualification, first order
(KKT) optimality conditions hold at x∗. That is, there exist Lagrange multipliers λi such
that λi ≥ 0, i ∈ I(x∗) and

∇f (x∗)+
∑

i∈J(x∗)
λi∇gi(x∗) = 0, (5.186)

where I(x) := {i : gi(x) = 0, i = q + 1, . . . , p} denotes the index set of inequality con-
straints active at a point x ∈ R

n, and J(x) := {1, . . . , q} ∪ I(x). Note that if the constraint
functions are linear, say, gi(x) := aT

i x+bi , then∇gi(x) = ai and the above KKT conditions
hold without a constraint qualification. Consider the (polyhedral) cone

K(x) :=
z ∈ R

n : z =
∑
i∈J(x)

αi∇gi(x), αi ≤ 0, i ∈ I(x)

 . (5.187)

Then the KKT optimality conditions can be written in the form ∇f (x∗) ∈ K(x∗).
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Suppose now that f (·) is differentiable at the candidate point x̄ ∈ X and that the
gradient ∇f (x̄) can be estimated by a (random) vector γN(x̄). In particular, if F(·, ξ) is
differentiable at x̄ w.p. 1, then we can use the estimator

γN(x̄) := 1

N

N∑
j=1

∇xF (x̄, ξ j ) = ∇f̂N (x̄) (5.188)

associated with the generated28 random sample. Note that if, moreover, the derivatives can
be taken inside the expectation, that is,

∇f (x̄) = E[∇xF (x̄, ξ)], (5.189)

then the above estimator is unbiased, i.e., E[γN(x̄)] = ∇f (x̄). In the case of two-stage linear
stochastic programming with recourse, formula (5.189) typically holds if the corresponding
random data have a continuous distribution. On the other hand, if the random data have a
discrete distribution with a finite support, then the expected value function f (x) is piecewise
linear and typically is nondifferentiable at an optimal solution.

Suppose, further, that VN := N1/2 [γN(x̄)− ∇f (x̄)] converges in distribution, as N
tends to infinity, to multivariate normal with zero mean vector and covariance matrix Σ ,

written VN
D→ N (0,Σ). For the estimator γN(x̄) defined in (5.188), this holds by the CLT

if the interchangeability formula (5.189) holds, the sample is iid, and ∇xF (x̄, ξ) has finite
second order moments. Moreover, in that case the covariance matrix Σ can be estimated
by the corresponding sample covariance matrix

Σ̂N := 1

N − 1

N∑
j=1

[
∇xF (x̄, ξ j )− ∇f̂N (x̄)

] [
∇xF (x̄, ξ j )− ∇f̂N (x̄)

]T
. (5.190)

Under the above assumptions, the sample covariance matrix Σ̂N is an unbiased and consis-
tent estimator of Σ .

We have that if VN
D→ N (0,Σ) and the covariance matrix Σ is nonsingular, then

(given a consistent estimator Σ̂N of Σ) the following holds:

N
(
γN(x̄)− ∇f (x̄)

)T
Σ̂−1
N

(
γN(x̄)− ∇f (x̄)

) D→ χ2
n , (5.191)

where χ2
n denotes chi-square distribution with n degrees of freedom. This allows us to

construct the following (approximate) 100(1− α)% confidence region29 for ∇f (x̄):{
z ∈ R

n : (γN(x̄)− z))TΣ̂−1
N

(
γN(x̄)− z)

) ≤ χ2
α,n

N

}
. (5.192)

Consider the statistic

TN := N inf
z∈K(x̄)

(
γN(x̄)− z

)T
Σ̂−1
N

(
γN(x̄)− z

)
. (5.193)

28We emphasize that the random sample in (5.188) is generated independently of the sample used to
compute the candidate point x̄.

29Here χ2
α,n denotes the α-critical value of chi-square distribution with n degrees of freedom. That is, if

Y ∼ χ2
n , then Pr

{
Y ≥ χ2

α,n

} = α.
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Note that since the cone K(x̄) is polyhedral and Σ̂−1
N is positive definite, the minimization

in the right-hand side of (5.193) can be formulated as a quadratic programming problem,
and hence can be solved by standard quadratic programming algorithms. We have that the
confidence region, defined in (5.192), does not have common points with the coneK(x̄) iff
TN > χ2

α,n. We can also use the statistic TN for testing the hypothesis:

H0 : ∇f (x̄) ∈ K(x̄) against the alternative H1 : ∇f (x̄) �∈ K(x̄). (5.194)

The TN statistic represents the squared distance, with respect to the norm30 ‖ · ‖Σ̂−1
N

, from

N1/2γN(x̄) to the cone K(x̄). Suppose for the moment that only equality constraints are
present in the definition (5.185) of the feasible set, and that the gradient vectors ∇gi(x̄),
i = 1, . . . , q, are linearly independent. Then the set K(x̄) forms a linear subspace of R

n

of dimension q, and the optimal value of the right-hand side of (5.193) can be written in
a closed form. Consequently, it is possible to show that TN has asymptotically noncentral
chi-square distribution with n− q degrees of freedom and the noncentrality parameter31

δ := N inf
z∈K(x̄)

(∇f (x̄)− z)TΣ−1
(∇f (x̄)− z). (5.195)

In particular, under H0 we have that δ = 0, and hence the null distribution of TN is asymp-
totically central chi-square with n− q degrees of freedom.

Consider now the general case where the feasible set is defined by equality and in-
equality constraints as in (5.185). Suppose that the gradient vectors ∇gi(x̄), i ∈ J(x̄), are
linearly independent and that the strict complementarity condition holds at x̄, that is, the
Lagrange multipliers λi , i ∈ I(x̄), corresponding to the active at x̄ inequality constraints,
are positive. Then for γN(x̄) sufficiently close to ∇f (x̄) the minimizer in the right-hand
side of (5.193) will be lying in the linear space generated by vectors ∇gi(x̄), i ∈ J(x̄).
Therefore, in such case the null distribution of TN is asymptotically central chi-square
with ν := n − |J(x̄)| degrees of freedom. Consequently, for a computed value T ∗N of the
statistic TN we can calculate (approximately) the corresponding p-value, which is equal
to Pr

{
Y ≥ T ∗N

}
, where Y ∼ χ2

ν . This p-value gives an indication of the quality of the
candidate solution x̄ with respect to the stochastic precision.

It should be understood that by accepting (i.e., failing to reject) H0, we do not claim
that the KKT conditions hold exactly at x̄. By acceptingH0 we rather assert that we cannot
separate∇f (x̄) fromK(x̄), given precision of the generated sample. That is, statistical error
of the estimator γN(x̄) is bigger than the squared ‖ · ‖Σ−1 -norm distance between ∇f (x̄)
and K(x̄). Also, rejecting H0 does not necessarily mean that x̄ is a poor candidate for an
optimal solution of the true problem. The calculated value of the TN statistic can be large,
i.e., the p-value can be small, simply because the estimated covariance matrix N−1Σ̂N of
γN(x̄) is “small.” In such cases, γN(x̄) provides an accurate estimator of ∇f (x̄) with the
corresponding confidence region (5.192) being small. Therefore, the above p-value should
be compared with the size of the confidence region (5.192), which in turn is defined by the
size of the matrix N−1Σ̂N measured, for example, by its eigenvalues. Note also that it may
happen that |J(x̄)| = n, and hence ν = 0. Under the strict complementarity condition, this

30For a positive definite matrix A, the norm ‖ · ‖A is defined as ‖z‖A := (zTAz)1/2.
31Note that under the alternative (i.e., if ∇f (x̄) �∈ K(x̄)), the noncentrality parameter δ tends to infinity

as N →∞. Therefore, in order to justify the above asymptotics, one needs a technical assumption known
as Pitman’s parameter drift.
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means that ∇f (x̄) lies in the interior of the cone K(x̄), which in turn is equivalent to the
condition that f̄ ′(x̄, d) ≥ c‖d‖ for some c > 0 and all d ∈ R

n. Then, by the LD principle
(see (7.192) in particular), the event γN(x̄) ∈ K(x̄) happens with probability approaching
one exponentially fast.

Let us remark again that the above testing procedure is applicable if F(·, ξ) is differ-
entiable at x̄ w.p. 1 and the interchangeability formula (5.189) holds. This typically happens
in cases where the corresponding random data have a continuous distribution.

5.7 Chance Constrained Problems
Consider a chance constrained problem of the form

Min
x∈X f (x) s.t. p(x) ≤ α, (5.196)

where X ⊂ R
n is a closed set, f : Rn → R is a continuous function, α ∈ (0, 1) is a given

significance level, and

p(x) := Pr
{
C(x, ξ) > 0

}
(5.197)

is the probability that constraint is violated at point x ∈ X. We assume that ξ is a random
vector, whose probability distribution P is supported on set � ⊂ R

d , and the function
C : R

n × � → R is a Carathéodory function. The chance constraint p(x) ≤ α can be
written equivalently in the form

Pr
{
C(x, ξ) ≤ 0

} ≥ 1− α. (5.198)

Let us also remark that several chance constraints

Pr
{
Ci(x, ξ) ≤ 0, i = 1, . . . , q

} ≥ 1− α (5.199)

can be reduced to one chance constraint (5.198) by employing the max-functionC(x, ξ) :=
max1≤i≤q Ci(x, ξ). Of course, in some cases this may destroy a nice structure of considered
functions. At this point, however, this is not important.

5.7.1 Monte Carlo Sampling Approach

We discuss now a way of solving problem (5.196) by Monte Carlo sampling. For the sake
of simplicity we assume that the objective function f (x) is given explicitly and only the
chance constraints should be approximated.

We can write the probability p(x) in the form of the expectation,

p(x) = E
[
1(0,∞)(C(x, ξ))

]
,

and estimate this probability by the corresponding SAA function (compare with (5.14)–
(5.16))

p̂N (x) := N−1
N∑
j=1

1(0,∞)
(
C(x, ξ j )

)
. (5.200)
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Recall that 1(0,∞) (C(x, ξ)) is equal to 1 if C(x, ξ) > 0, and it is equal 0 otherwise.
Therefore, p̂N (x) is equal to the proportion of times that C(x, ξ j ) > 0, j = 1, . . . , N .
Consequently we can write the corresponding SAA problem as

Min
x∈X f (x) s.t. p̂N (x) ≤ α. (5.201)

Proposition 5.29. Let C(x, ξ) be a Carathéodory function. Then the functions p(x) and
p̂N (x) are lower semicontinuous. Suppose, further, that the sample is iid. Then p̂N

e→ p

w.p. 1. Moreover, suppose that for every x ∈ X it holds that

Pr
{
ξ ∈ � : C(x, ξ) = 0

} = 0, (5.202)

i.e., C(x, ξ) �= 0 w.p. 1. Then the function p(x) is continuous on X and p̂N (x) converges
to p(x) w.p. 1 uniformly on any compact subset of X.

Proof. Consider functionψ(x, ξ) := 1(0,∞)
(
C(x, ξ)

)
. Recall thatp(x) = EP [ψ(x, ξ)] and

p̂N (x) = EPN [ψ(x, ξ)], where PN := N−1∑N
j=1 #(ξ

j ) is the respective empirical mea-
sure. Since the function 1(0,∞)(·) is lower semicontinuous and C(x, ξ) is a Carathéodory
function, it follows that the functionψ(x, ξ) is random lower semicontinuous. Lower semi-
continuity ofp(x) and p̂N (x) follows by Fatou’s lemma (see Theorem 7.42). If the sample is
iid, the epiconvergence p̂N

e→ p w.p. 1 follows by Theorem 7.51. Note that the dominance
condition, from below and from above, holds here automatically since |ψ(x, ξ)| ≤ 1.

Suppose, further, that condition (5.202) holds. Then for every x ∈ X, ψ(·, ξ) is
continuous at x w.p. 1. It follows by the Lebesgue dominated convergence theorem that
p(·) is continuous at x (see Theorem 7.43). Finally, the uniform convergence w.p. 1 follows
by Theorem 7.48.

Since the function p(x) is lower semicontinuous and the set X is closed, it follows
that the feasible set of problem (5.196) is closed. If, moreover, it is nonempty and bounded,
then problem (5.196) has a nonempty set S of optimal solutions. (Recall that the objective
function f (x) is assumed to be continuous here.) The same applies to the corresponding
SAA problem (5.201). We have here the following consistency properties of the optimal
value ϑ̂N and the set ŜN of optimal solutions of the SAA problem (5.201) (compare with
Theorem 5.5).

Proposition 5.30. Suppose that the set X is compact, the function f (x) is continuous,
C(x, ξ) is a Carathéodory function, the sample is iid, and the following condition holds:
(a) there is an optimal solution x̄ of the true problem such that for any ε > 0 there is x ∈ X
with ‖x − x̄‖ ≤ ε and p(x) < α. Then ϑ̂N → ϑ∗ and D(ŜN , S)→ 0 w.p. 1 as N →∞.

Proof. By condition (a), the set S is nonempty and there is x ′ ∈ X such that p(x ′) < α. By
the LLN we have that p̂N (x ′) converges to p(x ′) w.p. 1. Consequently p̂N (x ′) < α, and
hence the SAA problem has a feasible solution, w.p. 1 for N large enough. Since p̂N (·) is
lower semicontinuous, the feasible set of SAA problem is closed and hence compact and
thus ŜN is nonempty w.p. 1 for N large enough. Of course, if x ′ is a feasible solution of an
SAA problem, then f (x ′) ≥ ϑ̂N , where ϑ̂N is the optimal value of that SAA problem.
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212 Chapter 5. Statistical Inference

For a given ε > 0 let x ′ ∈ X be a point sufficiently close to x̄ ∈ S such that
p̂N (x

′) < α and f (x ′) ≤ f (x̄) + ε. Since f (·) is continuous, existence of such point is
ensured by condition (a). Consequently,

lim sup
N→∞

ϑ̂N ≤ f (x ′) ≤ f (x̄)+ ε = ϑ∗ + ε w.p. 1. (5.203)

Since ε > 0 is arbitrary, it follows that

lim sup
N→∞

ϑ̂N ≤ ϑ∗ w.p. 1. (5.204)

Now let x̂N ∈ ŜN , i.e., x̂N ∈ X, p̂N (x̂N ) ≤ α and ϑ̂N = f (x̂N). Since the set X is
compact, we can assume by passing to a subsequence if necessary that x̂N converges to a
point x̄ ∈ X w.p. 1. Also by Proposition 5.29 we have that p̂N

e→ p w.p. 1, and hence

lim inf
N→∞ p̂N (x̂N ) ≥ p(x̄) w.p. 1.

It follows that p(x̄) ≤ α and hence x̄ is a feasible point of the true problem, and thus
f (x̄) ≥ ϑ∗. Also f (x̂N)→ f (x̄) w.p. 1, and hence

lim inf
N→∞ ϑ̂N ≥ ϑ∗ w.p. 1. (5.205)

It follows from (5.204) and (5.205) that ϑ̂N → ϑ∗ w.p. 1. It also follows that the point x̄
is an optimal solution of the true problem and consequently we obtain that D(ŜN , S)→ 0
w.p. 1.

The above condition (a) is essential for the consistency of ϑ̂N and ŜN . Think, for
example, about a situation where the constraint p(x) ≤ α defines just one feasible point
x̄ such that p(x̄) = α. Then arbitrary small changes in the constraint p̂N (x) ≤ α may
result in that the feasible set of the corresponding SAA problem becomes empty. Note
also that condition (a) was not used in the proof of inequality (5.205). Verification of this
condition (a) can be done by ad hoc methods.

We have that under mild regularity conditions, optimal value and optimal solutions
of the SAA problem (5.201) converge w.p. 1, as N →∞, to their counterparts of the true
problem (5.196). There are, however, several potential problems with the SAA approach
here. In order for p̂N (x) to be a reasonably accurate estimate of p(x), the sample size N
should be significantly bigger than α−1. For small α this may result in a large sample size.
Another problem is that typically the function p̂N (x) is discontinuous and the SAA problem
(5.201) is a combinatorial problem which could be difficult to solve. Therefore we consider
the following approach.

Convex Approximation Approach

For a generated sample ξ 1, . . . , ξN consider the problem

Min
x∈X f (x) s.t. C(x, ξ j ) ≤ 0, j = 1, . . . , N. (5.206)
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Note that for α = 0 the SAA problem (5.201) coincides with problem (5.206). If the set X
and functions f (·) and C(·, ξ), ξ ∈ �, are convex, then (5.206) is a convex problem and
could be efficiently solved provided that the involved functions are given in a closed form
and the sample size N is not too large. Clearly, as N → ∞ the feasible set of problem
(5.206) will shrink to the set of x ∈ X determined by the constraints C(x, ξ) ≤ 0 for a.e.
ξ ∈ �, and hence for large N will be overly conservative for the true chance constrained
problem (5.196). Nevertheless, it makes sense to ask the question for what sample size
N an optimal solution of problem (5.206) is guaranteed to be a feasible point of problem
(5.196).

We need the following auxiliary result.

Lemma 5.31. Suppose that the set X and functions f (·) and C(·, ξ), ξ ∈ �, are convex
and let x̄N be an optimal solution of problem (5.206). Then there exists an index set
J ⊂ {1, . . . , N} such that |J | ≤ n and x̄N is an optimal solution of the problem

Min
x∈X f (x) s.t. C(x, ξ j ) ≤ 0, j ∈ J. (5.207)

Proof. Consider sets A0 := {x ∈ X : f (x) < f (x̄N)} and Aj := {x ∈ X : C(x, ξ j ) ≤ 0},
j = 1, . . . , N . Since X, f (·) and C(·, ξ j ) are convex, these sets are convex. Now we
argue by a contradiction. Suppose that the assertion of this lemma is not correct. Then
the intersection of A0 and any n sets Aj is nonempty. Since the intersection of all sets
Aj , j ∈ {1, . . . , N}, is nonempty (these sets have at least one common element x̄N ), it
follows that the intersection of any n + 1 sets of the family Aj , j ∈ {0, 1, . . . , N}, is
nonempty. By Helly’s theorem (Theorem 7.3) this implies that the intersection of all sets
Aj , j ∈ {0, 1, . . . , N}, is nonempty. This, in turn, implies existence of a feasible point x̃ of
problem (5.206) such that f (x̃) < f (x̄N), which contradicts optimality of x̄N .

We will use the following assumptions.

(F1) For any N ∈ N and any (ξ1, . . . , ξN) ∈ �N , problem (5.206) attains the unique
optimal solution x̄N = x̄(ξ1, . . . , ξN).

Recall that sometimes we use the same notation for a random vector and its particular value
(realization). In the above assumption we view ξ1, . . . , ξN as an element of the set �N

and x̄N as a function of ξ1, . . . , ξN . Of course, if ξ1, . . . , ξN is a random sample, then x̄N
becomes a random vector.

Let J = J(ξ 1, . . . , ξN) ⊂ {1, . . . , N} be an index set such that x̄N is an optimal
solution of the problem (5.207) for J = J. Moreover, let the index set J be minimal in
the sense that if any of the constraints C(x, ξ j ) ≤ 0, j ∈ J, is removed, then x̄N is not
an optimal solution of the obtained problem. We assume that w.p. 1 such minimal index
set is unique. By Lemma 5.31, we have that |J| ≤ n. By PN we denote here the product
probability measure on the set �N , i.e., PN is the probability distribution of the iid sample
ξ 1, . . . , ξN .

(F2) There is an integer n ∈ N such that, for any N ≥ n, w.p. 1 the minimal set
J = J(ξ 1, . . . , ξN) is uniquely defined and has constant cardinality n, i.e.,
PN {|J| = n} = 1.

By Lemma 5.31 we have that n ≤ n.
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Assumption (F1) holds, for example, if the set X is compact and convex, functions
f (·) and C(·, ξ), ξ ∈ �, are convex, and either f (·) or the feasible set of problem (5.206)
is strictly convex. Assumption (F2) is more involved; it is needed to show an equality in
the estimate (5.209) of the following theorem.

The following result is due to Campi and Garatti [30], building on work of Calafiore
and Campi [29]. Denote

b(k;α,N) :=
k∑
i=0

(
N

i

)
αi(1− α)N−i , k = 0, . . . , N. (5.208)

That is, b(k;α,N) = Pr(W ≤ k), where W ∼ B(α,N) is a random variable having
binomial distribution.

Theorem 5.32. Suppose that the set X and functions f (·) and C(·, ξ), ξ ∈ �, are convex
and conditions (F1) and (F2) hold. Then for α ∈ (0, 1) and for an iid sample ξ 1, . . . , ξN of
size N ≥ n we have that

Pr
{
p(x̄N) > α

} = b(n − 1;α,N). (5.209)

Proof. Let Jn be the family of all sets J ⊂ {1, . . . , N} of cardinality n. We have that
|Jn| =

(
N

n

)
. For J ∈ Jn define the set

ΣJ :=
{
(ξ 1, . . . , ξN) ∈ �N : J(ξ 1, . . . , ξN) = J} (5.210)

and denote by x̂J = x̂J (ξ 1, . . . , ξN) an optimal solution of problem (5.207) for J = J . By
condition (F1), such optimal solution x̂J exists and is unique, and hence

ΣJ =
{
(ξ 1, . . . , ξN) ∈ �N : x̂J = x̄N

}
. (5.211)

Note that for any permutation of vectors ξ 1, . . . , ξN , problem (5.206) remains the same.
Therefore, any set from the family {ΣJ }J∈Jn

can be obtained from another set of that family
by an appropriate permutation of its components. Since PN is the direct product probability
measure, it follows that the probability measure of each set ΣJ , J ∈ Jn, is the same. The
setsΣJ are disjoint and, because of condition (F2), union of all these sets is equal to�N up
to a set of PN -measure zero. Since there are

(
N

n

)
such sets, we obtain that

PN(ΣJ ) = 1(
N

n

) . (5.212)

Consider the optimal solution x̄n = x̄(ξ 1, . . . , ξn) forN = n, and letH(z) be the cdf
of the random variable p(x̄n), i.e.,

H(z) := P n {p(x̄n) ≤ z} . (5.213)

Let us show that for N ≥ n,

PN(ΣJ ) =
∫ 1

0
(1− z)N−ndH(z). (5.214)
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Indeed, for z ∈ [0, 1] and J ∈ Jn consider the sets

#z := {(ξ1, . . . , ξN) : p(x̄N) ∈ [z, z+ dz]} ,
#J,z :=

{
(ξ1, . . . , ξN) : p(x̂J ) ∈ [z, z+ dz]

}
.

(5.215)

By (5.211) we have that#z∩ΣJ = #J,z∩ΣJ . For J ∈ Jn let us evaluate probability of the
event#J,z ∩ΣJ . For the sake of notational simplicity let us take J = {1, . . . , n}. Note that
x̂J depends on (ξ 1, . . . , ξn) only. Therefore #J,z = #∗z × �N−n, where #∗z is a subset of
�n corresponding to the event p(x̂J ) ∈ [z, z+ dz]. Conditional on (ξ 1, . . . , ξn), the event
#J,z ∩ ΣJ happens iff the point x̂J = x̂J (ξ

1, . . . , ξn) remains feasible for the remaining
N − n constraints, i.e., iff C(x̂J , ξ j ) ≤ 0 for all j = n + 1, . . . , N . If p(x̂J ) = z, then
probability of each event “C(x̂J , ξ j ) ≤ 0” is equal to 1 − z. Since the sample is iid, we
obtain that conditional on (ξ 1, . . . , ξn) ∈ #∗z , probability of the event #J,z ∩ ΣJ is equal
to (1− z)N−n. Consequently, the unconditional probability

PN(#z ∩ΣJ ) = PN(#J,z ∩ΣJ ) = (1− z)N−ndH(z), (5.216)

and hence (5.214) follows.
It follows from (5.212) and (5.214) that(

N

n

)∫ 1

0
(1− z)N−ndH(z) = 1, N ≥ n. (5.217)

Let us observe that H(z) := zn satisfies (5.217) for all N ≥ n. Indeed, using integration
by parts, we have(

N

n

) ∫ 1
0 (1− z)N−ndzn=−

(
N

n

)
n

N−n+1

∫ 1
0 z

n−1d(1− z)N−n+1

=
(

N

n−1

) ∫ 1
0 (1− z)N−n+1dzn−1 = · · · = 1.

(5.218)

We also have that (5.217) determine respective moments of random variable 1− Z, where
Z ∼ H(z), and hence (since random variable p(x̄n) has a bounded support) by the general
theory of moments these equations have unique solution. Therefore we conclude that
H(z) = zn, 0 ≤ z ≤ 1, is the cdf of p(x̄n).

We also have by (5.216) that

PN
{
p(x̄N) ∈ [z, z+ dz]

} = ∑
J∈Jn

PN(#z ∩ΣJ ) =
(
N

n

)
(1− z)N−ndH(z). (5.219)

Therefore, since H(z) = zn and using integration by parts similar to (5.218), we can write

PN
{
p(x̄N) > α

}
=
(
N

n

) ∫ 1
α
(1− z)N−ndH(z) =

(
N

n

)
n
∫ 1
α
(1− z)N−nzn−1dz

=
(
N

n

)
n

N−n+1

[
−(1− z)N−n+1zn−1

∣∣1
α
+ ∫ 1

α
(1− z)N−n+1dzn−1

]
=
(

N

n−1

)
(1− α)N−n+1αn−1 +

(
N

n−1

) ∫ 1
α
(1− z)N−n+1dzn−1

= · · · =∑n−1
i=0

(
N

i

)
αi(1− α)N−i .

(5.220)

Since Pr
{
p(x̄N) > α

} = PN
{
p(x̄N) > α

}
, this completes the proof.
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Of course, the event “p(x̄N) > α” means that x̄N is not a feasible point of the true
problem (5.196). Recall that n ≤ n. Therefore, given β ∈ (0, 1), the inequality (5.209)
implies that for sample size N ≥ n such that

b(n− 1;α,N) ≤ β, (5.221)

we have with probability at least 1 − β that x̄N is a feasible solution of the true problem
(5.196).

Recall that

b(n− 1;α,N) = Pr(W ≤ n− 1),

whereW ∼ B(α,N) is a random variable having binomial distribution. For “not too small”
α and large N , good approximation of that probability is suggested by the CLT. That is, W
has approximately normal distribution with meanNα and varianceNα(1−α), and hence32

b(n− 1;α,N) ≈ �
(
n− 1−Nα√
Nα(1− α)

)
. (5.222)

For Nα ≥ n− 1, the Hoeffding inequality (7.188) gives the estimate

b(n− 1;α,N) ≤ exp

{
−2(Nα − n+ 1)2

N

}
, (5.223)

and the Chernoff inequality (7.190) gives

b(n− 1;α,N) ≤ exp

{
− (Nα − n+ 1)2

2αN

}
. (5.224)

The estimates (5.221) and (5.224) show that the required sample size N should be of order
O(α−1). This, of course, is not surprising since just to estimate the probability p(x), for
a given x, by Monte Carlo sampling we will need a sample size of order O(1/p(x)). For
example, for n = 100 and α = β = 0.01, bound (5.221) suggests estimate N = 12460 for
the required sample size. Normal approximation (5.222) gives practically the same estimate
of N . The estimate derived from the bound (5.223) gives a significantly bigger estimate of
N = 40372. The estimate derived from the Chernoff inequality (5.224) gives a much better
estimate of N = 13410.

This indicates that the guaranteed estimates like (5.221) could be too conservative for
practical calculations. Note also that Theorem 5.32 does not make any claims about quality
of x̄N as a candidate for an optimal solution of the true problem (5.196); it guarantees only
its feasibility.

5.7.2 Validation of an Optimal Solution

We discuss now an approach to a practical validation of a candidate point x̄ ∈ X for an
optimal solution of the true problem (5.196). This task is twofold, namely, we need to verify
feasibility and optimality of x̄. Of course, if a point x̄ is feasible for the true problem, then
ϑ∗ ≤ f (x̄), i.e., f (x̄) gives an upper bound for the true optimal value.

32Recall that �(·) is the cdf of standard normal distribution.
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Upper Bounds

Let us start with verification of the feasibility of the point x̄. For that we need to estimate
the probability p(x̄) = Pr{C(x̄, ξ) > 0}. We proceed by employing Monte Carlo sampling
techniques. For a generated iid random sample ξ 1, . . . , ξN , let m be the number of times
that the constraints C(x̄, ξ j ) ≤ 0, j = 1, . . . , N , are violated, i.e.,

m :=
N∑
j=1

1(0,∞)
(
C(x̄, ξ j )

)
.

Then p̂N (x̄) = m/N is an unbiased estimator of p(x̄), and m has Binomial distribution
B (p(x̄), N).

If the sample sizeN is significantly bigger than 1/p(x̄), then the distribution of p̂N (x̄)
can be reasonably approximated by a normal distribution with mean p(x̄) and variance
p(x̄)(1−p(x̄))/N . In that case, one can consider, for a given confidence level β ∈ (0, 1/2),
the following approximate upper bound for the probability33 p(x̄):

p̂N (x̄)+ zβ
√
p̂N (x̄)(1− p̂N (x̄))

N
. (5.225)

Let us discuss the following, more accurate, approach for constructing an upper con-
fidence bound for the probability p(x̄). For a given β ∈ (0, 1) consider

Uβ,N (x̄) := sup
ρ∈[0,1]

{
ρ : b(m; ρ,N) ≥ β}. (5.226)

We have that Uβ,N (x̄) is a function of m and hence is a random variable. Note that b(m; ρ,N)
is continuous and monotonically decreasing in ρ ∈ (0, 1). Therefore, in fact, the supre-
mum in the right-hand side of (5.226) is attained, and Uβ,N (x̄) is equal to such ρ̄ that
b(m; ρ̄, N) = β. Denoting V := b(m;p(x̄), N), we have that

Pr
{
p(x̄) < Uβ,N (x̄)

} = Pr
{
V >

β︷ ︸︸ ︷
b(m; ρ̄, N)

}
= 1− Pr {V ≤ β} = 1−

N∑
k=0

Pr
{
V ≤ β∣∣m = k}Pr(m = k).

Since

Pr
{
V ≤ β∣∣m = k} = {1 if b(k;p(x̄), N) ≤ β,

0 otherwise,

and Pr(m = k) = (N
k

)
p(x̄)k(1− p(x̄))N−k , it follows that

N∑
k=0

Pr
{
V ≤ β∣∣m = k} Pr(m = k) ≤ β,

and hence

Pr
{
p(x̄) < Uβ,N (x̄)

} ≥ 1− β. (5.227)

33Recall that zβ := �−1(1− β) = −�−1(β), where �(·) is the cdf of the standard normal distribution.
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That is, p(x̄) < Uβ,N (x̄) with probability at least 1− β. Therefore we can take Uβ,N (x̄) as
an upper (1− β)-confidence bound for p(x̄). In particular, if m = 0, then

Uβ,N (x̄) = 1− β1/N < N−1 ln(β−1).

We obtain that if Uβ,N (x̄) ≤ α, then x̄ is a feasible solution of the true problem with
probability at least 1−β. In that case, we can use f (x̄) as an upper bound, with confidence
1− β, for the optimal value ϑ∗ of the true problem (5.196). Since this procedure involves
only calculations of C(x̄, ξ j ), it can be performed with a large sample size N , and hence
feasibility of x̄ can be verified with a high accuracy provided that α is not too small.

It also could be noted that the bound given in (5.225), in a sense, is an approximation
of the upper bound ρ̄ = Uβ,N (x̄). Indeed, by the CLT the cumulative distribution b(k; ρ̄, N)
can be approximated by �( k−ρ̄N√

Nρ̄(1−ρ̄) ). Therefore, approximately ρ̄ is the solution of the

equation �( m−ρN√
Nρ(1−ρ) ) = β, which can be written as

ρ = m

N
+ zβ

√
ρ(1− ρ)

N
.

By approximating ρ in the right-hand side of the above equation by m/N we obtain the
bound (5.225).

Lower Bounds

It is more tricky to construct a valid lower statistical bound for ϑ∗. One possible approach
is to apply a general methodology of the SAA method. (See the discussion at the end of
section 5.6.1.) We have that for any λ ≥ 0 the following inequality holds (compare with
(5.183)):

ϑ∗ ≥ inf
x∈X
[
f (x)+ λ(p(x)− α)]. (5.228)

We also have that expectation of

v̂N (λ) := inf
x∈X
[
f (x)+ λ(p̂N(x)− α)

]
(5.229)

gives a valid lower bound for the right-hand side of (5.228), and hence for ϑ∗. An unbiased
estimate of E[v̂N (λ)] can be obtained by solving the right-hand-side problem of (5.229)
several times and averaging calculated optimal values. Note, however, that there are two
difficulties with applying this approach. First, recall that typically the function p̂N (x) is
discontinuous and hence it could be difficult to solve these optimization problems. Second,
it may happen that for any choice of λ ≥ 0 the optimal value of the right-hand side of
(5.228) is smaller than ϑ∗, i.e., there is a gap between problem (5.196) and its (Lagrangian)
dual.

We discuss now an alternative approach to construction statistical lower bounds. For
chosen positive integers N and M , and constant γ ∈ [0, 1), let us generate M independent
samples ξ 1,m, . . . , ξN,m, m = 1, . . . ,M , each of size N , of random vector ξ . For each
sample, solve the associated optimization problem

Min
x∈X f (x) s.t.

N∑
j=1

1(0,∞)
(
C(x, ξ j,m)

) ≤ γN (5.230)
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and hence calculate its optimal value ϑ̂mγ,N , m = 1, . . . ,M . That is, we solve M times the
corresponding SAA problem at the significance level γ . In particular, for γ = 0, problem
(5.230) takes the form

Min
x∈X f (x) s.t. C(x, ξ j,m) ≤ 0, j = 1, . . . , N. (5.231)

It may happen that problem (5.230) is either infeasible or unbounded from below, in
which case we assign its optimal value as +∞ or −∞, respectively. We can view ϑ̂mγ,N ,

m = 1, . . . ,M , as an iid sample of the random variable ϑ̂γ,N , where ϑ̂γ,N is the optimal
value of the respective SAA problem at significance level γ . Next we rearrange the cal-
culated optimal values in the nondecreasing order, ϑ̂ (1)γ,N ≤ · · · ≤ ϑ̂

(M)
γ,N ; i.e., ϑ̂ (1)γ,N is the

smallest, ϑ̂ (2)γ,N is the second smallest, etc., among the values ϑ̂mγ,N , m = 1, . . . ,M . By

definition, we choose an integer L ∈ {1, . . . ,M} and use the random quantity ϑ̂ (L)γ,N as a
lower bound of the true optimal value ϑ∗.

Let us analyze the resulting bounding procedure. Let x̃ ∈ X be a feasible point of the
true problem, i.e.,

Pr{C(x̃, ξ) > 0} ≤ α.
Since

∑N
j=1 1(0,∞)

(
C(x̃, ξ j,m)

)
has binomial distribution with probability of success equal

to the probability of the event {C(x̃, ξ) > 0}, it follows that x̃ is feasible for problem (5.230)
with probability at least34

�γN�∑
i=0

(
N

i

)
αi(1− α)N−i = b (�γN�;α,N) =: θN .

When x̃ is feasible for (5.230), we of course have that ϑ̂mγ,N ≤ f (x̃). Let ε > 0 be an
arbitrary constant and x̃ be a feasible point of the true problem such that f (x̃) ≤ ϑ∗ + ε.
Then for every m ∈ {1, . . . ,M} we have

θ := Pr
{
ϑ̂mγ,N ≤ ϑ∗ + ε

}
≥ Pr

{
ϑ̂mγ,N ≤ f (x̃)

}
≥ θN .

Now, in the case of ϑ̂ (L)γ,N > ϑ∗ + ε, the corresponding realization of the random sequence

ϑ̂1
γ,N , . . . , ϑ̂

M
γ,N contains less than L elements which are less than or equal to ϑ∗ + ε.

Since the elements of the sequence are independent, the probability of the latter event is
b(L − 1; θ,M). Since θ ≥ θN , we have that b(L − 1; θ,M) ≤ b(L − 1; θN,M). Thus,
Pr{ϑ̂ (L)γ,N > ϑ∗+ε} ≤ b(L−1; θN,M). Since the resulting inequality is valid for any ε > 0,
we arrive at the bound

Pr
{
ϑ̂
(L)
γ,N > ϑ∗

}
≤ b(L− 1; θN,M). (5.232)

We obtain the following result.

Proposition 5.33. Given β ∈ (0, 1) and γ ∈ [0, 1), let us choose positive integers M,N ,
and L in such a way that

b(L− 1; θN,M) ≤ β, (5.233)

34Recall that the notation �a� stands for the largest integer less than or equal to a ∈ R.
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where θN := b (�γN�;α,N). Then

Pr
{
ϑ̂
(L)
γ,N > ϑ∗

}
≤ β. (5.234)

For given sample sizesN andM , it is better to take the largest integerL ∈ {1, . . . ,M}
satisfying condition (5.233). That is, for

L∗ := max
1≤L≤M

{
L : b(L− 1; θN,M) ≤ β

}
,

we have that the random quantity ϑ̂ (L
∗)

γ,N gives a lower bound for the true optimal value ϑ∗
with probability at least 1 − β. If no L ∈ {1, . . . ,M} satisfying (5.233) exists, the lower
bound, by definition, is −∞.

The question arising in connection with the outlined bounding scheme is how to
choose M , N , and γ . In the convex case it is advantageous to take γ = 0, since then we
need to solve convex problems (5.231), rather than combinatorial problems (5.230). Note
that for γ = 0, we have that θN = (1− α)N and the bound (5.233) takes the form

L−1∑
k=0

(
M

k

)
(1− α)Nk[1− (1− α)N ]M−k ≤ β. (5.235)

Suppose that N and γ ≥ 0 are given (fixed). Then the larger M is, the better. We
can view ϑ̂mγ,N , m = 1, . . . ,M , as a random sample from the distribution of the random

variable ϑ̂N with ϑ̂N being the optimal value of the corresponding SAA problem of the
form (5.230). It follows from the definition that L∗ is equal to the (lower) β-quantile of the
binomial distribution B(θN,M). By the CLT we have that

lim
M→∞

L∗ − θNM√
MθN(1− θN) = �

−1(β),

and L∗/M tends to θN as M →∞. It follows that the lower bound ϑ̂ (L
∗)

γ,N converges to the

θN -quantile of the distribution of ϑ̂N as M →∞.
In reality, however, M is bounded by the computational effort required to solve M

problems of the form (5.230). Note that the effort per problem is larger the larger the sample
size N . For L = 1 (which is the smallest value of L) and γ = 0, the left-hand side of
(5.235) is equal to [1−(1−α)N ]M . Note that (1−α)N ≈ e−αN for small α > 0. Therefore,
if αN is large, one will need a very large M to make [1 − (1 − α)N ]M smaller than, say,
β = 0.01, and hence to get a meaningful lower bound. For example, for αN = 7 we
have that e−αN = 0.0009, and we will need M > 5000 to make [1 − (1 − α)N ]M smaller
than 0.01. Therefore, for γ = 0 it is recommended to take N not larger than, say, 2/α.

5.8 SAA Method Applied to Multistage Stochastic
Programming

Consider a multistage stochastic programming problem, in the general form (3.1), driven
by the random data process ξ1, ξ2, . . . , ξT . The exact meaning of this formulation was
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discussed in section 3.1.1. In this section we discuss application of the SAA method to such
multistage problems.

Consider the following sampling scheme. Generate a sample ξ 1
2 , . . . , ξ

N1
2 of N1 re-

alizations of random vector ξ2. Conditional on each ξ i2, i = 1, . . . , N1, generate a random
sample ξ ij3 , j = 1, . . . , N2, of N2 realizations of ξ3 according to conditional distribution
of ξ3 given ξ2 = ξ i2. Conditional on each ξ ij3 , generate a random sample of size N3 of ξ4

conditional on ξ3 = ξ
ij

3 , and so on for later stages. (Although we do not consider such
possibility here, it is also possible to generate at each stage conditional samples of different
sizes.) In that way we generate a scenario tree withN =∏T−1

t=1 Nt number of scenarios each
taken with equal probability 1/N . We refer to this scheme as conditional sampling. Unless
stated otherwise,35 we assume that, at the first stage, the sample ξ 1

2 , . . . , ξ
N1
2 is iid and the

following samples, at each stage t = 2, . . . , T − 1, are conditionally iid. If, moreover, all
conditional samples at each stage are independent of each other, we refer to such conditional
sampling as the independent conditional sampling. The multistage stochastic programming
problem induced by the original problem (3.1) on the scenario tree generated by conditional
sampling is viewed as the sample average approximation (SAA) of the “true” problem (3.1).

It could be noted that in case of stagewise independent process ξ1, . . . , ξT , the inde-
pendent conditional sampling destroys the stagewise independence structure of the original
process. This is because at each stage conditional samples are independent of each other
and hence are different. In the stagewise independence case, an alternative approach is to
use the same sample at each stage. That is, independent of each other, random samples
ξ 1
t , . . . , ξ

Nt−1
t of respective ξt , t = 2, . . . , T , are generated and the corresponding scenario

tree is constructed by connecting every ancestor node at stage t−1 with the same set of chil-
dren nodes ξ 1

t , . . . , ξ
Nt−1
t . In that way stagewise independence is preserved in the scenario

tree generated by conditional sampling. We refer to this sampling scheme as the identical
conditional sampling.

5.8.1 Statistical Properties of Multistage SAA Estimators

Similar to two-stage programming, it makes sense to discuss convergence of the optimal
value and first-stage solutions of multistage SAA problems to their true counterparts as
sample sizes N1, . . . , NT−1 tend to infinity. We denote N := {N1, . . . , NT−1} and by ϑ∗

and ϑ̂N the optimal values of the true and the corresponding SAA multistage programs,
respectively.

In order to simplify the presentation let us consider now three-stage stochastic pro-
grams, i.e., T = 3. In that case, conditional sampling consists of sample ξ i2, i = 1, . . . , N1,
of ξ2 and for each i = 1, . . . , N1 of conditional samples ξ ij3 , j = 1, . . . , N2, of ξ3 given
ξ2 = ξ i2. Let us write dynamic programming equations for the true problem. We have

Q3(x2, ξ3) = inf
x3∈X3(x2,ξ3)

f3(x3, ξ3), (5.236)

Q2(x1, ξ2) = inf
x2∈X2(x1,ξ2)

{
f2(x2, ξ2)+ E

[
Q3(x2, ξ3)

∣∣ξ2
]}
, (5.237)

35It is also possible to employ quasi–Monte Carlo sampling in constructing conditional sampling. In some
situations this may reduce variability of the corresponding SAA estimators. In the following analysis we
assume independence in order to simplify statistical analysis.
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and at the first stage we solve the problem

Min
x1∈X1

{
f1(x1)+ E [Q2(x1, ξ2)]

}
. (5.238)

If we could calculate values Q2(x1, ξ2), we could approximate problem (5.238) by
the sample average problem

Min
x1∈X1

{
f̂N1(x1) := f1(x1)+ 1

N1

∑N1
i=1 Q2(x1, ξ

i
2)
}
. (5.239)

However, values Q2(x1, ξ
i
2) are not given explicitly and are approximated by

Q̂2,N2(x1, ξ
i
2) := inf

x2∈X2(x1,ξ
i
2)

{
f2(x2, ξ

i
2)+ 1

N2

∑N2
j=1 Q3(x2, ξ

ij

3 )
}
, (5.240)

i = 1, . . . , N1. That is, the SAA method approximates the first stage problem (5.238) by
the problem

Min
x1∈X1

{
f̃N1,N2(x1) := f1(x1)+ 1

N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2)
}
. (5.241)

In order to verify consistency of the SAA estimators, obtained by solving problem
(5.241), we need to show that f̃N1,N2(x1) converges to f1(x1) + E [Q2(x1, ξ2)] w.p. 1 uni-
formly on any compact subsetX of X1. (Compare with the analysis of section 5.1.1.) That
is, we need to show that

lim
N1,N2→∞

sup
x1∈X

∣∣∣ 1
N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2)− E [Q2(x1, ξ2)]

∣∣∣ = 0 w.p. 1. (5.242)

For that it suffices to show that

lim
N1→∞

sup
x1∈X

∣∣∣ 1
N1

∑N1
i=1 Q2(x1, ξ

i
2)− E [Q2(x1, ξ2)]

∣∣∣ = 0 w.p. 1 (5.243)

and

lim
N1,N2→∞

sup
x1∈X

∣∣∣ 1
N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2)− 1

N1

∑N1
i=1 Q2(x1, ξ

i
2)

∣∣∣ = 0 w.p. 1. (5.244)

Condition (5.243) can be verified by applying a version of the uniform Law of Large
Numbers (see section 7.2.5). Condition (5.244) is more involved. Of course, we have that

supx1∈X
∣∣∣ 1
N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2)− 1

N1

∑N1
i=1 Q2(x1, ξ

i
2)

∣∣∣
≤ 1

N1

∑N1
i=1 supx1∈X

∣∣∣Q̂2,N2(x1, ξ
i
2)−Q2(x1, ξ

i
2)

∣∣∣ ,
and hence condition (5.244) holds if Q̂2,N2(x1, ξ

i
2) converges toQ2(x1, ξ

i
2) w.p. 1 as N2 →

∞ in a certain uniform way. Unfortunately an exact mathematical analysis of such condition
could be quite involved. The analysis simplifies considerably if the underline random
process is stagewise independent. In the present case this means that random vectors ξ2 and
ξ3 are independent. In that case distribution of random sample ξ ij3 , j = 1, . . . , N2, does
not depend on i (in both sampling schemes whether samples ξ ij3 are the same for all i =
1, . . . , N1, or independent of each other), and we can apply Theorem 7.48 to establish that,
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under mild regularity conditions, 1
N2

∑N2
j=1 Q3(x2, ξ

ij

3 ) converges to E[Q3(x2, ξ3)]w.p. 1 as
N2 → ∞ uniformly in x2 on any compact subset of R

n2 . With an additional assumptions
about mapping X2(x1, ξ2), it is possible to verify the required uniform type convergence of
Q̂2,N2(x1, ξ

i
2) to Q2(x1, ξ

i
2). Again a precise mathematical analysis is quite technical and

will be left out. Instead, in section 5.8.2 we discuss a uniform exponential convergence of
the sample average function f̃N1,N2(x1) to the objective function f1(x1)+E[Q2(x1, ξ2)] of
the true problem.

Let us make the following observations. By increasing sample sizesN1, . . . , NT−1 of
conditional sampling, we eventually reconstruct the scenario tree structure of the original
multistage problem. Therefore it should be expected that in the limit, as these sample sizes
tend (simultaneously) to infinity, the corresponding SAA estimators of the optimal value
and first-stage solutions are consistent, i.e., converge w.p. 1 to their true counterparts. And,
indeed, this can be shown under certain regularity conditions. However, consistency alone
does not justify the SAA method since in reality sample sizes are always finite and are
constrained by available computational resources. Similar to the two-stage case we have
here that (for minimization problems)

ϑ∗ ≥ E[ϑ̂N ]. (5.245)

That is, the SAA optimal value ϑ̂N is a downward biased estimator of the true optimal
value ϑ∗.

Suppose now that the data process ξ1, . . . , ξT is stagewise independent. As discussed
above, in that case it is possible to use two different approaches to conditional sampling,
namely, to use at every stage independent or the same samples for every ancestor node
at the previous stage. These approaches were referred to as the independent and identi-
cal conditional samplings, respectively. Consider, for instance, the three-stage stochastic
programming problem (5.236)–(5.238). In the second approach of identical conditional
sampling we have sample ξ i2, i = 1, . . . , N1, of ξ2 and sample ξ j3 , j = 1, . . . , N2, of ξ3

independent of ξ i2. In that case formula (5.240) takes the form

Q̂2,N2(x1, ξ
i
2) = inf

x2∈X2(x1,ξ
i
2)

{
f2(x2, ξ

i
2)+ 1

N2

∑N2
j=1 Q3(x2, ξ

j

3 )
}
. (5.246)

Because of independence of ξ2 and ξ3 we have that conditional distribution of ξ3 given
ξ2 is the same as its unconditional distribution, and hence in both sampling approaches
Q̂2,N2(x1, ξ

i
2) has the same distribution independent of i. Therefore in both sampling

schemes 1
N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2) has the same expectation, and hence we may expect that

in both cases the estimator ϑ̂N has a similar bias. Variance of ϑ̂N , however, could be
quite different. In the case of independent conditional sampling we have that Q̂2,N2(x1, ξ

i
2),

i = 1, . . . , N1, are independent of each other, and hence

Var
[

1
N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2)
]
= 1

N1
Var
[
Q̂2,N2(x1, ξ

i
2)
]
. (5.247)

On the other hand, in the case of identical conditional sampling the right-hand side of
(5.246) has the same component 1

N2

∑N2
j=1 Q3(x2, ξ

j

3 ) for all i = 1, . . . , N1. Consequently,

Q̂2,N2(x1, ξ
i
2) would tend to be positively correlated for different values of i, and as a result
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ϑ̂N will have a higher variance than in the case of independent conditional sampling. There-
fore, from a statistical point of view it is advantageous to use the independent conditional
sampling.

Example 5.34 (Portfolio Selection). Consider the example of multistage portfolio selec-
tion discussed in section 1.4.2. Suppose for the moment that the problem has three stages,
t = 0, 1, 2. In the SAA approach we generate sample ξ i1, i = 1, . . . , N0, of returns at stage
t = 1, and conditional samples ξ ij2 , j = 1, . . . , N1, of returns at stage t = 2. The dynamic
programming equations for the SAA problem can be written as follows (see (1.50)–(1.52)).
At stage t = 1 for i = 1, . . . , N0, we have

Q̂1,N1(W1, ξ
i
1) = sup

x1≥0

{
1
N1

∑N1
j=1 U

(
(ξ
ij

2 )
Tx1
) : eTx1 = W1

}
, (5.248)

where e ∈ R
n is vector of ones, and at stage t = 0 we solve the problem

Max
x0≥0

1

N0

N0∑
i=1

Q̂1,N1

(
(ξ i1)

Tx0, ξ
i
1

)
s.t. eTx0 = W0. (5.249)

Now let U(W) := lnW be the logarithmic utility function. Suppose that the data
process is stagewise independent. Then the optimal value ϑ∗ of the true problem is (see
(1.58))

ϑ∗ = lnW0 +
T−1∑
t=0

νt , (5.250)

where νt is the optimal value of the problem

Max
xt≥0

E
[
ln
(
ξT
t+1xt

)]
s.t. eTxt = 1. (5.251)

Let the SAA method be applied with the identical conditional sampling, with respec-
tive sample ξ jt , j = 1, . . . , Nt−1, of ξt , t = 1, . . . , T . In that case, the corresponding SAA
problem is also stagewise independent and the optimal value of the SAA problem

ϑ̂N = lnW0 +
T−1∑
t=0

ν̂t,Nt , (5.252)

where ν̂t,Nt is the optimal value of the problem

Max
xt≥0

1

Nt

Nt∑
j=1

ln
(
(ξ
j

t+1)
Txt

)
s.t. eTxt = 1. (5.253)

We can view ν̂t,Nt as an SAA estimator of νt . Since here we solve a maximization rather
than a minimization problem, ν̂t,Nt is an upward biased estimator of νt , i.e., E[ν̂t,Nt ] ≥ νt .
We also have that E[ϑ̂N ] = lnW0 +∑T−1

t=0 E[ν̂t,Nt ], and hence

E[ϑ̂N ] − ϑ∗ =
T−1∑
t=0

(
E[ν̂t,Nt ] − νt

)
. (5.254)
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That is, for the logarithmic utility function and identical conditional sampling, bias of the
SAA estimator of the optimal value grows additively with increase of the number of stages.
Also because the samples at different stages are independent of each other, we have that

Var[ϑ̂N ] =
T−1∑
t=0

Var[ν̂t,Nt ]. (5.255)

Let now U(W) := Wγ , with γ ∈ (0, 1], be the power utility function and suppose
that the data process is stagewise independent. Then (see (1.61))

ϑ∗ = Wγ

0

T−1∏
t=0

ηt , (5.256)

where ηt is the optimal value of problem

Max
xt≥0

E
[(
ξT
t+1xt

)γ ]
s.t. eTxt = 1. (5.257)

For the corresponding SAA method with the identical conditional sampling, we have that

ϑ̂N = Wγ

0

T−1∏
t=0

η̂t,Nt , (5.258)

where η̂t,Nt is the optimal value of problem

Max
xt≥0

1

Nt

Nt∑
j=1

(
(ξ
j

t+1)
Txt

)γ
s.t. eTxt = 1. (5.259)

Because of the independence of the samples, and hence independence of η̂t,Nt , we can write
E[ϑ̂N ] = Wγ

0

∏T−1
t=0 E[η̂t,Nt ], and hence

E[ϑ̂N ] = ϑ∗
T−1∏
t=0

(1+ βt,Nt ), (5.260)

where βt,Nt := E[η̂t,Nt ]−ηt
ηt

is the relative bias of η̂t,Nt . That is, bias of ϑ̂N grows with
increase of the number of stages in a multiplicative way. In particular, if the relative biases
βt,Nt are constant, then bias of ϑ̂N grows exponentially fast with increase of the number of
stages.

Statistical Validation Analysis

By (5.245) we have that the optimal value ϑ̂N of SAA problem gives a valid statistical lower
bound for the optimal value ϑ∗. Therefore, in order to construct a lower bound for ϑ∗ one
can proceed exactly in the same way as it was discussed in section 5.6.1. Unfortunately,
typically the bias and variance of ϑ̂N grow fast with increase of the number of stages, which
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makes the corresponding statistical lower bounds quite inaccurate already for a mild number
of stages.

In order to construct an upper bound we proceed as follows. Let x t (ξ[t]) be a feasible
policy. Recall that a policy is feasible if it satisfies the feasibility constraints (3.2). Since
the multistage problem can be formulated as the minimization problem (3.3) we have that

E
[
f1(x1)+ f2(x2(ξ[2]), ξ2)+ · · · + fT

(
xT (ξ[T ]), ξT

) ] ≥ ϑ∗, (5.261)

and equality in (5.261) holds iff the policy x t (ξ[t]) is optimal. The expectation in the left-
hand side of (5.261) can be estimated in a straightforward way. That is, generate random
sample ξ j1 , . . . , ξ

j

T , j = 1, . . . , N , of N realizations (scenarios) of the random data process
ξ1, . . . , ξT and estimate this expectation by the average

1

N

N∑
j=1

[
f1(x1)+ f2

(
x2(ξ

j

[2]), ξ
j

2

)+ · · · + fT (xT (ξ j[T ]), ξ jT )] . (5.262)

Note that in order to construct the above estimator we do not need to generate a scenario
tree, say, by conditional sampling; we only need to generate a sample of single scenarios of
the data process. The above estimator (5.262) is an unbiased estimator of the expectation
in the left-hand side of (5.261) and hence is a valid statistical upper bound for ϑ∗. Of
course, the quality of this upper bound depends on a successful choice of the feasible policy,
i.e., on how small the optimality gap is between the left- and right-hand sides of (5.261). It
also depends on variability of the estimator (5.262), which unfortunately often grows fast
with increase of the number of stages.

We also may address the problem of validating a given feasible first-stage solution
x̄1 ∈ X1. The value of the multistage problem at x̄1 is given by the optimal value of the
problem

Min
x2,...,xT

f1(x̄1)+ E
[
f2(x2(ξ[2]), ξ2)+ · · · + fT

(
xT (ξ[T ]), ξT

) ]
s.t. x t (ξ[t]) ∈ Xt (x t−1(ξ[t−1]), ξt ), t = 2, . . . , T .

(5.263)

Recall that the optimization in (5.263) is performed over feasible policies. That is, in order
to validate x̄1 we basically need to solve the corresponding T −1 stage problems. Therefore,
for T > 2, validation of x̄1 can be almost as difficult as solving the original problem.

5.8.2 Complexity Estimates of Multistage Programs

In order to compute value of two-stage stochastic program minx∈X E[F(x, ξ)], where
F(x, ξ) is the optimal value of the corresponding second-stage problem, at a feasible point
x̄ ∈ X we need to calculate the expectation E[F(x̄, ξ)]. This, in turn, involves two dif-
ficulties. First, the objective value F(x̄, ξ) is not given explicitly; its calculation requires
solution of the associated second-stage optimization problem. Second, the multivariate
integral E[F(x̄, ξ)] cannot be evaluated with a high accuracy even for moderate values of
dimension d of the random data vector ξ . Monte Carlo techniques allow us to evaluate
E[F(x̄, ξ)] with accuracy ε > 0 by employing samples of size N = O(ε−2). The required
sample sizeN gives, in a sense, an estimate of complexity of evaluation of E[F(x̄, ξ)] since
this is how many times we will need to solve the corresponding second-stage problem. It is
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remarkable that in order to solve the two-stage stochastic program with accuracy ε > 0,
say, by the SAA method, we need a sample size basically of the same order N = O(ε−2).
These complexity estimates were analyzed in detail in section 5.3. Two basic conditions
required for such analysis are that the problem has relatively complete recourse and that for
given x and ξ the optimal value F(x, ξ) of the second-stage problem can be calculated with
a high accuracy.

In this section we discuss analogous estimates of complexity of the SAA method
applied to multistage stochastic programming problems. From the point of view of the
SAA method it is natural to evaluate complexity of a multistage stochastic program in
terms of the total number of scenarios required to find a first-stage solution with a given
accuracy ε > 0.

In order to simplify the presentation we consider three-stage stochastic programs, say,
of the form (5.236)–(5.238). Assume that for every x1 ∈ X1 the expectation E[Q2(x1, ξ2)]
is well defined and finite valued. In particular, this assumption implies that the problem has
relatively complete recourse. Let us look at the problem of computing value of the first-
stage problem (5.238) at a feasible point x̄1 ∈ X1. Apart from the problem of evaluating
the expectation E[Q2(x̄1, ξ2)], we also face here the problem of computing Q2(x̄1, ξ2) for
different realizations of random vector ξ2. For that we need to solve the two-stage stochastic
programming problem given in the right-hand side of (5.237). As discussed, in order to
evaluateQ2(x̄1, ξ2)with accuracy ε > 0 by solving the corresponding SAA problem, given
in the right-hand side of (5.240), we also need a sample of size N2 = O(ε−2). Recall
that the total number of scenarios involved in evaluation of the sample average f̃N1,N2(x̄1),
defined in (5.241), is N = N1N2. Therefore we will need N = O(ε−4) scenarios just to
compute value of the first-stage problem at a given feasible point with accuracy ε by the
SAA method. This indicates that complexity of the SAA method, applied to multistage
stochastic programs, grows exponentially with increase of the number of stages.

We now discuss in detail the sample size estimates of the three-stage SAA program
(5.239)–(5.241). For the sake of simplicity we assume that the data process is stagewise
independent, i.e., random vectors ξ2 and ξ3 are independent. Also, similar to assumptions
(M1)–(M5) of section 5.3, let us make the following assumptions:

(M′1) For every x1 ∈ X1 the expectation E[Q2(x1, ξ2)] is well defined and finite valued.

(M′2) The random vectors ξ2 and ξ3 are independent.

(M′3) The set X1 has finite diameter D1.

(M′4) There is a constant L1 > 0 such that∣∣Q2(x
′
1, ξ2)−Q2(x1, ξ2)

∣∣ ≤ L1‖x ′1 − x1‖ (5.264)

for all x ′1, x1 ∈ X1 and a.e. ξ2.

(M′5) There exists a constant σ1 > 0 such that for any x1 ∈ X1 it holds that

M1,x1(t) ≤ exp
{
σ 2

1 t
2/2
}
, ∀t ∈ R, (5.265)

where M1,x1(t) is the moment-generating function of Q2(x1, ξ2)− E[Q2(x1, ξ2)].
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(M′6) There is a set C of finite diameter D2 such that for every x1 ∈ X1 and a.e. ξ2, the
set X2(x1, ξ2) is contained in C.

(M′7) There is a constant L2 > 0 such that∣∣Q3(x
′
2, ξ3)−Q3(x2, ξ3)

∣∣ ≤ L2‖x ′2 − x2‖ (5.266)

for all x ′2, x2 ∈ C and a.e. ξ3.

(M′8) There exists a constant σ2 > 0 such that for any x2 ∈ X2(x1, ξ2) and all x1 ∈ X1

and a.e. ξ2 it holds that

M2,x2(t) ≤ exp
{
σ 2

2 t
2/2
}
, ∀t ∈ R, (5.267)

where M2,x2(t) is the moment-generating function of Q3(x2, ξ3)− E[Q3(x2, ξ3)].

Theorem 5.35. Under assumptions (M′1)–(M′8) and for ε > 0 and α ∈ (0, 1), and
the sample sizes N1 and N2 (using either independent or identical conditional sampling
schemes) satisfying[

O(1)D1L1
ε

]n1

exp
{
−O(1)N1ε

2

σ 2
1

}
+
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ 2
2

}
≤ α, (5.268)

we have that any ε/2-optimal solution of the SAA problem (5.241) is an ε-optimal solution
of the first stage (5.238) of the true problem with probability at least 1− α.

Proof. The proof of this theorem is based on the uniform exponential bound of Theorem
7.67. Let us sketch the arguments. Assume that the conditional sampling is identical. We
have that for every x1 ∈ X1 and i = 1, . . . , N1,∣∣∣Q̂2,N2(x1, ξ

i
2)−Q2(x1, ξ

i
2)

∣∣∣ ≤ supx2∈C
∣∣∣ 1
N2

∑N2
j=1 Q3(x2, ξ

j

3 )− E[Q3(x2, ξ3)]
∣∣∣,

where C is the set postulated in assumption (M′6). Consequently,

supx1∈X1

∣∣∣ 1
N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2)− 1

N1

∑N1
i=1 Q2(x1, ξ

i
2)

∣∣∣
≤ 1

N1

∑N1
i=1 supx1∈X1

∣∣∣Q̂2,N2(x1, ξ
i
2)−Q2(x1, ξ

i
2)

∣∣∣
≤ supx2∈C

∣∣∣ 1
N2

∑N2
j=1 Q3(x2, ξ

j

3 )− E[Q3(x2, ξ3)]
∣∣∣. (5.269)

By the uniform exponential bound (7.217) we have that

Pr
{

supx2∈C
∣∣∣ 1
N2

∑N2
j=1 Q3(x2, ξ

j

3 )− E[Q3(x2, ξ3)]
∣∣∣ > ε/2

}
≤
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ 2
2

}
,

(5.270)

and hence

Pr
{

supx1∈X1

∣∣∣ 1
N1

∑N1
i=1 Q̂2,N2(x1, ξ

i
2)− 1

N1

∑N1
i=1 Q2(x1, ξ

i
2)

∣∣∣ > ε/2
}

≤
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ 2
2

}
.

(5.271)
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By the uniform exponential bound (7.217) we also have that

Pr
{

supx1∈X1

∣∣∣ 1
N1

∑N1
i=1 Q2(x1, ξ

i
2)− E[Q2(x1, ξ2)]

∣∣∣ > ε/2
}

≤
[
O(1)D1L1

ε

]n1

exp
{
−O(1)N1ε

2

σ 2
1

}
.

(5.272)

Let us observe that if Z1, Z2 are random variables, then

Pr(Z1 + Z2 > ε) ≤ Pr(Z1 > ε/2)+ Pr(Z2 > ε/2).

Therefore it follows from (5.271) and (5.271) that

Pr
{

supx1∈X1

∣∣f̃N1,N2(x1)− f1(x1)− E[Q2(x1, ξ2)]
∣∣ > ε

}
≤
[
O(1)D1L1

ε

]n1

exp
{
−O(1)N1ε

2

σ 2
1

}
+
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ 2
2

}
,

(5.273)

which implies the assertion of the theorem.
In the case of the independent conditional sampling the proof can be completed in a

similar way.

Remark 17. We have, of course, that∣∣ϑ̂N − ϑ∗
∣∣ ≤ sup

x1∈X1

∣∣f̃N1,N2(x1)− f1(x1)− E[Q2(x1, ξ2)]
∣∣. (5.274)

Therefore bound (5.273) also implies that

Pr
{∣∣ϑ̂N − ϑ∗

∣∣ > ε
} ≤ [

O(1)D1L1
ε

]n1

exp
{
−O(1)N1ε

2

σ 2
1

}
+
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ 2
2

}
.

(5.275)

In particular, suppose that N1 = N2. Then for

n := max{n1, n2}, L := max{L1, L2}, D := max{D1,D2}, σ := max{σ1, σ2},
the estimate (5.268) implies the following estimate of the required sample size N1 = N2:(

O(1)DL

ε

)n
exp

{
−O(1)N1ε

2

σ 2

}
≤ α, (5.276)

which is equivalent to

N1 ≥ O(1)σ 2

ε2

[
n ln

(
O(1)DL

ε

)
+ ln

(
1

α

)]
. (5.277)

The estimate (5.277), for three-stage programs, looks similar to the estimate (5.116), of
Theorem 5.18, for two-stage programs. Recall, however, that if we use the SAA method
with conditional sampling and respective sample sizes N1 and N2, then the total number
of scenarios is N = N1N2. Therefore, our analysis indicates that for three-stage problems
we need random samples with the total number of scenarios of order of the square of the
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corresponding sample size for two-stage problems. This analysis can be extended to T -stage
problems with the conclusion that the total number of scenarios needed to solve the true
problem with a reasonable accuracy grows exponentially with increase of the number of
stagesT . Some numerical experiments seem to confirm this conclusion. Of course, it should
be mentioned that the above analysis does not prove in a rigorous mathematical sense that
complexity of multistage programming grows exponentially with increase of the number
of stages. It indicates only that the SAA method, which showed a considerable promise
for solving two-stage problems, could be practically inapplicable for solving multistage
problems with a large (say, greater than four) number of stages.

5.9 Stochastic Approximation Method
To an extent, this section is based on Nemirovski et al. [133]. Consider the stochastic
optimization problem (5.1). We assume that the expected value function f (x) = E[F(x, ξ)]
is well defined, finite valued, and continuous at every x ∈ X and that the set X ⊂ R

n is
nonempty, closed, and bounded. We denote by x̄ an optimal solution of problem (5.1). Such
an optimal solution does exist since the set X is compact and f (x) is continuous. Clearly,
ϑ∗ = f (x̄). (Recall that ϑ∗ denotes the optimal value of problem (5.1).) We also assume
throughout this section that the setX is convex and the function f (·) is convex. Of course, if
F(·, ξ) is convex for every ξ ∈ �, then convexity of f (·) follows. We assume availability
of the following stochastic oracle:

• There is a mechanism which for every given x ∈ X and ξ ∈ � returns value F(x, ξ)
and a stochastic subgradient, a vector G(x, ξ) such that g(x) := E[G(x, ξ)] is well
defined and is a subgradient of f (·) at x, i.e., g(x) ∈ ∂f (x).

Remark 18. Recall that if F(·, ξ) is convex for every ξ ∈ �, and x is an interior point of
X, i.e., f (·) is finite valued in a neighborhood of x, then

∂f (x) = E [∂xF (x, ξ)] (5.278)

(see Theorem 7.47). Therefore, in that case we can employ a measurable selectionG(x, ξ) ∈
∂xF (x, ξ) as a stochastic subgradient. Note also that for an implementation of a stochastic
approximation algorithm we only need to employ stochastic subgradients, while objective
values F(x, ξ) are used for accuracy estimates in section 5.9.4.

We also assume that we can generate, say, by Monte Carlo sampling techniques, an
iid sequence ξ j , j = 1, . . . , of realizations of the random vector ξ , and hence to compute
a stochastic subgradient G(xj , ξ j ) at an iterate point xj ∈ X.

5.9.1 Classical Approach

We denote by ‖x‖2 = (xTx)1/2 the Euclidean norm of vector x ∈ R
n and by

�X(x) := arg min
z∈X ‖x − z‖2 (5.279)
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the metric projection of x onto the set X. Since X is convex and closed, the minimizer
in the right-hand side of (5.279) exists and is unique. Note that �X is a nonexpanding
operator, i.e.,

‖�X(x
′)−�X(x)‖2 ≤ ‖x ′ − x‖2, ∀x ′, x ∈ R

n. (5.280)

The classical stochastic approximation (SA) algorithm solves problem (5.1) by mim-
icking a simple subgradient descent method. That is, for chosen initial point x1 ∈ X and a
sequence γj > 0, j = 1, . . . , of stepsizes, it generates the iterates by the formula

xj+1 = �X(xj − γjG(xj , ξ j )). (5.281)

The crucial question of that approach is how to choose the stepsizes γj . Also, the set X
should be simple enough so that the corresponding projection can be easily calculated. We
now analyze convergence of the iterates, generated by this procedure, to an optimal solution
x̄ of problem (5.1). Note that the iterate xj+1 = xj+1(ξ[j ]), j = 1, . . . , is a function of the
history ξ[j ] = (ξ 1, . . . , ξ j ) of the generated random process and hence is random, while the
initial point x1 is given (deterministic). We assume that there is number M > 0 such that

E
[‖G(x, ξ)‖2

2

] ≤ M2, ∀x ∈ X. (5.282)

Note that since for a random variable Z it holds that E[Z2] ≥ (E|Z|)2, it follows from
(5.282) that E‖G(x, ξ)‖ ≤ M .

Denote

Aj := 1
2‖xj − x̄‖2

2 and aj := E[Aj ] = 1
2 E
[‖xj − x̄‖2

2

]
. (5.283)

By (5.280) and since x̄ ∈ X and hence �X(x̄) = x̄, we have

Aj+1 = 1
2

∥∥�X

(
xj − γjG(xj , ξ j )

)− x̄∥∥2
2

= 1
2

∥∥�X

(
xj − γjG(xj , ξ j )

)−�X(x̄)
∥∥2

2

≤ 1
2

∥∥xj − γjG(xj , ξ j )− x̄∥∥2
2= Aj + 1

2γ
2
j ‖G(xj , ξ j )‖2

2 − γj (xj − x̄)TG(xj , ξ j ).
(5.284)

Since xj = xj (ξ[j−1]) is independent of ξj , we have

E
[
(xj − x̄)TG(xj , ξ j )

] = E
{
E
[
(xj − x̄)TG(xj , ξ j ) |ξ[j−1]

]}
= E

{
(xj − x̄)TE[G(xj , ξ j ) |ξ[j−1]]

}
= E

[
(xj − x̄)Tg(xj )

]
.

Therefore, by taking expectation of both sides of (5.284) and since (5.282) we obtain

aj+1 ≤ aj − γjE
[
(xj − x̄)Tg(xj )

]+ 1
2γ

2
j M

2. (5.285)

Suppose, further, that the expectation function f (x) is differentiable and strongly
convex on X with parameter c > 0, i.e.,

(x ′ − x)T(∇f (x ′)− ∇f (x)) ≥ c‖x ′ − x‖2
2, ∀x, x ′ ∈ X. (5.286)
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Note that strong convexity of f (x) implies that the minimizer x̄ is unique and that because
of differentiability of f (x) it follows that ∂f (x) = {∇f (x)} and hence g(x) = ∇f (x). By
optimality of x̄ we have that

(x − x̄)T∇f (x̄) ≥ 0, ∀x ∈ X, (5.287)

which together with (5.286) implies that

E
[
(xj − x̄)T∇f (xj )

] ≥ E
[
(xj − x̄)T (∇f (xj )− ∇f (x̄))

]
≥ cE

[‖xj − x̄‖2
2

] = 2caj .
(5.288)

Therefore it follows from (5.285) that

aj+1 ≤ (1− 2cγj )aj + 1
2γ

2
j M

2. (5.289)

In the classical approach to stochastic approximation the employed stepsizes are γj :=
θ/j for some constant θ > 0. Then by (5.289) we have

aj+1 ≤ (1− 2cθ/j)aj + 1
2θ

2M2/j 2. (5.290)

Suppose now that θ > 1/(2c). Then it follows from (5.290) by induction that for j = 1, . . . ,

2aj ≤ max
{
θ2M2(2cθ − 1)−1, 2a1

}
j

. (5.291)

Recall that 2aj = E
[‖xj − x̄‖2

]
and, since x1 is deterministic, 2a1 = ‖x1− x̄‖2

2. Therefore,
by (5.291) we have that

E
[‖xj − x̄‖2

2

] ≤ Q(θ)

j
, (5.292)

where

Q(θ) := max
{
θ2M2(2cθ − 1)−1, ‖x1 − x̄‖2

2

}
. (5.293)

The constant Q(θ) attains its optimal (minimal) value at θ = 1/c.
Suppose, further, that x̄ is an interior point of X and ∇f (x) is Lipschitz continuous,

i.e., there is constant L > 0 such that

‖∇f (x ′)− ∇f (x)‖2 ≤ L‖x ′ − x‖2, ∀x ′, x ∈ X. (5.294)

Then

f (x) ≤ f (x̄)+ 1
2L‖x − x̄‖2

2, ∀x ∈ X, (5.295)

and hence by (5.292)

E
[
f (xj )− f (x̄)

] ≤ 1
2LE

[‖xj − x̄‖2
2

] ≤ Q(θ)L

2j
. (5.296)

We obtain that under the specified assumptions, after j iterations the expected error
of the current solution in terms of the distance to the true optimal solution x̄ is of order
O(j−1/2), and the expected error in terms of the objective value is of orderO(j−1), provided
that θ > 1/(2c). Note, however, that the classical stepsize rule γj = θ/j could be very
dangerous if the parameter c of strong convexity is overestimated, i.e., if θ < 1/(2c).
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Example 5.36. As a simple example, consider f (x) := 1
2κx

2 with κ > 0 and X :=
[−1, 1] ⊂ R and assume that there is no noise, i.e., G(x, ξ) ≡ ∇f (x). Clearly x̄ = 0
is the optimal solution and zero is the optimal value of the corresponding optimization
(minimization) problem. Let us take θ = 1, i.e., use stepsizes γj = 1/j , in which case the
iteration process becomes

xj+1 = xj − f ′(xj )/j =
(

1− κ

j

)
xj . (5.297)

For κ = 1, the above choice of the stepsizes is optimal and the optimal solution is obtained
in one iteration.

Suppose now that κ < 1. Then starting with x1 > 0, we have

xj+1 = x1

j∏
s=1

(
1− κ

s

)
= x1 exp

{
−

j∑
s=1

ln

(
1+ κ

s − κ
)}

> x1 exp

{
−

j∑
s=1

κ

s − κ

}
.

Moreover,

j∑
s=1

κ

s − κ ≤
κ

1− κ +
∫ j

1

κ

t − κ dt <
κ

1− κ + κ ln j − κ ln(1− κ).

It follows that

xj+1 > O(1) j−κ and f (xj+1) > O(1)j−2κ , j = 1, . . . . (5.298)

(In the first of the above inequalities the constantO(1) = x1 exp{−κ/(1−κ)+κ ln(1−κ)},
and in the second inequality the generic constantO(1) is obtained from the first one by taking
square and multiplying it by κ/2.) That is, the convergence becomes extremely slow for
small κ close to zero. In order to reduce the value xj (the objective value f (xj )) by factor
10, i.e., to improve the error of current solution by one digit, we will need to increase the
number of iterations j by factor 101/κ (by factor 101/(2κ)). For example, for κ = 0.1, x1 = 1
and j = 105 we have that xj > 0.28. In order to reduce the error of the iterate to 0.028 we
will need to increase the number of iterations by factor 1010, i.e., to j = 1015.

It could be added that if f (x) loses strong convexity, i.e., the parameter c degenerates
to zero, and hence no choice of θ > 1/(2c) is possible, then the stepsizes γj = θ/j may
become completely unacceptable for any choice of θ .

5.9.2 Robust SA Approach

It was argued in section 5.9.1 that the classical stepsizes γj = O(j−1) can be too small to
ensure a reasonable rate of convergence even in the no-noise case. An important improve-
ment to the SA method was developed by Polyak [152] and Polyak and Juditsky [153],
where longer stepsizes were suggested with consequent averaging of the obtained iterates.
Under the outlined classical assumptions, the resulting algorithm exhibits the same optimal
O(j−1) asymptotical convergence rate while using an easy to implement and “robust” step-
size policy. The main ingredients of Polyak’s scheme (long steps and averaging) were, in
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a different form, proposed in Nemirovski and Yudin [135] for problems with general-type
Lipschitz continuous convex objectives and for convex–concave saddle point problems.
Results of this section go back to Nemirovski and Yudin [135], [136].

Recall that g(x) ∈ ∂f (x) and aj = 1
2 E
[‖xj − x̄‖2

2

]
, and we assume the boundedness

condition (5.282). By convexity of f (x) we have that f (x) ≥ f (xj )+ (x − xj )Tg(xj ) for
any x ∈ X, and hence

E
[
(xj − x̄)Tg(xj )

] ≥ E
[
f (xj )− f (x̄)

]
. (5.299)

Together with (5.285) this implies

γjE
[
f (xj )− f (x̄)

] ≤ aj − aj+1 + 1
2γ

2
j M

2.

It follows that whenever 1 ≤ i ≤ j , we have

j∑
t=i

γtE
[
f (xt )− f (x̄)

] ≤ j∑
t=i

[at − at+1]+ 1
2M

2
j∑
t=i

γ 2
t ≤ ai + 1

2M
2

j∑
t=i

γ 2
t . (5.300)

Denote
νt := γt∑j

τ=i γτ
and DX := max

x∈X ‖x − x1‖2. (5.301)

Clearly νt ≥ 0 and
∑j

t=i νt = 1. By (5.300) we have

E

[
j∑
t=i

νtf (xt )− f (x̄)
]
≤ ai + 1

2M
2∑j

t=i γ 2
t∑j

t=i γt
. (5.302)

Consider points

x̃i,j :=
j∑
t=i

νtxt . (5.303)

Since X is convex, it follows that x̃i,j ∈ X and by convexity of f (·) we have

f (x̃i,j ) ≤
j∑
t=i

νtf (xt ).

Thus, by (5.302) and in view of a1 ≤ D2
X and ai ≤ 4D2

X, i > 1, we get

E
[
f (x̃1,j )− f (x̄)

] ≤ D2
X +M2∑j

t=1 γ
2
t

2
∑j

t=1 γt
for 1 ≤ j, (5.304)

E
[
f (x̃i,j )− f (x̄)

] ≤ 4D2
X +M2∑j

t=i γ 2
t

2
∑j

t=i γt
for 1 < i ≤ j. (5.305)

Based of the above bounds on the expected accuracy of approximate solutions x̃i,j , we can
now develop “reasonable” stepsize policies along with the associated efficiency estimates.
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Constant Stepsizes and Error Estimates

Assume now that the number of iterations of the method is fixed in advance, say, equal to
N , and that we use the constant stepsize policy, i.e., γt = γ , t = 1, . . . , N . It follows then
from (5.304) that

E
[
f (x̃1,N )− f (x̄)

] ≤ D2
X +M2Nγ 2

2Nγ
. (5.306)

Minimizing the right-hand side of (5.306) over γ > 0, we arrive at the constant stepsize
policy

γt = DX

M
√
N
, t = 1, . . . , N, (5.307)

along with the associated efficiency estimate

E
[
f (x̃1,N )− f (x̄)

] ≤ DXM√
N
. (5.308)

By (5.305), with the constant stepsize policy (5.307), we also have for 1 ≤ K ≤ N

E
[
f (x̃K,N)− f (x̄)

] ≤ CN,KDXM√
N

, (5.309)

where

CN,K := 2N

N −K + 1
+ 1

2
.

When K/N ≤ 1/2, the right-hand side of (5.309) coincides, within an absolute constant
factor, with the right-hand side of (5.308). If we change the stepsizes (5.307) by a factor of
θ > 0, i.e., use the stepsizes

γt = θDX

M
√
N
, t = 1, . . . , N, (5.310)

then the efficiency estimate (5.309) becomes

E
[
f (x̃K,N)− f (x̄)

] ≤ max
{
θ, θ−1

} CN,KDXM√
N

. (5.311)

The expected error of the iterates (5.303), with constant stepsize policy (5.310), after
N iterations is O(N−1/2). Of course, this is worse than the rate O(N−1) for the classical
SA algorithm as applied to a smooth strongly convex function attaining minimum at an
interior point of the set X. However, the error bound (5.311) is guaranteed independently
of any smoothness and/or strong convexity assumptions on f (·). Moreover, changing the
stepsizes by factor θ results just in rescaling of the corresponding error estimate (5.311).
This is in a sharp contrast to the classical approach discussed in the previous section, when
such change of stepsizes can be a disaster. These observations, in particular the fact that
there is no necessity in fine tuning the stepsizes to the objective function f (·), explains the
adjective “robust” in the name of the method.

It can be interesting to compare sample size estimates derived from the error bounds of
the (robust) SAapproach with respective sample size estimates of the SAAmethod discussed
in section 5.3.2. By Chebyshev (Markov) inequality we have that for ε > 0,

Pr
{
f (x̃1,N )− f (x̄) ≥ ε

} ≤ ε−1
E
[
f (x̃1,N )− f (x̄)

]
. (5.312)
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Together with (5.308) this implies that, for the constant stepsize policy (5.307),

Pr
{
f (x̃1,N )− f (x̄) ≥ ε

} ≤ DXM

ε
√
N
. (5.313)

It follows that for α ∈ (0, 1) and sample size

N ≥ D2
XM

2

ε2α2
(5.314)

we are guaranteed that x̃1,N is an ε-optimal solution of the “true" problem (5.1) with prob-
ability at least 1− α.

Compared with the corresponding estimate (5.126) for the sample size by the SAA
method, the estimate (5.314) is of the same order with respect to parameters DX,M , and ε.
On the other hand, the dependence on the significance level α is different: in (5.126) it is
of order O

(
ln(α−1)

)
, while in (5.314) it is of order O(α−2). It is possible to derive better

estimates, similar to the respective estimates of the SAA method, of the required sample
size by using the large deviations theory; we discuss this further in the next section (see
Theorem 5.41 in particular).

5.9.3 Mirror Descent SA Method

The robust SA approach discussed in the previous section is tailored to Euclidean structure
of the space R

n. In this section, we discuss a generalization of the Euclidean SA approach
allowing to adjust, to some extent, the method to the geometry, not necessary Euclidean, of
the problem in question. A rudimentary form of the following generalization can be found
in Nemirovski and Yudin [136], from where the name “mirror descent” originates.

In this section we denote by ‖ · ‖ a general norm on R
n. Its dual norm is defined as

‖x‖∗ := sup‖y‖≤1 y
Tx.

By ‖x‖p :=
(|x1|p + · · · + |xn|p

)1/p
we denote the �p, p ∈ [1,∞), norm on R

n. In
particular, ‖ ·‖2 is the Euclidean norm. Recall that the dual of ‖ ·‖p is the norm ‖ ·‖q , where
q > 1 is such that 1/p + 1/q = 1. The dual norm of �1 norm ‖x‖1 = |x1| + · · · + |xn| is
the �∞ norm ‖x‖∞ = max

{|x1|, · · · , |xn|
}
.

Definition 5.37. We say that a function d : X → R is a distance-generating function with
modulus κ > 0 with respect to norm ‖ · ‖ if the following holds: d(·) is convex continuous
on X, the set

X' := {x ∈ X : ∂ d(x) �= ∅} (5.315)

is convex, d(·) is continuously differentiable on X', and

(x ′ − x)T(∇d(x ′)− ∇d(x)) ≥ κ‖x ′ − x‖2, ∀x, x ′ ∈ X'. (5.316)

Note that the set X' includes the relative interior of the set X, and hence condition (5.316)
implies that d(·) is strongly convex on X with the parameter κ taken with respect to the
considered norm ‖ · ‖.
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A simple example of a distance generating function (with modulus 1 with respect to
the Euclidean norm) is d(x) := 1

2x
Tx. Of course, this function is continuously differentiable

at every x ∈ R
n. Another interesting example is the entropy function

d(x) :=
n∑
i=1

xi ln xi, (5.317)

defined on the standard simplex X := {x ∈ R
n :∑n

i=1 xi = 1, x ≥ 0
}
. (Note that by

continuity, x ln x = 0 for x = 0.) Here the set X' is formed by points x ∈ X having all
coordinates different from zero. The set X' is the subset of X of those points at which the
entropy function is differentiable with ∇d(x) = (1 + ln x1, . . . , 1 + ln xn). The entropy
function is strongly convex with modulus 1 on standard simplex with respect to ‖ · ‖1 norm.

Indeed, it suffices to verify that hT∇2d(x)h ≥ ‖h‖2
1 for every h ∈ R

n and x ∈ X'.
This, in turn, is verified by[∑

i |hi |
]2 = [∑i (x

−1/2
i |hi |)x1/2

i

]2 ≤ [∑i h
2
i x
−1
i

][∑
i xi
]

=∑i h
2
i x
−1
i = hT∇2d(x)h,

(5.318)

where the inequality follows by Cauchy inequality.
Let us define function V : X' ×X→ R+ as follows:

V (x, z) := d(z)− [d(x)+ ∇d(x)T(z− x)]. (5.319)

In what follows we refer to V (·, ·) as the prox-function36 associated with the distance-
generating function d(x). Note that V (x, ·) is nonnegative and is strongly convex with
modulus κ with respect to the norm ‖ · ‖. Let us define prox-mapping Px : R

n → X',
associated with the distance-generating function and a point x ∈ X', viewed as a parameter,
as follows:

Px(y) := arg min
z∈X
{
yT(z− x)+ V (x, z)}. (5.320)

Observe that the minimum in the right-hand side of (5.320) is attained since d(·) is continuous
on X and X is compact, and a corresponding minimizer is unique since V (x, ·) is strongly
convex on X. Moreover, by the definition of the set X', all these minimizers belong to X'.
Thus, the prox-mapping is well defined.

For the (Euclidean) distance-generating function d(x) := 1
2x

Tx, we have thatPx(y) =
�X(x − y). In that case the iteration formula (5.281) of the SA algorithm can be written as

xj+1 = Pxj (γjG(xj , ξ j )), x1 ∈ X'. (5.321)

Our goal is to demonstrate that the main properties of the recurrence (5.281) are inherited
by (5.321) for any distance-generating function d(x).

Lemma 5.38. For every u ∈ X, x ∈ X' and y ∈ R
n one has

V (Px(y), u) ≤ V (x, u)+ yT(u− x)+ (2κ)−1‖y‖2
∗. (5.322)

36The function V (·, ·) is also called Bregman divergence.
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Proof. Let x ∈ X' and v := Px(y). Note that v is of the form argminz∈X
[
hTz+ d(z)

]
and

thus v ∈ X', so that d(·) is differentiable at v. Since ∇vV (x, v) = ∇d(v) − ∇d(x), the
optimality conditions for (5.320) imply that

(∇d(v)− ∇d(x)+ y)T(v − u) ≤ 0, ∀u ∈ X. (5.323)

Therefore, for u ∈ X we have

V (v, u)− V (x, u) = [d(u)− ∇d(v)T(u− v)− d(v)] − [d(u)− ∇d(x)T(u− x)− d(x)]
= (∇d(v)− ∇d(x)+ y)T(v − u)+ yT(u− v)− [d(v)− ∇d(x)T(v − x)− d(x)]
≤ yT(u− v)− V (x, v),

where the last inequality follows by (5.323).
For any a, b ∈ R

n we have by the definition of the dual norm that ‖a‖∗‖b‖ ≥ aTb

and hence
(‖a‖2

∗/κ + κ‖b‖2)/2 ≥ ‖a‖∗‖b‖ ≥ aTb. (5.324)

Applying this inequality with a = y and b = x − v we obtain

yT(x − v) ≤ ‖y‖
2∗

2κ
+ κ

2
‖x − v‖2.

Also due to the strong convexity of V (x, ·) and since V (x, x) = 0 we have

V (x, v) ≥ V (x, x)+ (x − v)T∇vV (x, v)+ 1
2κ‖x − v‖2

= (x − v)T(∇d(v)− ∇d(x))+ 1
2κ‖x − v‖2

≥ 1
2κ‖x − v‖2,

(5.325)

where the last inequality holds by convexity of d(·). We get

V (v, u)− V (x, u) ≤ yT(u− v)− V (x, v) = yT(u− x)+ yT(x − v)− V (x, v)
≤ yT(u− x)+ (2κ)−1‖y‖2∗,

as required in (5.322).

Using (5.322) with x = xj , y = γjG(xj , ξ j ), and u = x̄, and noting that by (5.321)
xj+1 = Px(y) here, we get

γj (xj − x̄)TG(xj , ξ j ) ≤ V (xj , x̄)− V (xj+1, x̄)+
γ 2
j

2κ
‖G(xj , ξ j )‖2

∗. (5.326)

Let us observe that for the Euclidean distance-generating function d(x) = 1
2x

Tx, one has
V (x, z) = 1

2‖x − z‖2
2 and κ = 1. That is, in the Euclidean case (5.326) becomes

1
2‖xj+1 − x̄‖2

2 ≤ 1
2‖xj − x̄‖2

2 + 1
2γ

2
j ‖G(xj , ξ j )‖2

2 − γj (xj − x̄)TG(xj , ξ j ). (5.327)

The above inequality is exactly the relation (5.284), which played a crucial role in the
developments related to the Euclidean SA. We are about to process, in a similar way,
the relation (5.326) in the case of a general distance-generating function, thus arriving at
the mirror descent SA.
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Specifically, setting
#j := G(xj , ξ j )− g(xj ), (5.328)

we can rewrite (5.326), with j replaced by t , as

γt (xt − x̄)Tg(xt ) ≤ V (xt , x̄)− V (xt+1, x̄)− γt#T
t (xt − x̄)+

γ 2
t

2κ
‖G(xt , ξ t )‖2

∗. (5.329)

Summing up over t = 1, . . . , j , and taking into account that V (xj+1, u) ≥ 0, u ∈ X, we
get

j∑
t=1

γt (xt − x̄)Tg(xt ) ≤ V (x1, x̄)+
j∑
t=1

γ 2
t

2κ
‖G(xt , ξ t )‖2

∗ −
j∑
t=1

γt#
T
t (xt − x̄). (5.330)

Set νt := γt∑j

τ=1 γτ
, t = 1, . . . , j , and

x̃1,j :=
j∑
t=1

νtxt . (5.331)

By convexity of f (·) we have f (xt )− f (x̄) ≤ (xt − x̄)Tg(xt ), and hence∑j

t=1 γt (xt − x̄)Tg(xt ) ≥
∑j

t=1 γt [f (xt )− f (x̄)]
=
(∑j

t=1 γt

) [∑j

t=1 νtf (xt )− f (x̄)
]

≥
(∑j

t=1 γt

) [
f (x̃1,j )− f (x̄)

]
.

Combining this with (5.330) we obtain

f (x̃1,j )− f (x̄) ≤ V (x1, x̄)+∑j

t=1(2κ)
−1γ 2

t ‖G(xt , ξ t )‖2∗ −
∑j

t=1 γt#
T
t (xt − x̄)∑j

t=1 γt
.

(5.332)

• Assume from now on that the procedure starts with the minimizer of d(·), that is,

x1 := argminx∈X d(x). (5.333)

Since by the optimality of x1 we have that (u − x1)
T∇d(x1) ≥ 0 for any u ∈ X, it

follows from the definition (5.319) of the function V (·, ·) that

max
u∈X V (x1, u) ≤ D2

d,X, (5.334)

where

Dd,X :=
[

max
u∈X d(u)−min

x∈X d(x)

]1/2

. (5.335)

Together with (5.332) this implies

f (x̃1,j )− f (x̄) ≤
D2

d,X +
∑j

t=1(2κ)
−1γ 2

t ‖G(xt , ξ t )‖2∗ −
∑j

t=1 γt#
T
t (xt − x̄)∑j

t=1 γt
. (5.336)
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We also have (see (5.325)) that V (x1, u) ≥ 1
2κ‖x1−u‖2, and hence it follows from (5.334)

that for all u ∈ X,

‖x1 − u‖ ≤
√

2

κ
Dd,X. (5.337)

Let us assume, as in the previous section (see (5.282)), that there is a positive number
M∗ such that

E
[‖G(x, ξ)‖2

∗
] ≤ M2

∗ , ∀x ∈ X. (5.338)

Proposition 5.39. Let x1 := argminx∈X d(x) and suppose that condition (5.338) holds.
Then

E
[
f (x̃1,j )− f (x̄)

] ≤ D2
d,X + (2κ)−1M2∗

∑j

t=1 γ
2
t∑j

t=1 γt
. (5.339)

Proof. Taking expectations of both sides of (5.336) and noting that (i) xt is a deterministic
function of ξ[t−1] = (ξ 1, . . . , ξ t−1), (ii) conditional on ξ[t−1], the expectation of#t is 0, and
(iii) the expectation of ‖G(xt , ξ t )‖2∗ does not exceed M2∗ , we obtain (5.339).

Constant Stepsize Policy

Assume that the total number of stepsN is given in advance and the constant stepsize policy
γt = γ , t = 1, . . . , N , is employed. Then (5.339) becomes

E
[
f (x̃1,j )− f (x̄)

] ≤ D2
d,X + (2κ)−1M2∗Nγ 2

Nγ
. (5.340)

Minimizing the right-hand side of (5.340) over γ > 0 we arrive at the constant stepsize
policy

γt =
√

2κDd,X

M∗
√
N

, t = 1, . . . , N, (5.341)

and the associated efficiency estimate

E
[
f (x̃1,N )− f (x̄)

] ≤ Dd,XM∗

√
2

κN
. (5.342)

This can be compared with the respective stepsize (5.307) and efficiency estimate (5.308)
for the robust Euclidean SA method. Passing from the stepsizes (5.341) to the stepsizes

γt = θ
√

2κDd,X

M∗
√
N

, t = 1, . . . , N, (5.343)

with rescaling parameter θ > 0, the efficiency estimate becomes

E
[
f (x̃1,N )− f (x̄)

] ≤ max
{
θ, θ−1

}
Dd,XM∗

√
2

κN
, (5.344)
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similar to the Euclidean case. We refer to the SA method based on (5.321), (5.331), and
(5.343) as the mirror descent SA algorithm with constant stepsize policy.

Comparing (5.308) to (5.342), we see that for both the Euclidean and the mirror
descent SA algorithms, the expected inaccuracy, in terms of the objective values of the
approximate solutions, is O(N−1/2). A benefit of the mirror descent over the Euclidean
algorithm is in potential possibility to reduce the constant factor hidden inO(·) by adjusting
the norm ‖ · ‖ and the distance generating function d(·) to the geometry of the problem.

Example 5.40. Let X := {x ∈ R
n : ∑n

i=1 xi = 1, x ≥ 0} be the standard simplex.
Consider two setups for the mirror descent SA, namely, the Euclidean setup, where the
considered norm ‖ · ‖ := ‖ · ‖2 and d(x) := 1

2x
Tx, and �1-setup, where ‖ · ‖ := ‖ · ‖1 and

d(·) is the entropy function (5.317). The Euclidean setup, leads to the Euclidean robust SA,
which is easily implementable. Note that the Euclidean diameter of X is

√
2 and hence is

independent of n. The corresponding efficiency estimate is

E
[
f (x̃1,N )− f (x̄)

] ≤ O(1)max
{
θ, θ−1

}
MN−1/2 (5.345)

with M2 = supx∈X E
[‖G(x, ξ)‖2

2

]
.

The �1-setup corresponds to X' = {x ∈ X : x > 0}, Dd,X =
√

ln n,

x1 := argmin
x∈X

d(x) = n−1(1, . . . , 1)T,

‖x‖∗ = ‖x‖∞, and κ = 1 (see (5.318) for verification that κ = 1). The associated mirror
descent SA is easily implementable. The prox-function here is

V (x, z) =
n∑
i=1

zi ln
zi

xi
,

and the prox-mapping Px(y) is given by the explicit formula

[Px(y)]i = xie
−yi∑n

k=1 xke
−yk , i = 1, . . . , n.

The respective efficiency estimate of the �1-setup is

E
[
f (x̃1,N )− f (x̄)

] ≤ O(1)max
{
θ, θ−1

}
(ln n)1/2M∗N−1/2 (5.346)

with M2∗ = supx∈X E
[‖G(x, ξ)‖2∞

]
, provided that the constant stepsizes (5.343) are used.

To compare (5.346) and (5.345), observe thatM∗ ≤ M , and the ratioM∗/M can be as
small as n−1/2. Thus, the efficiency estimate for the �1-setup is never much worse than the
estimate for the Euclidean setup, and for large n can be far better than the latter estimate.
That is, √

1

ln n
≤ M√

ln nM∗
≤
√

n

ln n
,

with both the upper and lower bounds being achievable. Thus, when X is a standard
simplex of large dimension, we have strong reasons to prefer the �1-setup to the usual
Euclidean one.
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Comparison with the SAA Approach

Similar to (5.312)–(5.314), by using Chebyshev (Markov) inequality, it is possible to derive
from (5.344) an estimate of the sample size N which guarantees that x̃1,N is an ε-optimal
solution of the true problem with probability at least 1−α. It is possible, however, to obtain
much finer bounds on deviation probabilities when imposing more restrictive assumptions
on the distribution of G(x, ξ). Specifically, assume that there is constant M∗ > 0 such that

E
[
exp
{‖G(x, ξ)‖2

∗ /M
2
∗
}] ≤ exp{1}, ∀x ∈ X. (5.347)

Note that condition (5.347) is stronger than (5.338). Indeed, if a random variable Y satisfies
E[exp{Y/a}] ≤ exp{1} for some a > 0, then by Jensen inequality

exp{E[Y/a]} ≤ E[exp{Y/a}] ≤ exp{1},
and therefore E[Y ] ≤ a. By taking Y := ‖G(x, ξ)‖2∗ and a := M2, we obtain that (5.347)
implies (5.338). Of course, condition (5.347) holds if ‖G(x, ξ)‖∗ ≤ M∗ for all (x, ξ) ∈
X ×�.

Theorem 5.41. Suppose that condition (5.347) is fulfilled. Then for the constant stepsizes
(5.343), the following holds for any " ≥ 0 :

Pr
{
f (x̃1,N )− f (x̄) ≥ C(1+")√

κN

}
≤ 4 exp{−"}, (5.348)

where C := (max
{
θ, θ−1

}+ 8
√

3)M∗Dd,X/
√

2.

Proof. By (5.336) we have

f (x̃1,N )− f (x̄) ≤ A1 + A2, (5.349)

where

A1 :=
D2

d,X + (2κ)−1∑N
t=1 γ

2
t ‖G(xt , ξ t )‖2∗∑N

t=1 γt
and A2 :=

N∑
t=1

νt#
T
t (x̄ − xt ).

Consider Yt := γ 2
t ‖G(xt , ξ t )‖2∗ and ct := M2∗γ 2

t . Note that by (5.347),

E [exp{Yi/ci}] ≤ exp{1}, i = 1, . . . , N. (5.350)

Since exp{·} is a convex function we have

exp
{∑N

i=1 Yi∑N
i=1 ci

}
= exp

{∑N
i=1

ci (Yi/ci )∑N
i=1 ci

}
≤∑N

i=1
ci∑N
i=1 ci

exp{Yi/ci}.

By taking expectation of both sides of the above inequality and using (5.350) we obtain

E

[
exp
{∑N

i=1 Yi∑N
i=1 ci

}]
≤ exp{1}.
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Consequently by Chebyshev’s inequality we have for any number "

Pr
[
exp
{∑N

i=1 Yi∑N
i=1 ci

}
≥ exp{"}

]
≤ exp{1}

exp{"} = exp{1−"},

and hence
Pr
{∑N

i=1 Yi ≥ "
∑N

i=1 ci

}
≤ exp{1−"} ≤ 3 exp{−"}. (5.351)

That is, for any ",

Pr
{∑N

t=1 γ
2
t ‖G(xt , ξ t )‖2∗ ≥ "M2∗

∑N
t=1 γ

2
t

}
≤ 3 exp {−"} . (5.352)

For the constant stepsize policy (5.343), we obtain by (5.352) that

Pr
{
A1 ≥ max{θ, θ−1}M∗Dd,X(1+")√

2κN

}
≤ 3 exp {−"} . (5.353)

Consider now the random variable A2. By (5.337) we have that

‖x̄ − xt‖ ≤ ‖x1 − x̄‖ + ‖x1 − xt‖ ≤ 2
√

2κ−1/2Dd,X,

and hence ∣∣#T
t (x̄ − xt )

∣∣2 ≤ ‖#t‖2
∗‖x̄ − xt‖2 ≤ 8κ−1D2

d,X‖#t‖2
∗.

We also have that

E
[
(x̄ − xt )T#t

∣∣ξ[t−1]
] = (x̄ − xt )TE

[
#t

∣∣ξ[t−1]
] = 0 w.p. 1,

and by condition (5.347) that

E
[
exp
{‖#t‖2

∗ /(4M
2
∗ )
} ∣∣ξ[t−1]

] ≤ exp{1} w.p. 1.

Consequently, by applying inequality (7.194) of Proposition 7.64 with φt := νt#T
t (x̄ − xt )

and σ 2
t := 32κ−1M2∗D2

d,Xν
2
t , we obtain for any " ≥ 0

Pr
{
A2 ≥ 4

√
2κ−1/2M∗Dd,X"

√∑N
t=1 ν

2
t

}
≤ exp

{−"2/3
}
. (5.354)

Since for the constant stepsize policy we have that νt = 1/N , t = 1, . . . , N , by changing
variables "2/3 to " and noting that "1/2 ≤ 1+" for any " ≥ 0, we obtain from (5.354)
that for any " ≥ 0

Pr
{
A2 ≥ 8

√
3M∗Dd,X(1+")√

2κN

}
≤ exp {−"} . (5.355)

Finally, (5.348) follows from (5.349), (5.353), and (5.355).

By setting ε = C(1+")√
κN

, we can rewrite the estimate (5.348) in the form37

Pr
{
f (x̃1,N )− f (x̄) > ε

} ≤ 12 exp
{− εC−1

√
κN
}
. (5.356)

37The constant 12 in the right-hand side of (5.356) comes from the simple estimate 4 exp{1} < 12.
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For ε > 0 this gives the following estimate of the sample sizeN which guarantees that x̃1,N

is an ε-optimal solution of the true problem with probability at least 1− α:

N ≥ O(1)ε−2κ−1M2∗D2
d,X ln2 (12/α

)
. (5.357)

This estimate is similar to the respective estimate (5.126) of the sample size for the SAA
method. However, as far as complexity of solving the problem numerically is concerned,
the SAA method requires a solution of the generated optimization problem, while an SA
algorithm is based on computing a single subgradient G(xj , ξ j ) at each iteration point. As
a result, for the same sample size N it typically takes considerably less computation time
to run an SA algorithm than to solve the corresponding SAA problem.

5.9.4 Accuracy Certificates for Mirror Descent SA Solutions

We discuss now a way to estimate lower and upper bounds for the optimal value of problem
(5.1) by employing SA iterates. This will give us an accuracy certificate for obtained
solutions. Assume that we run an SAprocedure with respective iteratesx1, . . . , xN computed
according to formula (5.321). As before, set

νt := γt∑N
τ=1 γτ

, t = 1, . . . , N, and x̃1,N :=
N∑
t=1

νtxt .

We assume now that the stochastic objective value F(x, ξ) as well as the stochastic subgra-
dient G(x, ξ) are computable at a given point (x, ξ) ∈ X ×�.

Consider

f N∗ := min
x∈X f

N(x) and f ∗N :=
N∑
t=1

νtf (xt ), (5.358)

where

f N(x) :=
N∑
t=1

νt
[
f (xt )+ g(xt )T(x − xt )

]
. (5.359)

Since νt > 0 and
∑N

t=1 νt = 1, by convexity of f (x) we have that the function f N(x)
underestimates f (x) everywhere on X, and hence38 f N∗ ≤ ϑ∗. Since x̃1,N ∈ X we also
have that ϑ∗ ≤ f (x̃1,N ) and by convexity of f that f (x̃1,N ) ≤ f ∗N . It follows that
ϑ∗ ≤ f ∗N . That is, for any realization of the random process ξ 1, . . . , we have that

f N∗ ≤ ϑ∗ ≤ f ∗N. (5.360)

It follows, of course, that E[f N∗ ] ≤ ϑ∗ ≤ E[f ∗N ] as well.
Along with the “unobservable” bounds f N∗ , f ∗N , consider their observable (com-

putable) counterparts

f N := minx∈X
{∑N

t=1 νt [F(xt , ξ t )+G(xt , ξ t )T(x − xt )]
}
,

f
N :=∑N

t=1 νtF (xt , ξ
t ),

(5.361)

38Recall that ϑ∗ denotes the optimal value of the true problem (5.1).
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which will be referred to as online bounds. The bound f
N

can be easily calculated while
running the SA procedure. The bound f N involves solving the optimization problem of
minimizing a linear in x objective function over set X. If the set X is defined by linear
constraints, this is a linear programming problem.

Since xt is a function of ξ[t−1] and ξ t is independent of ξ[t−1], we have that

E
[
f
N ] = N∑

t=1

νtE
{
E[F(xt , ξ t )|ξ[t−1]]

} = N∑
t=1

νtE [f (xt )] = E[f ∗N ]

and

E
[
f N
] = E

[
E
{

minx∈X
{∑N

t=1 νt [F(xt , ξ t )+G(xt , ξ t )T(x − xt )]
}∣∣ξ[t−1]

}]
≤ E

[
minx∈X

{
E
[∑N

t=1 νt [F(xt , ξ t )+G(xt , ξ t )T(x − xt )]
]∣∣ξ[t−1]

}]
= E

[
minx∈X f N(x)

] = E
[
f N∗
]
.

It follows that

E
[
f N
] ≤ ϑ∗ ≤ E

[
f
N ]
. (5.362)

That is, on average f N and f
N

give, respectively, a lower and an upper bound for the
optimal value ϑ∗ of the optimization problem (5.1).

In order to see how good the bounds f N and f
N

are, let us estimate expectations of
the corresponding errors. We will need the following result.

Lemma 5.42. Let ζt ∈ R
n, v1 ∈ X', and vt+1 = Pvt (ζt ), t = 1, . . . , N . Then

N∑
t=1

ζ T
t (vt − u) ≤ V (v1, u)+ (2κ)−1

N∑
t=1

‖ζt‖2
∗, ∀u ∈ X. (5.363)

Proof. By the estimate (5.322) of Lemma 5.38 with x = vt and y = ζt we have that the
following inequality holds for any u ∈ X:

V (vt+1, u) ≤ V (vt , u)+ ζ T
t (u− vt )+ (2κ)−1‖ζt‖2

∗. (5.364)

Summing this over t = 1, . . . , N , we obtain

V (vN+1, u) ≤ V (v1, u)+
N∑
t=1

ζ T
t (u− vt )+ (2κ)−1

N∑
t=1

‖ζt‖2
∗. (5.365)

Since V (vN+1, u) ≥ 0, (5.363) follows.

Consider again condition (5.338), that is,

E
[‖G(x, ξ)‖2

∗
] ≤ M2

∗ , ∀x ∈ X, (5.366)
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and the following condition: there is a constant Q > 0 such that

Var[F(x, ξ)] ≤ Q2, ∀x ∈ X. (5.367)

Note that, of course, Var[F(x, ξ)] = E
[
(F (x, ξ)− f (x))2].

Theorem 5.43. Suppose that conditions (5.366) and (5.367) hold. Then

E
[
f ∗N − f N∗

] ≤ 2D2
d,X + 5

2κ
−1M2∗

∑N
t=1 γ

2
t∑N

t=1 γt
, (5.368)

E

[∣∣f N − f ∗N ∣∣] ≤ Q
√√√√ N∑

t=1

ν2
t , (5.369)

E

[∣∣ f N − f N∗ ∣∣] ≤ (Q+ 4
√

2κ−1/2M∗Dd,X

)√√√√ N∑
t=1

ν2
t

+D
2
d,X + 2κ−1M2∗

∑N
t=1 γ

2
t∑N

t=1 γt
. (5.370)

Proof. If in Lemma 5.42 we take v1 := x1 and ζt := γtG(xt , ξ
t ), then the corresponding

iterates vt coincide with xt . Therefore, we have by (5.363) and since V (x1, u) ≤ D2
d,X that

N∑
t=1

γt (xt − u)TG(xt , ξ t ) ≤ D2
d,X + (2κ)−1

N∑
t=1

γ 2
t ‖G(xt , ξ t )‖2

∗, ∀u ∈ X. (5.371)

It follows that for any u ∈ X (compare with (5.330)),

N∑
t=1

νt
[− f (xt )+ (xt − u)Tg(xt )]+ N∑

t=1

νtf (xt )

≤ D2
d,X + (2κ)−1∑N

t=1 γ
2
t ‖G(xt , ξ t )‖2∗∑N

t=1 γt
+

N∑
t=1

νt#
T
t (xt − u),

where #t := G(xt , ξ t )− g(xt ). Since

f ∗N − f N∗ =
N∑
t=1

νtf (xt )+max
u∈X

N∑
t=1

νt
[− f (xt )+ (xt − u)Tg(xt )],

it follows that

f ∗N − f N∗ ≤
D2

d,X + (2κ)−1∑N
t=1 γ

2
t ‖G(xt , ξ t )‖2∗∑N

t=1 γt
+max

u∈X

N∑
t=1

νt#
T
t (xt − u). (5.372)

Let us estimate the second term in the right-hand side of (5.372). By using Lemma
5.42 with v1 := x1 and ζt := γt#t , and the corresponding iterates vt+1 = Pvt (ζt ), we obtain

N∑
t=1

γt#
T
t (vt − u) ≤ D2

d,X + (2κ)−1
N∑
t=1

γ 2
t ‖#t‖2

∗, ∀u ∈ X. (5.373)
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Moreover,

#T
t (vt − u) = #T

t (xt − u)+#T
t (vt − xt ),

and hence it follows by (5.373) that

max
u∈X

N∑
t=1

νt#
T
t (xt − u) ≤

N∑
t=1

νt#
T
t (xt − vt )+

D2
d,X + (2κ)−1∑N

t=1 γ
2
t ‖#t‖2∗∑N

t=1 γt
. (5.374)

Moreover, E
[
#t |ξ[t−1]

] = 0 and vt and xt are functions of ξ[t−1], and hence

E
[
(xt − vt )T#t

] = E
{
(xt − vt )TE[#t |ξ[t−1]]

} = 0. (5.375)

In view of condition (5.366), we have that E
[‖#t‖2∗

] ≤ 4M2∗ , and hence it follows from
(5.374) and (5.375) that

E

[
max
u∈X

N∑
t=1

νt#
T
t (xt − u)

]
≤ D2

d,X + 2κ−1M2∗
∑N

t=1 γ
2
t∑N

t=1 γt
. (5.376)

Therefore, by taking expectation of both sides of (5.372) and using (5.366) together with
(5.376), we obtain (5.368).

In order to prove (5.369), let us observe that

f
N − f ∗N =

N∑
t=1

νt (F (xt , ξ
t )− f (xt )),

and that for 1 ≤ s < t ≤ N ,

E
[
(F (xs, ξ

s)− f (xs))(F (xt , ξ t )− f (xt ))
]

= E
{
E
[
(F (xs, ξ

s)− f (xs))(F (xt , ξ t )− f (xt ))|ξ[t−1]
]}

= E
{
(F (xs, ξs)− f (xs))E

[
(F (xt , ξ

t )− f (xt ))|ξ[t−1]
]} = 0.

Therefore

E

[(
f
N − f ∗N)2] = ∑N

t=1 ν
2
t E

[(
F(xt , ξ

t )− f (xt )
)2]

= ∑N
t=1 ν

2
t E

{
E

[(
F(xt , ξ

t )− f (xt )
)2∣∣ξ[t−1]

]}
≤ Q2∑N

t=1 ν
2
t ,

(5.377)

where the last inequality is implied by condition (5.367). Since for any random variable Y
we have that

√
E[Y 2] ≥ E[|Y |], the inequality (5.369) follows from (5.377).

Let us now look at (5.370). Denote

f̃ N (x) :=
N∑
t=1

νt [F(xt , ξ t )+G(xt , ξ t )T(x − xt )].

Then ∣∣∣f N − f N∗ ∣∣∣ = ∣∣∣∣min
x∈X f̃

N(x)−min
x∈X f

N(x)

∣∣∣∣ ≤ max
x∈X

∣∣∣f̃ N (x)− f N(x)∣∣∣
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and

f̃ N (x)− f N(x) = f N − f ∗N +∑N
t=1 νt#

T
t (xt − x),

and hence ∣∣∣f N − f N∗ ∣∣∣ ≤ ∣∣∣f N − f ∗N ∣∣∣+
∣∣∣∣∣max
x∈X

N∑
t=1

νt#
T
t (xt − x)

∣∣∣∣∣ . (5.378)

For E[|f N − f ∗N |] we already have the estimate (5.369).
By (5.373) we have∣∣∣∣∣max

x∈X

N∑
t=1

νt#
T
t (xt − x)

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
t=1

νt#
T
t (xt − vt )

∣∣∣∣∣+D2
d,X + (2κ)−1∑N

t=1 γ
2
t ‖#t‖2∗∑N

t=1 γt
. (5.379)

Let us observe that for 1 ≤ s < t ≤ N
E
[
(#T

s (xs − vs))(#T
t (xt − vt ))

] = E
{
E
[
(#T

s (xs − vs))(#T
t (xt − vt ))|ξ[t−1]

]}
= E
{
(#T

s (xs − vs))E
[
(#T

t (xt − vt ))|ξ[t−1]
]} = 0.

Therefore, by condition (5.366) we have

E

[(∑N
t=1 νt#

T
t (xt − vt )

)2
]
=∑N

t=1 ν
2
t E

[∣∣#T
t (xt − vt )

∣∣2]
≤∑N

t=1 ν
2
t E
[‖#t‖2∗ ‖xt − vt‖2

] =∑N
t=1 ν

2
t E
[‖xt − vt‖2

E[‖#t‖2∗|ξ[t−1]
]

≤ 4M2∗
∑N

t=1 ν
2
t E
[‖xt − vt‖2

] ≤ 32κ−1M2∗D2
d,X

∑N
t=1 ν

2
t ,

where the last inequality follows by (5.337). It follows that

E

[∣∣ ∑N
t=1 νt#

T
t (xt − vt )

∣∣] ≤ 4
√

2κ−1/2M∗Dd,X

√∑N
t=1 ν

2
t . (5.380)

Putting together (5.378), (5.379), (5.380), and (5.369), we obtain (5.370).

For the constant stepsize policy (5.343), all estimates given in the right-hand sides
of (5.368), (5.369), and (5.370) are of order O(N−1/2). It follows that under the specified

conditions, the difference between the upper f
N

and lower f N bounds converges on average
to zero, with increase of the sample sizeN , at a rate ofO(N−1/2). It is also possible to derive
respective large deviations rates of convergence (Lan, Nemirovski, and Shapiro [114]).

Remark 19. The lower SA bound f N can be compared with the respective SAA bound ϑ̂N
obtained by solving the corresponding SAA problem (see section 5.6.1). Suppose that the
same sample ξ 1, . . . , ξN is employed for both the SA and the SAA method, that F(·, ξ) is
convex for all ξ ∈ �, and G(x, ξ) ∈ ∂xF (x, ξ) for all (x, ξ) ∈ X × �. By convexity of
F(·, ξ) and definition of f N , we have

ϑ̂N = minx∈X
{
N−1∑N

t=1 F(x, ξ
t )
}

≥ minx∈X
{∑N

t=1 νt
[
F(xt , ξ

t )+G(xt , ξ t )T(x − xt )
]} = f N. (5.381)
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Therefore, for the same sample, the SA lower bound f N is weaker than the SAA lower

bound ϑ̂N . However, it should be noted that the SA lower bound can be computed much
faster than the respective SAA lower bound.

Exercises
5.1. Suppose that set X is defined by constraints in the form (5.11) with constraint func-

tions given as expectations as in (5.12) and the set XN defined in (5.13). Show that
if sample average functions ĝiN converge uniformly to gi w.p. 1 on a neighborhood
of x and gi are continuous, i = 1, . . . , p, then condition (a) of Theorem 5.5 holds.

5.2. Specify regularity conditions under which equality (5.29) follows from (5.25).
5.3. Let X ⊂ R

n be a closed convex set. Show that the multifunction x !→ NX(x) is
closed.

5.4. Prove the following extension of Theorem 5.7. Let g : Rm → R be a continuously
differentiable function, Fi(x, ξ), i = 1, . . . , m, be a random lower semicontinuous
functions, fi(x) := E[Fi(x, ξ)], i = 1, . . . , m, f (x) = (f1(x), . . . , fm(x)), X be a
nonempty compact subset of R

n, and consider the optimization problem

Min
x∈X g (f (x)) . (5.382)

Moreover, let ξ 1, . . . , ξN be an iid random sample, f̂iN (x) := N−1∑N
j=1 Fi(x, ξ

j ),

i = 1, . . . , m, f̂N (x) = (f̂1N(x), . . . , f̂mN(x)) be the corresponding sample average
functions, and

Min
x∈X g

(
f̂N (x)

)
(5.383)

be the associated SAA problem. Suppose that conditions (A1) and (A2) (used in
Theorem 5.7) hold for every function Fi(x, ξ), i = 1, . . . , m. Let ϑ∗ and ϑ̂N be
the optimal values of problems (5.382) and (5.383), respectively, and S be the set of
optimal solutions of problem (5.382). Show that

ϑ̂N − ϑ∗ = inf
x∈S

(
m∑
i=1

wi(x)
[
f̂iN (x)− fi(x)

])+ op(N−1/2), (5.384)

where

wi(x) := ∂g(y1, . . . , ym)

∂yi

∣∣∣
y=f (x)

, i = 1, . . . , m.

Moreover, if S = {x̄} is a singleton, then

N1/2
(
ϑ̂N − ϑ∗

) D→ N (0, σ 2), (5.385)

where w̄i := wi(x̄) and

σ 2 = Var
[∑m

i=1 w̄iFi(x̄, ξ)
]
. (5.386)
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Hint: Consider function V : C(X)×· · ·×C(X)→ R defined as V (ψ1, . . . , ψm) :=
inf x∈X g(ψ1(x), . . . , ψm(x)), and apply the functional CLT together with the Delta
and Danskin theorems.

5.5. Consider matrix
[
H A
AT 0

]
defined in (5.44). Assuming that matrixH is positive definite

and matrix A has full column rank, verify that[
H A

AT 0

]−1

=
[
H−1 −H−1A(ATH−1A)−1ATH−1 H−1A(ATH−1A)−1

(ATH−1A)−1ATH−1 −(ATH−1A)−1

]
.

Using this identity write the asymptotic covariance matrix of N1/2
[
x̂N−x̄
λ̂N−λ̄

]
, given in

(5.45), explicitly.
5.6. Consider the minimax stochastic problem (5.46), the corresponding SAA problem

(5.47), and let

#N := sup
x∈X,y∈Y

∣∣∣f̂N (x, y)− f (x, y)∣∣∣ . (5.387)

(i) Show that |ϑ̂N − ϑ∗| ≤ #N , and that if x̂N is a δ-optimal solution of the SAA
problem (5.47), then x̂N is a (δ + 2#N)-optimal solution of the minimax problem
(5.46).
(ii) By using Theorem 7.65 conclude that, under appropriate regularity conditions,
for any ε > 0 there exist positive constants C = C(ε) and β = β(ε) such that

Pr
{∣∣ϑ̂N − ϑ∗∣∣ ≥ ε} ≤ Ce−Nβ. (5.388)

(iii) By using bounds (7.216) and (7.217) derive an estimate, similar to (5.116), of
the sample size N which guarantees with probability at least 1− α that a δ-optimal
solution x̂N of the SAA problem (5.47) is an ε-optimal solution of the minimax
problem (5.46). Specify required regularity conditions.

5.7. Consider the multistage SAA method based on iid conditional sampling. For cor-
responding sample sizes N = (N1, . . . , NT−1) and N ′ = (N ′1, . . . , N ′T−1), we say

that N ′ � N if N ′t ≥ Nt , t = 1, . . . , T − 1. Let ϑ̂N and ϑ̂N ′ be respective optimal
(minimal) values of SAA problems. Show that if N ′ � N , then E[ϑ̂N ′ ] ≥ E[ϑ̂N ].

5.8. Consider the chance constrained problem

Min
x∈X f (x) s.t. Pr

{
T (ξ)x + h(ξ) ∈ C} ≥ 1− α, (5.389)

where X ⊂ R
n is a closed convex set, f : Rn → R is a convex function, C ⊂ R

m

is a convex closed set, α ∈ (0, 1), and matrix T (ξ) and vector h(ξ) are functions of
random vector ξ . For example, if

C := {z : z = −Wy − w, y ∈ R
�, w ∈ R

m
+
}
, (5.390)

then, for a given x ∈ X, the constraint T (ξ)x + h(ξ) ∈ C means that the system
Wy + T (ξ)x + h(ξ) ≤ 0 has a feasible solution. Extend the results of section 5.7 to
the setting of problem (5.389).



SPbook
2009/8/20
page 251

�

�

�

�

�

�

�

�

Exercises 251

5.9. Consider the following extension of the chance constrained problem (5.196):

Min
x∈X f (x) s.t. pi(x) ≤ αi, i = 1, . . . , p, (5.391)

with several (individual) chance constraints. Here X ⊂ R
n, f : R

n → R, αi ∈
(0, 1), i = 1, . . . , p, are given significance levels, and

pi(x) = Pr{Ci(x, ξ) > 0}, i = 1, . . . , p,

with Ci(x, ξ) being Carathéodory functions.
Extend the methodology of constructing lower and upper bounds, discussed in section
5.7.2, to the above problem (5.391). Use SAA problems based on independent
samples. (See Remark 6 on page 162 and (5.18) in particular.) That is, estimate
pi(x) by

p̂iNi (x) :=
1

Ni

Ni∑
j=1

1(0,∞)
(
Ci(x, ξ

ij )
)
, i = 1, . . . , p.

In order to verify feasibility of a point x̄ ∈ X, show that

Pr
{
pi(x̄) < Ui(x̄), i = 1, . . . , p

} ≥ p∏
i=1

(1− βi),

where βi ∈ (0, 1) are chosen constants and

Ui(x̄) := sup
ρ∈[0,1]

{ρ : b (mi; ρ,Ni) ≥ βi} , i = 1, . . . , p,

with mi := p̂iNi (x̄).
In order to construct a lower bound, generate M independent realizations of the
corresponding SAA problems, each of the same sample size N = (N1, . . . , Np)

and significance levels γi ∈ [0, 1), i = 1, . . . , p, and compute their optimal values
ϑ̂1
γ,N , . . . , ϑ̂

M
γ,N . Arrange these values in the increasing order ϑ̂ (1)γ,N ≤ · · · ≤ ϑ̂ (M)γ,N .

Given significance level β ∈ (0, 1), consider the following rule for choice of the
corresponding integer L:

• Choose the largest integer L ∈ {1, . . . ,M} such that

b(L− 1; θN ,M) ≤ β, (5.392)

where θN :=∏p

i=1 b(ri;αi,Ni) and ri := �γiNi�.
Show that with probability at least 1 − β, the random quantity ϑ̂ (L)γ,N gives a lower
bound for the true optimal value ϑ∗.

5.10. Consider the SAA problem (5.241) giving an approximation of the first stage of the
corresponding three stage stochastic program. Let

ϑ̃N1,N2 := inf
x1∈X1

f̃N1,N2(x1)
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be the optimal value and x̃N1,N2 be an optimal solution of problem (5.241). Consider
asymptotics of ϑ̃N1,N2 and x̃N1,N2 asN1 tends to infinity whileN2 is fixed. Let ϑ∗N2

be
the optimal value and SN2 be the set of optimal solutions of the problem

Min
x1∈X1

{
f1(x1)+ E

[
Q̂2,N2(x1, ξ

i
2)
]}
, (5.393)

where the expectation is taken with respect to the distribution of the random vector(
ξ i2, ξ

i1
3 , . . . , ξ

iN2
3

)
.

(i) By using results of section 5.1.1 show that ϑ̃N1,N2 → ϑ∗N2
w.p. 1 and distance from

x̃N1,N2 to SN2 tends to 0 w.p. 1 as N1 →∞. Specify required regularity conditions.
(ii) Show that, under appropriate regularity conditions,

ϑ̃N1,N2 = inf
x1∈SN2

f̃N1,N2(x1)+ op
(
N
−1/2
1

)
. (5.394)

Conclude that if, moreover, SN2 = {x̄1} is a singleton, then

N
1/2
1

(
ϑ̃N1,N2 − ϑ∗N2

) D→ N
(
0, σ 2(x̄1)

)
, (5.395)

where σ 2(x̄1) := Var
[
Q̂2,N2(x1, ξ

i
2)
]
. Hint: Use Theorem 5.7.
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Chapter 6

Risk Averse Optimization

Andrzej Ruszczyński and Alexander Shapiro

6.1 Introduction
So far, we have discussed stochastic optimization problems, in which the objective function
was defined as the expected value f (x) := E[F(x, ω)]. The function F : Rn × � → R

models the random outcome, for example, the random cost, and is assumed to be sufficiently
regular so that the expected value function is well defined. For a feasible set X ⊂ R

n, the
stochastic optimization model

Min
x∈X f (x) (6.1)

optimizes the random outcome F(x, ω) on average. This is justified when the Law of Large
Numbers can be invoked and we are interested in the long-term performance, irrespective of
the fluctuations of specific outcome realizations. The shortcomings of such an approach can
be clearly illustrated by the example of portfolio selection discussed in section 1.4. Con-
sider problem (1.34) of maximizing the expected return rate. Its optimal solution suggests
concentrating on investment in the assets having the highest expected return rate. This is not
what we would consider reasonable, because it leaves out all considerations of the involved
risk of losing all invested money. In this section we discuss stochastic optimization from a
point of view of risk averse optimization.

A classical approach to risk averse preferences is based on the expected utility theory,
which has its roots in mathematical economics (we touched on this subject in section 1.4). In
this theory, in order to compare two random outcomes we consider expected values of some
scalar transformations u : R→ R of the realization of these outcomes. In a minimization
problem, a random outcome Z1 (understood as a scalar random variable) is preferred over
a random outcome Z2 if

E[u(Z1)] < E[u(Z2)].

253
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The function u(·), called the disutility function, is assumed to be nondecreasing and convex.
Following this principle, instead of problem (6.1), we construct the problem

Min
x∈X E[u(F (x, ω))]. (6.2)

Observe that it is still an expected value problem, but the function F is replaced by the
composition u ◦ F . Since u(·) is convex, we have by Jensen’s inequality that

u(E[F(x, ω)]) ≤ E[u(F (x, ω))].
That is, a sure outcome of E[F(x, ω)] is at least as good as the random outcome F(x, ω).
In a maximization problem, we assume that u(·) is concave (and still nondecreasing). We
call it a utility function in this case. Again, Jensen’s inequality yields the preference in terms
of expected utility:

u(E[F(x, ω)]) ≥ E[u(F (x, ω))].
One of the basic difficulties in using the expected utility approach is specifying the

utility or disutility function. They are very difficult to elicit; even the authors of this book
cannot specify their utility functions in simple stochastic optimization problems. Moreover,
using some arbitrarily selected utility functions may lead to solutions which are difficult to
interpret and explain. A modern approach to modeling risk aversion in optimization prob-
lems uses the concept of risk measures. These are, generally speaking, functionals which
take as their argument the entire collection of realizations Z(ω) = F(x, ω), ω ∈ �, under-
stood as an object in an appropriate vector space. In the following sections we introduce
this concept.

6.2 Mean–Risk Models

6.2.1 Main Ideas of Mean–Risk Analysis

The main idea of mean–risk models is to characterize the uncertain outcome Zx(ω) =
F(x, ω) by two scalar characteristics: the mean E[Z], describing the expected outcome,
and the risk (dispersion measure) D[Z], which measures the uncertainty of the outcome.
In the mean–risk approach, we select from the set of all possible solutions those that are
efficient: for a given value of the mean they minimize the risk, and for a given value of
risk they maximize the mean. Such an approach has many advantages: it allows one to
formulate the problem as a parametric optimization problem and it facilitates the trade-off
analysis between mean and risk.

Let us describe the mean–risk analysis on the example of the minimization problem
(6.1). Suppose that the risk functional is defined as the variance D[Z] := Var[Z], which is
well defined for Z ∈ L2(�,F , P ). The variance, although not the best choice, is easiest
to start from. It is also important in finance. Later in this chapter we discuss in much detail
desirable properties of the risk functionals.

In the mean–risk approach, we aim at finding efficient solutions of the problem with
two objectives, namely, E[Zx] and D[Zx], subject to the feasibility constraint x ∈ X. This
can be accomplished by techniques of multiobjective optimization. Most convenient, from



SPbook
2009/8/20
page 255

�

�

�

�

�

�

�

�

6.2. Mean–Risk Models 255

our perspective, is the idea of scalarization. For a coefficient c ≥ 0, we form a composite
objective functional

ρ[Z] := E[Z] + cD[Z]. (6.3)

The coefficient c plays the role of the price of risk. We formulate the problem

Min
x∈X E[Zx] + cD[Zx]. (6.4)

By varying the value of the coefficient c, we can generate in this way a large ensemble of
efficient solutions. We already discussed this approach for the portfolio selection problem,
with D[Z] := Var[Z], in section 1.4.

An obvious deficiency of variance as a measure of risk is that it treats the excess over
the mean equally as the shortfall. After all, in the minimization case, we are not concerned
if a particular realization of Z is significantly below its mean; we do not want it to be too
large. Two particular classes of risk functionals, which we discuss next, play an important
role in the theory of mean–risk models.

6.2.2 Semideviations

An important group of risk functionals (representing dispersion measures) are central
semideviations. The upper semideviation of order p is defined as

σ+p [Z] :=
(
E

[(
Z − E[Z])p+])1/p

, (6.5)

where p ∈ [1,∞) is a fixed parameter. It is natural to assume here that considered random
variables (uncertain outcomes) Z : � → R belong to the space Lp(�,F , P ), i.e., that
they have finite pth order moments. That is, σ+p [Z] is well defined and finite valued for all
Z ∈ Lp(�,F , P ). The corresponding mean–risk model has the general form

Min
x∈X E[Zx] + cσ+p [Zx]. (6.6)

The upper semideviation measure is appropriate for minimization problems, where
Zx(ω) = F(x, ω) represents a cost, as a function of ω ∈ �. It is aimed at penaliza-
tion of an excess of Zx over its mean. If we are dealing with a maximization problem,
where Zx represents some reward or profit, the corresponding risk functional is the lower
semideviation

σ−p [Z] :=
(
E

[(
E[Z] − Z)p+])1/p

, (6.7)

where Z ∈ Lp(�,F , P ). The resulting mean–risk model has the form

Max
x∈X E[Zx] − cσ−p [Zx]. (6.8)

In the special case of p = 1, both left and right first order semideviations are related to the
mean absolute deviation

σ1(Z) := E
∣∣Z − E[Z]∣∣. (6.9)

Proposition 6.1. The following identity holds:

σ+1 [Z] = σ−1 [Z] = 1
2σ1[Z], ∀Z ∈ L1(�,F , P ). (6.10)
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Proof. Denote by H(·) the cumulative distribution function (cdf) of Z and let µ := E[Z].
We have

σ−1 [Z] =
∫ µ

−∞
(µ− z) dH(z) =

∫ ∞
−∞
(µ− z) dH(z)−

∫ ∞
µ

(µ− z) dH(z).

The first integral on the right-hand side is equal to 0, and thus σ−1 [Z] = σ+1 [Z]. The identity
(6.10) follows now from the equation σ1[Z] = σ−1 [Z] + σ+1 [Z].

We conclude that using the mean absolute deviation instead of the semideviation in
mean–risk models has the same effect, just the parameter c has to be halved. The identity
(6.10) does not extend to semideviations of higher orders, unless the distribution of Z is
symmetric.

6.2.3 Weighted Mean Deviations from Quantiles

LetHZ(z) = Pr(Z ≤ z) be the cdf of the random variable Z and α ∈ (0, 1). Recall that the
left-side α-quantile of HZ is defined as

H−1
Z (α) := inf {t : HZ(t) ≥ α} (6.11)

and the right-side α-quantile as

sup{t : HZ(t) ≤ α}. (6.12)

If Z represents losses, the (left-side) quantile H−1
Z (1− α) is also called Value-at-Risk and

denoted V@Rα(Z), i.e.,

V@Rα(Z) = H−1
Z (1− α) = inf {t : Pr(Z ≤ t) ≥ 1− α} = inf {t : Pr(Z > t) ≤ α}.

Its meaning is the following: losses larger than V@Rα(Z) occur with probability not
exceeding α. Note that

V@Rα(Z + τ) = V@Rα(Z)+ τ, ∀τ ∈ R. (6.13)

The weighted mean deviation from a quantile is defined as follows:

qα[Z] := E
[
max

{
(1− α)(H−1

Z (α)− Z), α(Z −H−1
Z (α))

}]
. (6.14)

The functional qα[Z] is well defined and finite valued for all Z ∈ L1(�,F , P ). It can be
easily shown that

qα[Z] = min
t∈R

{
ϕ(t) := E

[
max {(1− α)(t − Z), α(Z − t)} ]} . (6.15)

Indeed, the right- and left-side derivatives of the function ϕ(·) are

ϕ′+(t) = (1− α)Pr[Z ≤ t] − αPr[Z > t],
ϕ′−(t) = (1− α)Pr[Z < t] − αPr[Z ≥ t].

At the optimal t the right derivative is nonnegative and the left derivative
nonpositive, and thus

Pr[Z < t] ≤ α ≤ Pr[Z ≤ t].
This means that every α-quantile is a minimizer in (6.15).
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The risk functional qα[ · ] can be used in mean–risk models, both in the case of mini-
mization

Min
x∈X E[Zx] + cq1−α[Zx] (6.16)

and in the case of maximization

Max
x∈X E[Zx] − cqα[Zx]. (6.17)

We use 1− α in the minimization problem and α in the maximization problem, because in
practical applications we are interested in these quantities for small α.

6.2.4 Average Value-at-Risk

The mean-deviation from quantile model is closely related to the concept of Average Value-
at-Risk.39 Suppose that Z represents losses and we want to satisfy the chance constraint:

V@Rα[Zx] ≤ 0. (6.18)

Recall that

V@Rα[Z] = inf {t : Pr(Z ≤ t) ≥ 1− α},
and hence constraint (6.18) is equivalent to the constraint Pr(Zx ≤ 0) ≥ 1 − α. We have
that40 Pr(Zx > 0) = E

[
1(0,∞)(Zx)

]
, and hence constraint (6.18) can also be written as the

expected value constraint:
E
[
1(0,∞)(Zx)

] ≤ α. (6.19)

The source of difficulties with probabilistic (chance) constraints is that the step function
1(0,∞)(·) is not convex and, even worse, it is discontinuous at zero. As a result, chance
constraints are often nonconvex, even if the function x !→ Zx is convex almost surely. One
possibility is to approach such problems by constructing a convex approximation of the
expected value on the left of (6.19).

Let ψ : R→ R be a nonnegative valued, nondecreasing, convex function such that
ψ(z) ≥ 1(0,∞)(z) for all z ∈ R. By noting that 1(0,∞)(tz) = 1(0,∞)(z) for any t > 0 and
z ∈ R, we have that ψ(tz) ≥ 1(0,∞)(z) and hence the following inequality holds:

inf
t>0

E [ψ(tZ)] ≥ E
[
1(0,∞)(Z)

]
.

Consequently, the constraint
inf
t>0

E [ψ(tZx)] ≤ α (6.20)

is a conservative approximation of the chance constraint (6.18) in the sense that the feasible
set defined by (6.20) is contained in the feasible set defined by (6.18).

Of course, the smaller the functionψ(·) is the better this approximation will be. From
this point of view the best choice of ψ(·) is to take piecewise linear function ψ(z) :=

39Average Value-at-Risk is often called Conditional Value-at-Risk. We adopt here the term “Average” rather
than “Conditional” Value-at-Risk in order to avoid awkward notation and terminology while discussing later
conditional risk mappings.

40Recall that 1(0,∞)(z) = 0 if z ≤ 0 and 1(0,∞)(z) = 1 if z > 0.
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[1+ γ z]+ for some γ > 0. Since constraint (6.20) is invariant with respect to scale change
of ψ(γ z) to ψ(z), we have that ψ(z) := [1+ z]+ gives the best choice of such a function.
For this choice of function ψ(·), we have that constraint (6.20) is equivalent to

inf
t>0
{tE[t−1 + Z]+ − α} ≤ 0,

or equivalently
inf
t>0

{
α−1

E[Z + t−1]+ − t−1
} ≤ 0.

Now replacing t with −t−1 we get the form

inf
t<0

{
t + α−1

E[Z − t]+
} ≤ 0. (6.21)

The quantity
AV@Rα(Z) := inf

t∈R

{
t + α−1

E[Z − t]+
}

(6.22)

is called the Average Value-at-Risk41 ofZ (at level α). Note that AV@Rα(Z) is well defined
and finite valued for every Z ∈ L1(�,F , P ).

The function ϕ(t) := t + α−1
E[Z − t]+ is convex. Its derivative at t is equal to 1+

α−1[HZ(t)−1], provided that the cdfHZ(·) is continuous at t . IfHZ(·) is discontinuous at t ,
then the respective right- and left-side derivatives of ϕ(·) are given by the same formula with
HZ(t) understood as the corresponding right- and left-side limits. Therefore the minimum
of ϕ(t), over t ∈ R, is attained on the interval [t∗, t∗∗], where

t∗ := inf {z : HZ(z) ≥ 1− α} and t∗∗ := sup{z : HZ(z) ≤ 1− α} (6.23)

are the respective left- and right-side quantiles. Recall that the left-side quantile t∗ =
V@Rα(Z).

Since the minimum of ϕ(t) is attained at t∗ = V@Rα(Z), we have that AV@Rα(Z)
is bigger than V@Rα(Z) by the nonnegative amount of α−1

E[Z − t∗]+. Therefore

inf
t∈R

{
t + α−1

E[Z − t]+
} ≤ 0 implies that t∗ ≤ 0,

and hence constraint (6.21) is equivalent to AV@Rα(Z) ≤ 0. Therefore, the constraint

AV@Rα[Zx] ≤ 0 (6.24)

is equivalent to the constraint (6.21) and gives a conservative approximation42 of the chance
constraint (6.18).

The function ρ(Z) := AV@Rα(Z), defined on a space of random variables, is convex,
i.e., if Z and Z′ are two random variables and t ∈ [0, 1], then

ρ
(
tZ + (1− t)Z′) ≤ tρ(Z)+ (1− t)ρ(Z′).

41In some publications the concept of Average Value-at-Risk is called Conditional Value-at-Risk and is
denoted CV@Rα .

42It is easy to see that for any τ ∈ R,

AV@Rα(Z + τ) = AV@Rα(Z)+ τ. (6.25)

Consequently, the constraint AV@Rα[Zx ] ≤ τ gives a conservative approximation of the chance constraint
V@Rα[Zx ] ≤ τ .
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This follows from the fact that the function t + α−1
E[Z − t]+ is convex jointly in t and Z.

Also ρ(·) is monotone, i.e., if Z and Z′ are two random variables such that with probability
one Z ≥ Z′, then ρ(Z) ≥ ρ(Z′). It follows that if G(·, ξ) is convex for a.e. ξ ∈ �, then
the function ρ[G(·, ξ)] is also convex. Indeed, by convexity of G(·, ξ) and monotonicity
of ρ(·), we have for any t ∈ [0, 1] that

ρ[G(tZ + (1− t)Z′, ξ)] ≤ ρ[tG(Z, ξ)+ (1− t)G(Z′, ξ)]
and hence by convexity of ρ(·) that

ρ[G(tZ + (1− t)Z′, ξ)] ≤ tρ[G(Z, ξ)] + (1− t)ρ[G(Z′, ξ)].
Consequently, (6.24) is a convex conservative approximation of the chance constraint (6.18).
Moreover, from the considered point of view, (6.24) is the best convex conservative ap-
proximation of the chance constraint (6.18).

We can now relate the concept of Average Value-at-Risk to mean deviations from
quantiles. Recall that (see (6.14))

qα[Z] := E

[
max

{
(1− α)

(
H−1
Z (α)− Z

)
, α
(
Z −H−1

Z (α)
)}]

.

Theorem 6.2. Let Z ∈ L1(�,F , P ) and H(z) be its cdf. Then the following identities
hold true:

AV@Rα(Z) =
1

α

∫ 1

1−α
V@R1−τ (Z) dτ = E[Z] + 1

α
q1−α[Z]. (6.26)

Moreover, if H(z) is continuous at z = V@Rα(Z), then

AV@Rα(Z) =
1

α

∫ +∞
V@Rα(Z)

zdH(z) = E
[
Z
∣∣Z ≥ V@Rα(Z)

]
. (6.27)

Proof. As discussed earlier, the minimum in (6.22) is attained at t∗ = H−1(1 − α) =
V@Rα(Z). Therefore

AV@Rα(Z) = t∗ + α−1
E[Z − t∗]+ = t∗ + α−1

∫ +∞
t∗

(z− t∗)dH(z).

Moreover, ∫ +∞
t∗

dH(z) = Pr(Z ≥ t∗) = 1− Pr(Z ≤ t∗) = α,

provided that Pr(Z = t∗) = 0, i.e., that H(z) is continuous at z = V@Rα(Z). This shows
the first equality in (6.27), and then the second equality in (6.27) follows provided that
Pr(Z = t∗) = 0.

The first equality in (6.26) follows from the first equality in (6.27) by the substitution
τ = H(z). Finally, we have

AV@Rα(Z) = t∗ + α−1
E[Z − t∗]+ = E[Z] + E

{−Z + t∗ + α−1[Z − t∗]+
}

= E[Z] + E
[
max

{
α−1(1− α)(Z − t∗), t∗ − Z}] .

This proves the last equality in (6.26).
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The first equation in (6.26) motivates the term Average Value-at-Risk. The last equa-
tion in (6.27) explains the origin of the alternative term Conditional Value-at-Risk.

Theorem 6.2 allows us to show an important relation between the absolute semidevi-
ation σ+1 [Z] and the mean deviation from quantile qα[Z].

Corollary 6.3. For every Z ∈ L1(�,F , P ) we have

σ+1 [Z] = max
α∈[0,1]

qα[Z] = min
t∈R

max
α∈[0,1]

E {(1− α)[t − Z]+ + α[Z − t]+} . (6.28)

Proof. From (6.26) we get

q1−α[Z] =
∫ 1

1−α
H−1
Z (τ) dτ − αE[Z].

The right derivative of the right-hand side with respect to α equals H−1
Z (1 − α) − E[Z].

As it is nonincreasing, the function α !→ q1−α[Z] is concave. Moreover, its maximum is
achieved at α∗ for which E[Z] is the (1 − α∗)-quantile of Z. Substituting the minimizer
t∗ = E[Z] into (6.22) we conclude that

AV@Rα∗(Z) = E[Z] + 1

α∗
σ+1 [Z].

Comparison with (6.26) yields the first equality in (6.28). To prove the second equality we
recall relation (6.15) and note that

max
(
(1− α)(t − Z), α(Z − t)) = (1− α)[t − Z]+ + α[Z − t]+.

Thus

σ+1 [Z] = max
α∈[0,1]

min
t∈R

E {(1− α)[t − Z]+ + α[Z − t]+} .
As the function under the max-min operation is linear with respect to α ∈ [0, 1] and convex
with respect to t , the max and min operations can be exchanged. This proves the second
equality in (6.28).

It also follows from (6.26) that the minimization problem (6.16) can be equivalently
written as follows:

min
x∈X E[Zx] + cq1−α[Zx] = min

x∈X (1− cα)E[Zx] + cα AV@Rα[Zx] (6.29)

= min
x∈X,t∈R

E
[
(1− cα)Zx + c

(
αt + [Zx − t]+

)]
.

Both x and t are variables in this problem. We conclude that for this specific mean–risk
model, an equivalent expected value formulation has been found. If c ∈ [0, α−1] and the
function x !→ Zx is convex, problem (6.29) is convex.

The maximization problem (6.17) can be equivalently written as follows:

max
x∈X E[Zx] − cqα[Zx] = −min

x∈X E[−Zx] + cq1−α[−Zx] (6.30)

= − min
x∈X,t∈R

E
[−(1− cα)Zx + c(αt + [−Zx − t]+)]

= max
x∈X,t∈R

E
[
(1− cα)Zx + c

(
αt − [t − Zx]+

)]
. (6.31)
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In the last problem we replaced t by−t to stress the similarity with (6.29). Again, if
c ∈ [0, α−1] and the function x !→ Zx is convex, problem (6.30) is convex.

6.3 Coherent Risk Measures
Let (�,F ) be a sample space, equipped with the sigma algebra F , on which considered
uncertain outcomes (random functions Z = Z(ω)) are defined. By a risk measure we
understand a functionρ(Z)which mapsZ into the extended real line R = R∪{+∞}∪{−∞}.
In order to make this concept precise we need to define a space Z of allowable random
functions Z(ω) for which ρ(Z) is defined. It seems that a natural choice of Z will be the
space of all F -measurable functionsZ : �→ R. However, typically, this space is too large
for development of a meaningful theory. Unless stated otherwise, we deal in this chapter
with spaces Z := Lp(�,F , P ), where p ∈ [1,+∞). (See section 7.3 for an introduction
of these spaces.) By assuming that Z ∈ Lp(�,F , P ), we assume that random variable
Z(ω) has a finite pth order moment with respect to the reference probability measure P .
Also, by considering function ρ to be defined on the space Lp(�,F , P ), it is implicitly
assumed that actually ρ is defined on classes of functions which can differ on sets of P -
measure zero, i.e., ρ(Z) = ρ(Z′) if P {ω : Z(ω) �= Z′(ω)} = 0.

We assume throughout this chapter that risk measures ρ : Z → R are proper. That
is, ρ(Z) > −∞ for all Z ∈ Z and the domain

dom(ρ) := {Z ∈ Z : ρ(Z) < +∞}
is nonempty. We consider the following axioms associated with a risk measure ρ. For
Z,Z′ ∈ Z we denote by Z � Z′ the pointwise partial order,43 meaning Z(ω) ≥ Z′(ω) for
a.e. ω ∈ �. We also assume that the smaller the realizations of Z, the better; for example,
Z may represent a random cost.

(R1) Convexity:

ρ(tZ + (1− t)Z′) ≤ tρ(Z)+ (1− t)ρ(Z′)
for all Z,Z′ ∈ Z and all t ∈ [0, 1].

(R2) Monotonicity: If Z,Z′ ∈ Z and Z � Z′, then ρ(Z) ≥ ρ(Z′).
(R3) Translation equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z)+ a.

(R4) Positive homogeneity: If t > 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).
It is said that a risk measure ρ is coherent if it satisfies the above conditions (R1)–(R4).
An example of a coherent risk measure is the Average Value-at-Risk ρ(Z) := AV@Rα(Z).
(Further examples of risk measures will be discussed in section 6.3.2.) It is natural to assume
in this example that Z has a finite first order moment, i.e., to use Z := L1(�,F , P ). For
such space Z in this example, ρ(Z) is finite (real valued) for all Z ∈ Z.

43This partial order corresponds to the cone C := L+p (�,F , P ). See the discussion of section 7.3, page
404, following (7.245).
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If the random outcome represents a reward, i.e., larger realizations of Z are preferred,
we can define a risk measure %(Z) = ρ(−Z), where ρ satisfies axioms (R1)–(R4). In this
case, the function % also satisfies (R1) and (R4). The axioms (R2) and (R3) change to

(R2a) Monotonicity: If Z,Z′ ∈ Z and Z � Z′, then %(Z) ≤ %(Z′).
(R3a) Translation equivariance: If a ∈ R and Z ∈ Z, then %(Z + a) = %(Z)− a.

All our considerations regarding risk measures satisfying (R1)–(R4) have their obvious
counterparts for risk measures satisfying (R1), (R2a), (R3a), and (R4).

With each space Z := Lp(�,F , P ) is associated its dual space Z∗ := Lq(�,F , P ),
where q ∈ (1,+∞] is such that 1/p+1/q = 1. ForZ ∈ Z and ζ ∈ Z∗ their scalar product
is defined as

〈ζ, Z〉 :=
∫
�

ζ(ω)Z(ω)dP (ω). (6.32)

Recall that the conjugate function ρ∗ : Z∗ → R of a risk measure ρ is defined as

ρ∗(ζ ) := sup
Z∈Z

{〈ζ, Z〉 − ρ(Z)} (6.33)

and the conjugate of ρ∗ (the biconjugate function) as

ρ∗∗(Z) := sup
ζ∈Z∗
{〈ζ, Z〉 − ρ∗(ζ )}. (6.34)

By the Fenchel–Moreau theorem (Theorem 7.71) we have that if ρ : Z → R is
convex, proper and lower semicontinuous, then ρ∗∗ = ρ, i.e., ρ(·) has the representation

ρ(Z) = sup
ζ∈Z∗
{〈ζ, Z〉 − ρ∗(ζ )}, ∀Z ∈ Z. (6.35)

Conversely, if the representation (6.35) holds for some proper function ρ∗ : Z∗ → R, then
ρ is convex, proper, and lower semicontinuous. Note that if ρ is convex, proper, and lower
semicontinuous, then its conjugate function ρ∗ is also proper. Clearly, we can write the
representation (6.35) in the following equivalent form:

ρ(Z) = sup
ζ∈A

{〈ζ, Z〉 − ρ∗(ζ )}, ∀Z ∈ Z, (6.36)

where A := dom(ρ∗) is the domain of the conjugate function ρ∗.
The following basic duality result for convex risk measures is a direct consequence

of the Fenchel–Moreau theorem.

Theorem 6.4. Suppose that ρ : Z→ R is convex, proper, and lower semicontinuous. Then
the representation (6.36) holds with A := dom(ρ∗). Moreover, we have that: (i) condition
(R2) holds iff every ζ ∈ A is nonnegative, i.e., ζ(ω) ≥ 0 for a.e. ω ∈ �; (ii) condition (R3)
holds iff

∫
�
ζdP = 1 for every ζ ∈ A; and (iii) condition (R4) holds iff ρ(·) is the support

function of the set A, i.e., can be represented in the form

ρ(Z) = sup
ζ∈A
〈ζ, Z〉, ∀Z ∈ Z. (6.37)

Proof. If ρ : Z → R is convex, proper, and lower semicontinuous, then representation
(6.36) is valid by virtue of the Fenchel–Moreau theorem (Theorem 7.71).
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Now suppose that assumption (R2) holds. It follows that ρ∗(ζ ) = +∞ for every
ζ ∈ Z∗ which is not nonnegative. Indeed, if ζ ∈ Z∗ is not nonnegative, then there exists
a set # ∈ F of positive measure such that ζ(ω) < 0 for all ω ∈ #. Consequently, for
Z̄ := 1# we have that 〈ζ, Z̄〉 < 0. Take any Z in the domain of ρ, i.e., such that ρ(Z) is
finite, and consider Zt := Z − tZ̄. Then for t ≥ 0, we have that Z � Zt , and assumption
(R2) implies that ρ(Z) ≥ ρ(Zt). Consequently,

ρ∗(ζ ) ≥ sup
t∈R+

{〈ζ, Zt 〉 − ρ(Zt)} ≥ sup
t∈R+

{〈ζ, Z〉 − t〈ζ, Z̄〉 − ρ(Z)} = +∞.
Conversely, suppose that every ζ ∈ A is nonnegative. Then for every ζ ∈ A and Z � Z′,
we have that 〈ζ, Z′〉 ≥ 〈ζ, Z〉. By (6.36), this implies that if Z � Z′, then ρ(Z) ≥ ρ(Z′).
This completes the proof of assertion (i).

Suppose that assumption (R3) holds. Then for every Z ∈ dom(ρ) we have

ρ∗(ζ ) ≥ sup
a∈R

{〈ζ, Z + a〉 − ρ(Z + a)} = sup
a∈R

{
a

∫
�

ζdP − a + 〈ζ, Z〉 − ρ(Z)
}
.

It follows that ρ∗(ζ ) = +∞ for any ζ ∈ Z∗ such that
∫
�
ζdP �= 1. Conversely, if∫

�
ζdP = 1, then 〈ζ, Z + a〉 = 〈ζ, Z〉 + a, and hence condition (R3) follows by (6.36).

This completes the proof of (ii).
Clearly, if (6.37) holds, then ρ is positively homogeneous. Conversely, if ρ is posi-

tively homogeneous, then its conjugate function is the indicator function of a convex subset
of Z∗. Consequently, the representation (6.37) follows by (6.36).

It follows from the above theorem that if ρ is a risk measure satisfying conditions
(R1)–(R3) and is proper and lower semicontinuous, then the representation (6.36) holds
with A being a subset of the set of probability density functions,

P :=
{
ζ ∈ Z∗ :

∫
�

ζ(ω)dP (ω) = 1, ζ � 0

}
. (6.38)

If, moreover, ρ is positively homogeneous (i.e., condition (R4) holds), then its conjugate ρ∗
is the indicator function of a convex set A ⊂ Z∗, and A is equal to the subdifferential ∂ρ(0)
of ρ at 0 ∈ Z. Furthermore, ρ(0) = 0 and hence by the definition of ∂ρ(0) we have that

A = {ζ ∈ P : 〈ζ, Z〉 ≤ ρ(Z), ∀Z ∈ Z} . (6.39)

The set A is weakly∗ closed. Recall that if the space Z, and hence Z∗, is reflexive, then
a convex subset of Z∗ is closed in the weak∗ topology of Z∗ iff it is closed in the strong
(norm) topology of Z∗. If ρ is positively homogeneous and continuous, then A = ∂ρ(0) is
a bounded (and weakly∗ compact) subset of Z∗ (see Proposition 7.74).

We have that if ρ is a coherent risk measure, then the corresponding set A is a set
of probability density functions. Consequently, for any ζ ∈ A we can view 〈ζ, Z〉 as
the expectation Eζ [Z] taken with respect to the probability measure ζdP , defined by the
density ζ . Consequently representation (6.37) can be written in the form

ρ(Z) = sup
ζ∈A

Eζ [Z], ∀Z ∈ Z. (6.40)
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Definition of a risk measure ρ depends on a particular choice of the corresponding
space Z. In many cases there is a natural choice of Z which ensures that ρ(Z) is finite
valued for all Z ∈ Z. We shall see such examples in section 6.3.2. By Theorem 7.79
we have the following result, which shows that for real valued convex and monotone risk
measures, the assumption of lower semicontinuity in Theorem 6.4 holds automatically.

Proposition 6.5. Let Z := Lp(�,F , P ) with p ∈ [1,+∞] and ρ : Z → R be a
real valued risk measure satisfying conditions (R1) and (R2). Then ρ is continuous and
subdifferentiable on Z.

Theorem 6.4 together with Proposition 6.5 imply the following basic duality result.

Theorem 6.6. Let ρ : Z→ R, where Z := Lp(�,F , P ) with p ∈ [1,+∞). Then ρ is a
real valued coherent risk measure iff there exists a convex bounded and weakly∗ closed set
A ⊂ P such that the representation (6.37) holds.

Proof. If ρ : Z → R is a real valued coherent risk measure, then by Proposition 6.5 it
is continuous, and hence by Theorem 6.4 the representation (6.37) holds with A = ∂ρ(0).
Moreover, the subdifferential of a convex continuous function is bounded and weakly∗
closed (and hence is weakly∗ compact).

Conversely, if the representation (6.37) holds with the set A being a convex subset of
P and weakly∗ compact, then ρ is real valued and satisfies conditions (R1)–(R4).

The following result shows that if a risk measure satisfies conditions (R1)–(R3), then
either it is finite valued and continuous on Z or it takes value +∞ on a dense subset of Z.

Proposition 6.7. Let Z := Lp(�,F , P ), with p ∈ [1,+∞), and ρ : Z→ R be a proper
risk measure satisfying conditions (R1), (R2) and (R3). Suppose that the domain of ρ has
a nonempty interior. Then ρ is finite valued and continuous on Z.

Proof. Consider the level sets of ρ:

Ac := {Z ∈ Z : ρ(Z) ≤ c}.
We have that ∪c∈NAc = dom(ρ). Since dom(ρ) has a nonempty interior, it follows by
Baire’s lemma that for some c ∈ R the set Ac has a nonempty interior. Because of condition
(R3) we have that Z ∈ A0 iff Z + c ∈ Ac, i.e., Ac = A0 + c (here c denotes the constant
function Z(·) = c). Therefore A0 has a nonempty interior. That is, there exist Z0 ∈ Z and
r > 0 such that B(Z0, r) ⊂ A0, where

B(Z0, r) := {Z ∈ Z : ‖Z − Z0‖ ≤ r}.
By changing variables Z !→ Z−Z0, we can assume without loss of generality that Z0 = 0,
i.e., B(0, r) ⊂ A0.

Consider a point Z ∈ Z. For c ∈ R we have that Z = Z−c + Z+c , where Z−c (·) :=
min{Z(·), c} andZ+c (·) := [Z(·)−c]+. Note that for c large enough, the norm ofZ+c can be
made arbitrarily small. Therefore we can choose c such that ‖Z+c ‖ < r . Since Ac = A0+c,
we have that B(c, r) ⊂ Ac. Consequently, c + Z+c ∈ Ac. It follows by the monotonicity
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condition (R2) that ρ(Z) ≤ ρ(c + Z+c ) ≤ c, and hence ρ(Z) is finite. That is, we showed
that ρ(·) is finite valued on Z. Continuity of ρ(·) follows by Proposition 6.5.

It is not difficult to show (we leave this as an exercise) that for Z := L∞(�,F , P )
any risk measure ρ : Z→ R satisfying conditions (R1)–(R3), and having a finite value in
at least one point of Z, is finite valued and hence is continuous by Proposition 6.5.

Of course, the analysis simplifies considerably if the space � is finite, say, � :=
{ω1, . . . , ωK} equipped with sigma algebra of all subsets of � and respective (positive)
probabilities p1, . . . , pK . Then every function Z : � → R is measurable and the space
Z of all such functions can be identified with R

K by identifying Z ∈ Z with the vector
(Z(ω1), . . . , Z(ωK)) ∈ R

K . The dual of the space R
K can be identified with itself by using

the standard scalar product in R
K , and the set P becomes

P =
{
ζ ∈ R

K :
K∑
k=1

pkζk = 1, ζ ≥ 0

}
. (6.41)

The above set P forms a convex bounded subset of R
K , and hence the set A is also bounded.

6.3.1 Differentiability Properties of Risk Measures

Let ρ : Z→ R be a convex proper lower semicontinuous risk measure. By convexity and
lower semicontinuity of ρ we have that ρ∗∗ = ρ and hence by Proposition 7.73 that

∂ρ(Z) = arg max
ζ∈A

{〈ζ, Z〉 − ρ∗(ζ )} , (6.42)

provided that ρ(Z) is finite. If, moreover, ρ is positively homogeneous, then A = ∂ρ(0)
and

∂ρ(Z) = arg max
ζ∈A

〈ζ, Z〉. (6.43)

As we know, conditions (R1)–(R3) imply that A is a subset of the set P of probability
density functions. Consequently, under conditions (R1)–(R3), ∂ρ(Z) is a subset of P as
well.

We also have that if ρ is finite valued and continuous at Z, then ∂ρ(Z) is a nonempty
bounded and weakly∗ compact subset of Z∗, ρ is Hadamard directionally differentiable and
subdifferentiable at Z, and

ρ ′(Z,H) = sup
ζ∈∂ρ(Z)

〈ζ,H 〉, ∀H ∈ Z. (6.44)

In particular, if ρ is continuous at Z and ∂ρ(Z) is a singleton, i.e., ∂ρ(Z) consists of unique
point denoted ∇ρ(Z), then ρ is Hadamard differentiable at Z and

ρ ′(Z, ·) = 〈∇ρ(Z), ·〉. (6.45)

We often have to deal with composite functions ρ ◦F : Rn→ R, where F : Rn→ Z
is a mapping. We write f (x, ω), or fω(x), for [F(x)](ω), and view f (x, ω) as a random
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function defined on the measurable space (�,F ). We say that the mapping F is convex if
the function f (·, ω) is convex for every ω ∈ �.

Proposition 6.8. If the mapping F : Rn→ Z is convex and ρ : Z→ R satisfies conditions
(R1)–(R2), then the composite function φ(·) := ρ(F (·)) is convex.

Proof. For any x, x ′ ∈ R
n and t ∈ [0, 1], we have by convexity of F(·) and monotonicity

of ρ(·) that

ρ(F (tx + (1− t)x ′)) ≤ ρ(tF (x)+ (1− t)F (x ′)).
Hence convexity of ρ(·) implies that

ρ(F (tx + (1− t)x ′)) ≤ tρ(F (x))+ (1− t)ρ(F (x ′)).
This proves convexity of ρ(F (·)).

It should be noted that the monotonicity condition (R2) was essential in the above
derivation of convexity of the composite function.

Let us discuss differentiability properties of the composite function φ = ρ ◦ F at a
point x̄ ∈ R

n. As before, we assume that Z := Lp(�,F , P ). The mapping F : Rn → Z
maps a point x ∈ R

n into a real valued function (or rather a class of functions which may
differ on sets of P -measure zero) [F(x)](·) on�, also denoted f (x, ·), which is an element
of Lp(�,F , P ). If F is convex, then f (·, ω) is convex real valued and hence is continuous
and has (finite valued) directional derivatives at x̄, denoted f ′ω(x̄, h). These properties are
inherited by the mapping F .

Lemma 6.9. Let Z := Lp(�,F , P ) and F : Rn → Z be a convex mapping. Then F is
continuous and directionally differentiable, and

[F ′(x̄, h)](ω) = f ′ω(x̄, h), ω ∈ �, h ∈ R
n. (6.46)

Proof. In order to show continuity ofF we need to verify that, for an arbitrary point x̄ ∈ R
n,

‖F(x)−F(x̄)‖p tends to zero as x → x̄. By the Lebesgue dominated convergence theorem
and continuity of f (·, ω) we can write that

lim
x→x̄

∫
�

∣∣f (x, ω)− f (x̄, ω)∣∣pdP (ω) = ∫
�

lim
x→x̄
∣∣f (x, ω)− f (x̄, ω)∣∣pdP (ω) = 0, (6.47)

provided that there exists a neighborhood U ⊂ R
n of x̄ such that the family {|f (x, ω) −

f (x̄, ω)|p}x∈U is dominated by a P -integrable function, or equivalently that {|f (x, ω) −
f (x̄, ω)|}x∈U is dominated by a function from the space Lp(�,F , P ). Since f (x̄, ·)
belongs to Lp(�,F , P ), it suffices to verify this dominance condition for {|f (x, ω)|}x∈U .
Now let x1, . . . , xn+1 ∈ R

n be such points that the set U := conv{x1, . . . , xn+1} forms a
neighborhood of the point x̄, and letg(ω) := max{f (x1, ω), . . . , f (xn+1, ω)}. By convexity
of f (·, ω) we have that f (x, ·) ≤ g(·) for all x ∈ U . Also since every f (xi, . . .), i =
1, . . . , n+ 1, is an element of Lp(�,F , P ), we have that g ∈ Lp(�,F , P ) as well. That
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is, g(ω) gives an upper bound for {|f (x, ω)|}x∈U . Also by convexity of f (·, ω) we have
that

f (x, ω) ≥ 2f (x̄, ω)− f (2x̄ − x, ω).
By shrinking the neighborhoodU if necessary, we can assume thatU is symmetrical around
x̄, i.e., if x ∈ U , then 2x̄ − x ∈ U . Consequently, we have that g̃(ω) := 2f (x̄, ω)− g(w)
gives a lower bound for {|f (x, ω)|}x∈U , and g̃ ∈ Lp(�,F , P ). This shows that the required
dominance condition holds and hence F is continuous at x̄ by (6.47).

Now for h ∈ R
n and t > 0 denote

Rt(ω) := t−1 [f (x̄ + th, ω)− f (x̄, ω)] and Z(ω) := f ′ω(x̄, h), ω ∈ �.
Note that f (x̄+ th, ·) and f (x̄, ·) are elements of the space Lp(�,F , P ), and hence Rt(·)
is also an element of Lp(�,F , P ) for any t > 0. Since for a.e. ω ∈ �, f (·, ω) is convex
real valued, we have that Rt(ω) is monotonically nonincreasing and converges to Z(ω) as
t ↓ 0. Therefore, we have that Rt(·) ≥ Z(·) for any t > 0. Again by convexity of f (·, ω),
we have that for t > 0,

Z(·) ≥ t−1 [f (x̄, ·)− f (x̄ − th, ·)] .
We obtain that Z(·) is bounded from above and below by functions which are elements of
the space Lp(�,F , P ) and hence Z ∈ Lp(�,F , P ) as well.

We have that Rt(·)− Z(·), and hence |Rt(·)− Z(·)|p, are monotonically decreasing
to zero as t ↓ 0 and for any t > 0, E [|Rt − Z|p] is finite. It follows by the monotone
convergence theorem that E [|Rt − Z|p] tends to zero as t ↓ 0. That is, Rt converges to
Z in the norm topology of Z. Since Rt = t−1[F(x̄ + th) − F(x̄)], this shows that F is
directionally differentiable at x̄ and formula (6.46) follows.

The following theorem can be viewed as an extension of Theorem 7.46, where a
similar result is derived for ρ(·) := E[ · ].

Theorem 6.10. Let Z := Lp(�,F , P ) and F : Rn → Z be a convex mapping. Suppose
that ρ is convex, finite valued, and continuous at Z̄ := F(x̄). Then the composite function
φ = ρ ◦F is directionally differentiable at x̄, φ′(x̄, h) is finite valued for every h ∈ R

n, and

φ′(x̄, h) = sup
ζ∈∂ρ(Z̄)

∫
�

f ′ω(x̄, h)ζ(ω)dP (ω). (6.48)

Proof. Since ρ is continuous at Z̄, it follows that ρ is subdifferentiable and Hadamard
directionally differentiable at Z̄ and formula (6.44) holds. Also by Lemma 6.9, mapping F
is directionally differentiable. Consequently, we can apply the chain rule (see Proposition
7.58) to conclude that φ(·) is directionally differentiable at x̄, φ′(x̄, h) is finite valued and

φ′(x̄, h) = ρ ′(Z̄, F ′(x̄, h)). (6.49)

Together with (6.44) and (6.46), the above formula (6.49) implies (6.48).

It is also possible to write formula (6.48) in terms of the corresponding subdifferentials.
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Theorem 6.11. Let Z := Lp(�,F , P ) and F : Rn → Z be a convex mapping. Suppose
that ρ satisfies conditions (R1) and (R2) and is finite valued and continuous at Z̄ := F(x̄).
Then the composite function φ = ρ ◦ F is subdifferentiable at x̄ and

∂φ(x̄) = cl

 ⋃
ζ∈∂ρ(Z̄)

∫
�

∂fω(x̄)ζ(ω)dP (ω)

 . (6.50)

Proof. Since, by Lemma 6.9, F is continuous at x̄ and ρ is continuous at F(x̄), we have
that φ is continuous at x̄, and hence φ(x) is finite valued for all x in a neighborhood of x̄.
Moreover, by Proposition 6.8, φ(·) is convex and hence is continuous in a neighborhood of
x̄ and is subdifferentiable at x̄. Also, formula (6.48) holds. It follows that φ′(x̄, ·) is convex,
continuous, and positively homogeneous, and

φ′(x̄, ·) = sup
ζ∈∂ρ(Z̄)

ηζ (·), (6.51)

where

ηζ (·) :=
∫
�

f ′ω(x̄, ·)ζ(ω)dP (ω). (6.52)

Because of condition (R2), we have that every ζ ∈ ∂ρ(Z̄) is nonnegative. Consequently, the
corresponding function ηζ is convex continuous and positively homogeneous and hence is
the support function of the set ∂ηζ (0). The supremum of these functions, given by the right-
hand side of (6.51), is the support function of the set ∪ζ∈∂ρ(Z̄)∂ηζ (0). Applying Theorem
7.47 and using the fact that the subdifferential of f ′ω(x̄, ·) at 0 ∈ R

n coincides with ∂fω(x̄),
we obtain

∂ηζ (0) =
∫
�

∂fω(x̄)ζ(ω)dP (ω). (6.53)

Since ∂ρ(Z̄) is convex, it is straightforward to verify that the set ∪ζ∈∂ρ(Z̄)∂ηζ (0) is also
convex. Consequently it follows by (6.51) and (6.53) that the subdifferential of φ′(x̄, ·)
at 0 ∈ R

n is equal to the topological closure of the set ∪ζ∈∂ρ(Z̄)∂ηζ (0), i.e., is given by the
right-hand side of (6.50). It remains to note that the subdifferential of φ′(x̄, ·) at 0 ∈ R

n

coincides with ∂φ(x̄).

Under the assumptions of the above theorem, we have that the composite function φ
is convex and is continuous (in fact, even Lipschitz continuous) in a neighborhood of x̄. It
follows that φ is differentiable44 at x̄ iff ∂φ(x̄) is a singleton. This leads to the following
result, where for ζ � 0 we say that a property holds for ζ -a.e. ω ∈ � if the set of points
A ∈ F where it does not hold has ζdP measure zero, i.e.,

∫
A
ζ(ω)dP (ω) = 0. Of course,

if P(A) = 0, then
∫
A
ζ(ω)dP (ω) = 0. That is, if a property holds for a.e. ω ∈ � with

respect to P , then it holds for ζ -a.e. ω ∈ �.

44Note that since φ(·) is Lipschitz continuous near x̄, the notions of Gâteaux and Fréchet differentiability
at x̄ are equivalent here.
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Corollary 6.12. Let Z := Lp(�,F , P ) and F : Rn → Z be a convex mapping. Suppose
that ρ satisfies conditions (R1) and (R2) and is finite valued and continuous at Z̄ := F(x̄).
Then the composite function φ = ρ ◦F is differentiable at x̄ iff the following two properties
hold: (i) for every ζ ∈ ∂ρ(Z̄) the function f (·, ω) is differentiable at x̄ for ζ -a.e. ω ∈ �,
and (ii)

∫
�
∇fω(x̄)ζ(ω)dP (ω) is the same for every ζ ∈ ∂ρ(Z̄).

In particular, if ∂ρ(Z̄) = {ζ̄ } is a singleton, then φ is differentiable at x̄ iff f (·, ω) is
differentiable at x̄ for ζ̄ -a.e. ω ∈ �, in which case

∇φ(x̄) =
∫
�

∇fω(x̄)ζ̄ (ω)dP (ω). (6.54)

Proof. By Theorem 6.11 we have that φ is differentiable at x̄ iff the set on the right-hand
side of (6.50) is a singleton. Clearly this set is a singleton iff the set

∫
�
∂fω(x̄)ζ(ω)dP (ω)

is a singleton and is the same for every ζ ∈ ∂ρ(Z̄). Since ∂fω(x̄) is a singleton iff fω(·) is
differentiable at x̄, in which case ∂fω(x̄) = {∇fω(x̄)}, we obtain that φ is differentiable at
x̄ iff conditions (i) and (ii) hold. The second assertion then follows.

Of course, if the set inside the parentheses on the right-hand side of (6.50) is closed,
then there is no need to take its topological closure. This holds true in the following case.

Corollary 6.13. Suppose that the assumptions of Theorem 6.11 are satisfied and for every
ζ ∈ ∂ρ(Z̄) the function fω(·) is differentiable at x̄ for ζ -a.e. ω ∈ �. Then

∂φ(x̄) =
⋃

ζ∈∂ρ(Z̄)

∫
�

∇fω(x̄)ζ(ω)dP (ω). (6.55)

Proof. In view of Theorem 6.11 we only need to show that the set on the right-hand side
of (6.55) is closed. As ρ is continuous at Z̄, the set ∂ρ(Z̄) is weakly∗ compact. Also, the
mapping ζ !→ ∫

�
∇fω(x̄)ζ(ω)dP (ω), from Z∗ to R

n, is continuous with respect to the
weak∗ topology of Z∗ and the standard topology of R

n. It follows that the image of the set
∂ρ(Z̄) by this mapping is compact and hence is closed, i.e., the set at the right-hand side of
(6.55) is closed.

6.3.2 Examples of Risk Measures

In this section we discuss several examples of risk measures which are commonly used
in applications. In each of the following examples it is natural to use the space Z :=
Lp(�,F , P ) for an appropriate p ∈ [1,+∞). Note that if a random variable Z has a
pth order finite moment, then it has finite moments of any order p′ smaller than p, i.e.,
if 1 ≤ p′ ≤ p and Z ∈ Lp(�,F , P ), then Z ∈ Lp′(�,F , P ). This gives a natural
embedding of Lp(�,F , P ) into Lp′(�,F , P ) for p′ < p. Note, however, that this
embedding is not continuous. Unless stated otherwise, all expectations and probabilistic
statements will be made with respect to the probability measure P .

Before proceeding to particular examples, let us consider the following construction.
Let ρ : Z→ R and define

ρ̃(Z) := E[Z] + inf
t∈R

ρ(Z − t). (6.56)
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Clearly we have that for any a ∈ R,

ρ̃(Z + a) = E[Z + a] + inf
t∈R

ρ(Z + a − t) = E[Z] + a + inf
t∈R

ρ(Z − t) = ρ̃(Z)+ a.
That is, ρ̃ satisfies condition (R3) irrespective of whether ρ does. It is not difficult to see
that if ρ satisfies conditions (R1) and (R2), then ρ̃ satisfies these conditions as well. Also,
if ρ is positively homogeneous, then so is ρ̃. Let us calculate the conjugate of ρ̃. We have

ρ̃∗(ζ ) = sup
Z∈Z

{〈ζ, Z〉 − ρ̃(Z)} = sup
Z∈Z

{
〈ζ, Z〉 − E[Z] − inf

t∈R

ρ(Z − t)
}

= sup
Z∈Z,t∈R

{〈ζ, Z〉 − E[Z] − ρ(Z − t)}
= sup

Z∈Z,t∈R

{〈ζ − 1, Z〉 + t (E[ζ ] − 1)− ρ(Z)}.
It follows that

ρ̃∗(ζ ) =
{
ρ∗(ζ − 1) if E[ζ ] = 1
+∞ if E[ζ ] �= 1.

The construction below can be viewed as a homogenization of a risk measure ρ :
Z→ R. Define

ρ̌(Z) := inf
τ>0

τρ(τ−1Z). (6.57)

For any t > 0, by making change of variables τ !→ tτ , we obtain that ρ̌(tZ) = t ρ̌(Z). That
is, ρ̌ is positively homogeneous whetherρ is or isn’t. Clearly, ifρ is positively homogeneous
to start with, then ρ = ρ̌.

If ρ is convex, then so is ρ̌. Indeed, observe that if ρ is convex, then function
ϕ(τ, Z) := τρ(τ−1Z) is convex jointly in Z and τ > 0. This can be verified directly as
follows. For t ∈ [0, 1], τ1, τ2 > 0, and Z1, Z2 ∈ Z, and setting τ := tτ1 + (1 − t)τ2

and Z := tZ1 + (1− t)Z2, we have

t[τ1ρ(τ
−1
1 Z1)] + (1− t)[τ2ρ(τ

−1
2 Z2)] = τ

[
tτ1

τ
ρ(τ−1

1 Z1)+ (1− t)τ2

τ
ρ(τ−1

2 Z2)

]
≥ τρ

(
t

τ
Z1 + (1− t)

τ
Z2

)
= τρ(τ−1Z).

Minimizing convex function ϕ(τ, Z) over τ > 0, we obtain a convex function. It is also
not difficult to see that if ρ satisfies conditions (R2) and (R3), then so does ρ̌.

Let us calculate the conjugate of ρ̌. We have

ρ̌∗(ζ ) = sup
Z∈Z

{〈ζ, Z〉 − ρ̌(Z)} = sup
Z∈Z,τ>0

{〈ζ, Z〉 − τρ(τ−1Z)
}

= sup
Z∈Z,τ>0

{
τ [〈ζ, Z〉 − ρ(Z)]}.

It follows that ρ̌∗ is the indicator function of the set

A := {ζ ∈ Z∗ : 〈ζ, Z〉 ≤ ρ(Z), ∀Z ∈ Z
}
. (6.58)

If, moreover, ρ̌ is lower semicontinuous and then ρ̌ is equal to the conjugate of ρ̌∗, and
hence ρ̌ is the support function of the above set A.
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Example 6.14 (Utility Model). It is possible to relate the theory of convex risk measures
with the utility model. Let g : R→ R be a proper convex nondecreasing lower semicontin-
uous function such that the expectation E[g(Z)] is well defined for allZ ∈ Z. (It is allowed
here for E[g(Z)] to take value +∞ but not −∞ since the corresponding risk measure is
required to be proper.) We can view the function g as a disutility function.45

Proposition 6.15. Let g : R→ R be a proper convex nondecreasing lower semicontinuous
function. Suppose that the risk measure

ρ(Z) := E[g(Z)] (6.59)

is well defined and proper. Then ρ is convex and lower semicontinuous and satisfies the
monotonicity condition (R2), and the representation (6.35) holds with

ρ∗(ζ ) = E[g∗(ζ )]. (6.60)

Moreover, if ρ(Z) is finite, then

∂ρ(Z) = {ζ ∈ Z∗ : ζ(ω) ∈ ∂g(Z(ω)) a.e. ω ∈ �} . (6.61)

Proof. Since g is lower semicontinuous and convex, we have by the Fenchel–Moreau
theorem that

g(z) = sup
α∈R

{
αz− g∗(α)} ,

where g∗ is the conjugate of g. As g is proper, the conjugate function g∗ is also proper. It
follows that

ρ(Z) = E

[
sup
α∈R

{
αZ − g∗(α)}] . (6.62)

By the interchangeability principle (Theorem 7.80) for the space M := Z∗ = Lq(�,F , P ),
which is decomposable, we obtain

ρ(Z) = sup
ζ∈Z∗
{〈ζ, Z〉 − E[g∗(ζ )]}. (6.63)

It follows that ρ is convex and lower semicontinuous, and representation (6.35) holds with
the conjugate function given in (6.60). Moreover, since the function g is nondecreasing, it
follows that ρ satisfies the monotonicity condition (R2).

Since ρ is convex proper and lower semicontinuous, and hence ρ∗∗ = ρ, we have by
Proposition 7.73 that

∂ρ(Z) = arg max
ζ∈A

{
E[ζZ − g∗(ζ )]}, (6.64)

assuming that ρ(Z) is finite. Together with formula (7.247) of the interchangeability prin-
ciple (Theorem 7.80), this implies (6.61).

45We consider here minimization problems, and that is why we speak about disutility. Any disutility
function g corresponds to a utility function u : R→ R defined by u(z) = −g(−z). Note that the function u
is concave and nondecreasing since the function g is convex and nondecreasing.
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The above risk measure ρ, defined in (6.59), does not satisfy condition (R3) unless
g(z) ≡ z. We can consider the corresponding risk measure ρ̃, defined in (6.56), which in
the present case can be written as

ρ̃(Z) = inf
t∈R

E[Z + g(Z − t)]. (6.65)

We have that ρ̃ is convex since g is convex, that ρ̃ is monotone (i.e., condition (R2) holds) if
z+ g(z) is monotonically nondecreasing, and that ρ̃ satisfies condition (R3). If, moreover,
ρ̃ is lower semicontinuous, then the dual representation

ρ̃(Z) = sup
ζ∈Z∗

E[ζ ]=1

{〈ζ − 1, Z〉 − E[g∗(ζ )]} (6.66)

holds.

Example 6.16 (Average Value-at-Risk). The risk measure ρ associated with disutility
function g, defined in (6.59), is positively homogeneous only if g is positively homogeneous.
Suppose now that g(z) := max{az, bz}, where b ≥ a. Then g(·) is positively homogeneous
and convex. It is natural here to use the space Z := L1(�,F , P ), since E [g(Z)] is finite for
every Z ∈ L1(�,F , P ). The conjugate function of g is the indicator function g∗ = I[a,b].
Therefore it follows by Proposition 6.15 that the representation (6.37) holds with

A = {ζ ∈ L∞(�,F , P ) : ζ(ω) ∈ [a, b] a.e. ω ∈ �} .
Note that the dual space Z∗ = L∞(�,F , P ), of the space Z := L1(�,F , P ), appears
naturally in the corresponding representation (6.37) since, of course, the condition that
“ζ(ω) ∈ [a, b] for a.e. ω ∈ �” implies that ζ is essentially bounded.

Consider now the risk measure

ρ̃(Z) := E[Z] + inf
t∈R

E
{
β1[t − Z]+ + β2[Z − t]+

}
, Z ∈ L1(�,F , P ), (6.67)

where β1 ∈ [0, 1] and β2 ≥ 0. This risk measure can be recognized as risk measure defined
in (6.65), associated with function g(z) := β1[−z]+ + β2[z]+. For specified β1 and β2, the
function z+g(z) is convex and nondecreasing, and ρ̃ is a continuous coherent risk measure.
For β1 ∈ (0, 1] and β2 > 0, the above risk measure ρ̃(Z) can be written in the form

ρ̃(Z) = (1− β1)E[Z] + β1AV@Rα(Z), (6.68)

where α := β1/(β1 + β2). Note that the right-hand side of (6.67) attains its minimum at
t∗ = V@Rα(Z). Therefore, the second term on the right-hand side of (6.67) is the weighted
measure of deviation from the quantile V@Rα(Z), discussed in section 6.2.3.

The respective conjugate function is the indicator function of the set A := dom(ρ̃∗),
and ρ̃ can be represented in the dual form (6.37) with

A = {ζ ∈ L∞(�,F , P ) : ζ(ω) ∈ [1− β1, 1+ β2] a.e. ω ∈ �, E[ζ ] = 1} . (6.69)

In particular, for β1 = 1 we have that ρ̃(·) = AV@Rα(·), and hence the dual representation
(6.37) of AV@Rα holds with the set

A = {ζ ∈ L∞(�,F , P ) : ζ(ω) ∈ [0, α−1] a.e. ω ∈ �, E[ζ ] = 1
}
. (6.70)
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Since AV@Rα(·) is convex and continuous, it is subdifferentiable and its subdiffer-
entials can be calculated using formula (6.43). That is,

∂(AV@Rα)(Z) = arg max
ζ∈Z∗
{〈ζ, Z〉 : ζ(ω) ∈ [0, α−1] a.e. ω ∈ �, E[ζ ] = 1

}
. (6.71)

Consider the maximization problem on the right-hand side of (6.71). The Lagrangian of
that problem is

L(ζ, λ) = 〈ζ, Z〉 + λ(1− E[ζ ]) = 〈ζ, Z − λ〉 + λ,
and its (Lagrangian) dual is the problem

Min
λ∈R

sup
ζ(·)∈[0,α−1]

{〈ζ, Z − λ〉 + λ} . (6.72)

We have that

sup
ζ(·)∈[0,α−1]

〈ζ, Z − λ〉 = α−1
E([Z − λ]+),

and hence the dual problem (6.72) can be written as

Min
λ∈R

α−1
E([Z − λ]+)+ λ. (6.73)

The set of optimal solutions of problem (6.73) is the interval with the end points given by
the left and right side (1− α)-quantiles of the cdf HZ(z) = Pr(Z ≤ z) of Z(ω). Since the
set of optimal solutions of the dual problem (6.72) is a compact subset of R, there is no
duality gap between the maximization problem on the right hand side of (6.71) and its dual
(6.72) (see Theorem 7.10). It follows that the set of optimal solutions of the right-hand
side of (6.71), and hence the subdifferential ∂(AV@Rα)(Z), is given by such feasible ζ̄ that
(ζ̄ , λ̄) is a saddle point of the Lagrangian L(ζ, λ) for any (1−α)-quantile λ̄. Recall that the
left-side (1− α)-quantile of the cdf HZ(z) is called Value-at-Risk and denoted V@Rα(Z).
Suppose for the moment that the set of (1− α)-quantiles of HZ is a singleton, i.e., consists
of one point V@Rα(Z). Then we have

∂(AV@Rα)(Z) =
ζ : E[ζ ] = 1,

ζ(ω) = α−1 if Z(ω) > V@Rα(Z),
ζ(ω) = 0 if Z(ω) < V@Rα(Z),
ζ(ω) ∈ [0, α−1] if Z(ω) = V@Rα(Z).

(6.74)

If the set of (1 − α)-quantiles of HZ is not a singleton, then the probability that Z(ω) be-
longs to that set is zero. Consequently, formula (6.74) still holds with the left-side quantile
V@Rα(Z) can be replaced by any (1− α)-quantile of HZ .

It follows that ∂(AV@Rα)(Z) is a singleton, and hence AV@Rα(·) is Hadamard dif-
ferentiable at Z, iff the following condition holds:

Pr(Z < V@Rα(Z)) = 1− α or Pr(Z > V@Rα(Z)) = α. (6.75)

Again if the set of (1−α)-quantiles is not a singleton, then the left-side quantile V@Rα(Z)
in the above condition (6.75) can be replaced by any (1 − α)-quantile of HZ . Note that
condition (6.75) is always satisfied if the cdf HZ(·) is continuous at V@Rα(Z), but may
also hold even if HZ(·) is discontinuous at V@Rα(Z).
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Example 6.17 (Exponential Utility Function Risk Measure). Consider utility risk mea-
sure ρ, defined in (6.59), associated with the exponential disutility function g(z) := ez. That
is, ρ(Z) := E[eZ]. A natural question is what space Z = Lp(�,F , P ) to use here. Let
us observe that unless the sigma algebra F has a finite number of elements, in which case
Lp(�,F , P ) is finite dimensional, there exist such Z ∈ Lp(�,F , P ) that E[eZ] = +∞.
In fact, for any p ∈ [1,+∞) the domain of ρ forms a dense subset of Lp(�,F , P ) and
ρ(·) is discontinuous at everyZ ∈ Lp(�,F , P ) unless Lp(�,F , P ) is finite dimensional.
Nevertheless, for any p ∈ [1,+∞) the risk measure ρ is proper and, by Proposition 6.15,
is convex and lower semicontinuous. Note that if Z : �→ R is an F -measurable function
such that E[eZ] is finite, then Z ∈ Lp(�,F , P ) for any p ≥ 1. Therefore, by formula
(6.61) of Proposition 6.15, we have that if E[eZ] is finite, then ∂ρ(Z) = {eZ} is a singleton.
It could be mentioned that although ρ(·) is subdifferentiable at every Z ∈ Lp(�,F , P )
where it is finite and has unique subgradient eZ , it is discontinuous and nondifferentiable
at Z unless Lp(�,F , P ) is finite dimensional.

The above risk measure associated with the exponential disutility function is not
positively homogeneous and does not satisfy condition (R3). Let us consider instead the
risk measure

ρe(Z) := ln E[eZ], (6.76)

defined on Z = Lp(�,F , P ) for some p ∈ [1,+∞). Since ln(·) is continuous on the
positive half of the real line and E[eZ] > 0, it follows from the above that ρe has the same
domain as ρ(Z) = E[eZ] and is lower semicontinuous and proper. It is also can be verified
that ρe is convex. (See derivations of section 7.2.8 following (7.175).) Moreover, for any
a ∈ R,

ln E[eZ+a] = ln
(
eaE[eZ]) = ln E[eZ] + a,

i.e., ρe satisfies condition (R3).
Let us calculate the conjugate of ρe. We have that

ρ∗e (ζ ) = sup
Z∈Z

{
E[ζZ] − ln E[eZ]} . (6.77)

Since ρe satisfies conditions (R2) and (R3), it follows that dom(ρe) ⊂ P, where P is the
set of density functions (see (6.38)). By writing (first order) optimality conditions for the
optimization problem on the right-hand side of (6.77), it is straightforward to verify that for
ζ ∈ P such that ζ(ω) > 0 for a.e. ω ∈ �, a point Z̄ is an optimal solution of that problem
if Z̄ = ln ζ + a for some a ∈ R. Substituting this into the right-hand side of (6.77), and
noting that the obtained expression does not depend on a, we obtain

ρ∗e (ζ ) =
{

E[ζ ln ζ ] if ζ ∈ P,

+∞ if ζ �∈ P.
(6.78)

Note that x ln x tends to zero as x ↓ 0. Therefore, we set 0 ln 0 = 0 in the above formula
(6.78). Note also that x ln x is bounded for x ∈ [0, 1]. Therefore, dom(ρ∗e ) = P for any
p ∈ [1,+∞).

Furthermore, we can apply the homogenization procedure to ρe (see (6.57)). That is,
consider the following risk measure:

ρ̌e(Z) := inf
τ>0

τ ln E[eτ−1Z]. (6.79)
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Risk measure ρ̌e satisfies conditions (R1)–(R4), i.e., it is a coherent risk measure. Its
conjugate ρ̌∗e is the indicator function of the set (see (6.58)):

A := {ζ ∈ Z∗ : E[ζZ] ≤ ln E[eZ], ∀Z ∈ Z
}
. (6.80)

Note that since ez is a convex function it follows by Jensen inequality that E[Z] ≤ ln E[eZ].
Consequently, ζ(·) = 1 is an element of the above set A.

Example 6.18 (Mean-Variance Risk Measure). Consider

ρ(Z) := E[Z] + cVar[Z], (6.81)

where c ≥ 0 is a given constant. It is natural to use here the space Z := L2(�,F , P ) since
for any Z ∈ L2(�,F , P ) the expectation E[Z] and variance Var[Z] are well defined and
finite. We have here that Z∗ = Z (i.e., Z is a Hilbert space) and forZ ∈ Z its norm is given
by ‖Z‖2 =

√
E[Z2]. We also have that

‖Z‖2
2 = sup

ζ∈Z

{〈ζ, Z〉 − 1
4‖ζ‖2

2

}
. (6.82)

Indeed, it is not difficult to verify that the maximum on the right-hand side of (6.82) is
attained at ζ = 2Z.

We have that Var[Z] = ∥∥Z − E[Z]∥∥2
2, and since ‖ · ‖2

2 is a convex and continuous
function on the Hilbert space Z, it follows that ρ(·) is convex and continuous. Also because
of (6.82), we can write

Var[Z] = sup
ζ∈Z

{〈ζ, Z − E[Z]〉 − 1
4‖ζ‖2

2

}
.

Since

〈ζ, Z − E[Z]〉 = 〈ζ, Z〉 − E[ζ ]E[Z] = 〈ζ − E[ζ ], Z〉, (6.83)

we can rewrite the last expression as follows:

Var[Z] = sup
ζ∈Z

{〈ζ − E[ζ ], Z〉 − 1
4‖ζ‖2

2

}
= sup

ζ∈Z

{〈ζ − E[ζ ], Z〉 − 1
4 Var[ζ ] − 1

4

(
E[ζ ])2}.

Since ζ −E[ζ ] and Var[ζ ] are invariant under transformations of ζ to ζ + a, where a ∈ R,
the above maximization can be restricted to such ζ ∈ Z that E[ζ ] = 0. Consequently

Var[Z] = sup
ζ∈Z

E[ζ ]=0

{〈ζ, Z〉 − 1
4 Var[ζ ]}.

Therefore the risk measure ρ, defined in (6.81), can be expressed as

ρ(Z) = E[Z] + c sup
ζ∈Z

E[ζ ]=0

{
〈ζ, Z〉 − 1

4 Var [ζ ]
}
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and hence for c > 0 (by making change of variables ζ ′ = cζ + 1) as

ρ(Z) = sup
ζ∈Z

E[ζ ]=1

{
〈ζ, Z〉 − 1

4cVar[ζ ]
}
. (6.84)

It follows that for any c > 0 the function ρ is convex, continuous, and

ρ∗(ζ ) =
{

1
4cVar[ζ ] if E[ζ ] = 1,
+∞ otherwise.

(6.85)

The function ρ satisfies the translation equivariance condition (R3), e.g., because the domain
of its conjugate contains only ζ such that E[ζ ] = 1. However, for any c > 0 the function
ρ is not positively homogeneous and it does not satisfy the monotonicity condition (R2),
because the domain of ρ∗ contains density functions which are not nonnegative.

Since Var[Z] = 〈Z,Z〉− (E[Z])2, it is straightforward to verify that ρ(·) is (Fréchet)
differentiable and

∇ρ(Z) = 2cZ − 2cE[Z] + 1. (6.86)

Example 6.19 (Mean-Deviation Risk Measures of Order p). For Z := Lp(�,F , P )
and Z∗ := Lq(�,F , P ), with p ∈ [1,+∞) and c ≥ 0, consider

ρ(Z) := E[Z] + c (E[|Z − E[Z]|p])1/p . (6.87)

We have that
(
E
[|Z|p])1/p = ‖Z‖p, where‖·‖p denotes the norm of the spaceLp(�,F , P ).

The function ρ is convex continuous and positively homogeneous. Also

‖Z‖p = sup
‖ζ‖q≤1

〈ζ, Z〉, (6.88)

and hence(
E
[|Z − E[Z]|p])1/p = sup

‖ζ‖q≤1
〈ζ, Z − E[Z]〉 = sup

‖ζ‖q≤1
〈ζ − E[ζ ], Z〉. (6.89)

It follows that representation (6.37) holds with the set A given by

A = {ζ ′ ∈ Z∗ : ζ ′ = 1+ ζ − E[ζ ], ‖ζ‖q ≤ c
}
. (6.90)

We obtain here that ρ satisfies conditions (R1), (R3), and (R4).
The monotonicity condition (R2) is more involved. Suppose that p = 1. Then

q = +∞ and hence for any ζ ′ ∈ A and a.e. ω ∈ � we have

ζ ′(ω) = 1+ ζ(ω)− E[ζ ] ≥ 1− |ζ(ω)| − E[ζ ] ≥ 1− 2c.

It follows that if c ∈ [0, 1/2], then ζ ′(ω) ≥ 0 for a.e. ω ∈ �, and hence condition (R2)
follows. Conversely, take ζ := c(−1A + 1�\A), for some A ∈ F , and ζ ′ = 1+ ζ − E[ζ ].
We have that ‖ζ‖∞ = c and ζ ′(ω) = 1 − 2c + 2cP (A) for all ω ∈ A It follows that if
c > 1/2, then ζ ′(ω) < 0 for all ω ∈ A, provided that P(A) is small enough. We obtain
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that for c > 1/2 the monotonicity property (R2) does not hold if the following condition is
satisfied:

For any ε > 0 there exists A ∈ F such that ε > P (A) > 0. (6.91)

That is, forp = 1 the mean-deviation measureρ satisfies (R2) if, and provided that condition
(6.91) holds, only if c ∈ [0, 1/2]. (The above condition (6.91) holds, in particular, if the
measure P is nonatomic.)

Suppose now that p > 1. For a set A ∈ F and α > 0 let us take ζ := −α1A and
ζ ′ = 1 + ζ − E[ζ ]. Then ‖ζ‖q = αP (A)1/q and ζ ′(ω) = 1 − α + αP (A) for all ω ∈ A.
It follows that if p > 1, then for any c > 0 the mean-deviation measure ρ does not satisfy
(R2) provided that condition (6.91) holds.

Since ρ is convex continuous, it is subdifferentiable. By (6.43) and because of (6.90)
and (6.83) we have here that ∂ρ(Z) is formed by vectors ζ ′ = 1 + ζ − E[ζ ] such that
ζ ∈ arg max‖ζ‖q≤c〈ζ, Z − E[Z]〉. That is,

∂ρ(Z) = {ζ ′ = 1+ c ζ − cE[ζ ] : ζ ∈ SY

}
, (6.92)

where Y (ω) ≡ Z(ω) − E[Z] and SY is the set of contact points of Y . If p ∈ (1,+∞),
then the set SY is a singleton, i.e., there is unique contact point ζ ∗Y , provided that Y (ω) is
not zero for a.e. ω ∈ �. In that case ρ(·) is Hadamard differentiable at Z and

∇ρ(Z) = 1+ c ζ ∗Y − cE[ζ ∗Y ]. (6.93)

(An explicit form of the contact point ζ ∗Y is given in (7.232).) If Y (ω) is zero for a.e. ω ∈ �,
i.e., Z(ω) is constant w.p. 1, then SY =

{
ζ ∈ Z∗ : ‖ζ‖q ≤ 1

}
.

For p = 1 the set SY is described in (7.233). It follows that if p = 1, and hence
q = +∞, then the subdifferential ∂ρ(Z) is a singleton iff Z(ω) �= E[Z] for a.e. ω ∈ �, in
which case

∇ρ(Z) =
{
ζ : ζ(ω) = 1+ 2c

(
1− Pr(Z > E[Z])) if Z(ω) > E[Z],

ζ(ω) = 1− 2c Pr(Z > E[Z]) if Z(ω) < E[Z]. (6.94)

Example 6.20 (Mean-Upper-Semideviation of Order p). Let Z := Lp(�,F , P ) and
for c ≥ 0 consider46

ρ(Z) := E[Z] + c
(
E

[[
Z − E[Z]]p+])1/p

. (6.95)

For any c ≥ 0 this function satisfies conditions (R1), (R3), and (R4), and similarly to the
derivations of Example 6.19 it can be shown that representation (6.37) holds with the set A

given by
A = {ζ ′ ∈ Z∗ : ζ ′ = 1+ ζ − E[ζ ], ‖ζ‖q ≤ c, ζ � 0

}
. (6.96)

Since |E[ζ ]| ≤ E|ζ | ≤ ‖ζ‖q for any ζ ∈ Lq(�,F , P ), we have that every element of
the above set A is nonnegative and has its expected value equal to 1. This means that the
monotonicity condition (R2) holds, if and, provided that condition (6.91) holds, only if
c ∈ [0, 1]. That is, ρ is a coherent risk measure if c ∈ [0, 1].

46We denote [a]p+ := (max{0, a})p .
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Since ρ is convex continuous, it is subdifferentiable. Its subdifferential can be cal-
culated in a way similar to the derivations of Example 6.19. That is, ∂ρ(Z) is formed by
vectors ζ ′ = 1+ ζ − E[ζ ] such that

ζ ∈ arg max
{〈ζ, Y 〉 : ‖ζ‖q ≤ c, ζ � 0

}
, (6.97)

where Y := Z − E[Z]. Suppose that p ∈ (1,+∞). Then the set of maximizers on the
right-hand side of (6.97) is not changed if Y is replaced by Y+, where Y+(·) := [Y (·)]+.
Consequently, if Z(ω) is not constant for a.e. ω ∈ �, and hence Y+ �= 0, then ∂ρ(Z) is a
singleton and

∇ρ(Z) = 1+ c ζ ∗Y+ − cE[ζ ∗Y+], (6.98)

where ζ ∗Y+ is the contact point of Y+. (Note that the contact point of Y+ is nonnegative since
Y+ � 0.)

Suppose now that p = 1 and hence q = +∞. Then the set on the right-hand side
of (6.97) is formed by ζ(·) such that ζ(ω) = c if Y (ω) > 0, ζ(ω) = 0, if Y (ω) < 0, and
ζ(ω) ∈ [0, c] if Y (ω) = 0. It follows that ∂ρ(Z) is a singleton iff Z(ω) �= E[Z] for a.e.
ω ∈ �, in which case

∇ρ(Z) =
{
ζ : ζ(ω) = 1+ c(1− Pr(Z > E[Z])) if Z(ω) > E[Z],

ζ(ω) = 1− c Pr(Z > E[Z]) if Z(ω) < E[Z]. (6.99)

It can be noted that by Lemma 6.1

E
(|Z − E[Z]|) = 2E

([Z − E[Z]]+
)
. (6.100)

Consequently, formula (6.99) can be derived directly from (6.94).

Example 6.21 (Mean-Upper-Semivariance from a Target). Let Z := L2(�,F , P ) and
for a weight c ≥ 0 and a target τ ∈ R consider

ρ(Z) := E[Z] + cE

[[
Z − τ ]2+] . (6.101)

This is a convex and continuous risk measure. We can now use (6.63) with g(z) :=
z+ c[z− τ ]2+. Since

g∗(α) =
{
(α − 1)2/4c + τ(α − 1) if α ≥ 1,
+∞ otherwise,

we obtain that

ρ(Z) = sup
ζ∈Z, ζ(·)≥1

{
E[ζZ] − τE[ζ − 1] − 1

4cE[(ζ − 1)2]} . (6.102)

Consequently, representation (6.36) holds with A = {ζ ∈ Z : ζ − 1 � 0} and

ρ∗(ζ ) = τE[ζ − 1] + 1
4cE[(ζ − 1)2], ζ ∈ A.

If c > 0, then conditions (R3) and (R4) are not satisfied by this risk measure.
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Since ρ is convex continuous, it is subdifferentiable. Moreover, by using (6.61)
we obtain that its subdifferentials are singletons and hence ρ(·) is differentiable at every
Z ∈ Z, and

∇ρ(Z) =
{
ζ : ζ(ω) = 1+ 2c(Z(ω)− τ) if Z(ω) ≥ τ,

ζ(ω) = 1 if Z(ω) < τ.
(6.103)

The above formula can also be derived directly, and it can be shown that ρ is differentiable
in the sense of Fréchet.

Example 6.22 (Mean-Upper-Semideviation of Order p from a Target). Let Z be the
space Lp(�,F , P ), and for c ≥ 0 and τ ∈ R consider

ρ(Z) := E[Z] + c
(
E

[[
Z − τ ]p+])1/p

. (6.104)

For any c ≥ 0 and τ this risk measure satisfies conditions (R1) and (R2), but not (R3) and
(R4) if c > 0. We have(

E

[[
Z − τ ]p+])1/p = sup

‖ζ‖q≤1
E
(
ζ [Z − τ ]+

) = sup
‖ζ‖q≤1, ζ(·)≥0

E
(
ζ [Z − τ ]+

)
= sup
‖ζ‖q≤1, ζ(·)≥0

E
(
ζ [Z − τ ]) = sup

‖ζ‖q≤1, ζ(·)≥0
E
[
ζZ − τζ ].

We obtain that representation (6.36) holds with

A = {ζ ∈ Z∗ : ‖ζ‖q ≤ c, ζ � 0}
and ρ∗(ζ ) = τE[ζ ] for ζ ∈ A.

6.3.3 Law Invariant Risk Measures and Stochastic Orders

As in the previous sections, unless stated otherwise we assume here that Z = Lp(�,F , P ),
p ∈ [1,+∞). We say that random outcomesZ1 ∈ Z andZ2 ∈ Z have the same distribution,
with respect to the reference probability measure P , if P(Z1 ≤ z) = P(Z2 ≤ z) for all

z ∈ R. We write this relation as Z1
D∼ Z2. In all examples considered in section 6.3.2, the

risk measures ρ(Z) discussed there were dependent only on the distribution of Z. That is,
each risk measure ρ(Z), considered in section 6.3.2, could be formulated in terms of the
cumulative distribution function (cdf) HZ(t) := P(Z ≤ t) associated with Z ∈ Z. We call
such risk measures law invariant (or law based, or version independent).

Definition 6.23. A risk measure ρ : Z→ R is law invariant, with respect to the reference
probability measure P , if for all Z1, Z2 ∈ Z we have the implication{

Z1
D∼ Z2

}
⇒ {ρ(Z1) = ρ(Z2)

}
.

Suppose for the moment that the set � = {ω1, . . . , ωK} is finite with respective
probabilities p1, . . . , pK such that any two partial sums of pk are different, i.e.,

∑
k∈A pk =
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∑
k∈B pk for A,B ⊂ {1, . . . , K} iff A = B. Then Z1, Z2 : � → R have the same

distribution only ifZ1 = Z2. In that case, any risk measure, defined on the space of random
variables Z : � → R, is law invariant. Therefore, for a meaningful discussion of law
invariant risk measures it is natural to consider nonatomic probability spaces.

A particular example of law invariant coherent risk measure is the Average Value-at-
Risk measure AV@Rα . Clearly, a convex combination

∑m
i=1 µiAV@Rαi , with αi ∈ (0, 1],

µi ≥ 0,
∑m

i=1 µi = 1, of Average Value-at-Risk measures is also a law invariant coherent
risk measure. Moreover, maximum of several law invariant coherent risk measures is again
a law invariant coherent risk measure. It turns out that any law invariant coherent risk
measure can be constructed by the operations of taking convex combinations and maximum
from the class of Average Value-at-Risk measures.

Theorem 6.24 (Kusuoka). Suppose that the probability space (�,F , P ) is nonatomic
and let ρ : Z→ R be a law invariant lower semicontionuous coherent risk measure. Then
there exists a set M of probability measures on the interval (0, 1] (equipped with its Borel
sigma algebra) such that

ρ(Z) = sup
µ∈M

∫ 1

0
AV@Rα(Z)dµ(α), ∀Z ∈ Z. (6.105)

In order to prove this we will need the following result.

Lemma 6.25. Let (�,F , P ) be a nonatomic probability space and Z := Lp(�,F , P ).
Then for Z ∈ Z and ζ ∈ Z∗ we have

sup
Y :Y D∼Z

∫
�

ζ(ω)Y (ω)dP (ω) =
∫ 1

0
H−1
ζ (t)H−1

Z (t)dt, (6.106)

where Hζ and HZ are the cdf’s of ζ and Z, respectively.

Proof. First we prove formula (6.106) for finite set � = {ω1, . . . , ωn} with equal proba-
bilities P({ωi}) = 1/n, i = 1, . . . , n. For a function Y : � → R denote Yi := Y (ωi),

i = 1, . . . , n. We have here that Y
D∼ Z iff Yi = Zπ(i) for some permutation π of the set

{1, . . . , n}, and
∫
�
ζYdP = n−1∑n

i=1 ζiYi . Moreover,47

n∑
i=1

ζiYi ≤
n∑
i=1

ζ[i]Y[i], (6.107)

where ζ[1] ≤ · · · ≤ ζ[n] are numbers ζ1, . . . , ζn arranged in the increasing order, and
Y[1] ≤ · · ·Y[n] are numbers Y1, . . . , Yn arranged in the increasing order. It follows that

sup
Y :Y D∼Z

∫
�

ζ(ω)Y (ω)dP (ω) = n−1
n∑
i=1

ζ[i]Z[i]. (6.108)

47Inequality (6.107) is called the Hardy–Littlewood–Polya inequality (compare with the proof of Theorem
4.50).
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It remains to note that in the considered case the right-hand side of (6.108) coincides with
the right-hand side of (6.106).

Now if the space (�,F , P ) is nonatomic, we can partition � into n disjoint subsets,
each of the same P -measure 1/n, and it suffices to verify formula (6.106) for functions
which are piecewise constant on such partitions. This reduces the problem to the case
considered above.

Proof of Theorem 6.24. By the dual representation (6.37) of Theorem 6.4, we have that for
Z ∈ Z,

ρ(Z) = sup
ζ∈A

∫
�

ζ(ω)Z(ω)dP (ω), (6.109)

where A is a set of probability density functions in Z∗. Since ρ is law invariant, we have
that

ρ(Z) = sup
Y∈D(Z)

ρ(Y ),

where D(Z) := {Y ∈ Z : Y D∼ Z}. Consequently,

ρ(Z) = sup
Y∈D(Z)

[
sup
ζ∈A

∫
�

ζ(ω)Y (ω)dP (ω)

]
= sup

ζ∈A

[
sup

Y∈D(Z)

∫ 1

0
ζ(ω)Y (ω)dP (ω)

]
.

(6.110)
Moreover, by Lemma 6.25 we have

sup
Y∈D(Z)

∫
�

ζ(ω)Y (ω)dP (ω) =
∫ 1

0
H−1
ζ (t)H−1

Z (t)dt, (6.111)

where Hζ and HZ are the cdf’s of ζ(ω) and Z(ω), respectively.
Recalling that H−1

Z (t) = V@R1−t (Z), we can write (6.111) in the form

sup
Y∈D(Z)

∫
�

ζ(ω)Y (ω)dP (ω) =
∫ 1

0
H−1
ζ (t)V@R1−t (Z)dt, (6.112)

which together with (6.110) imply that

ρ(Z) = sup
ζ∈A

∫ 1

0
H−1
ζ (t)V@R1−t (Z)dt. (6.113)

For ζ ∈ A, the function H−1
ζ (t) is monotonically nondecreasing on [0,1] and can be repre-

sented in the form

H−1
ζ (t) =

∫ 1

1−t
α−1dµ(α) (6.114)

for some measure µ on [0,1]. Moreover, for ζ ∈ A we have that
∫
ζdP = 1, and hence∫ 1

0 H
−1
ζ (t)dt = ∫ ζdP = 1, and therefore

1 =
∫ 1

0

∫ 1

1−t
α−1dµ(α)dt =

∫ 1

0

∫ 1

1−α
α−1dtdµ(α) =

∫ 1

0
dµ(α).
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Consequently, µ is a probability measure on [0,1]. Also (see Theorem 6.2) we have

AV@Rα(Z) =
1

α

∫ 1

1−α
V@R1−t (Z)dt,

and hence ∫ 1
0 AV@Rα(Z)dµ(α) =

∫ 1
0

∫ 1
1−α α

−1V@R1−t (Z)dtdµ(α)
= ∫ 1

0 V@R1−t (Z)
(∫ 1

1−t α
−1dµ(α)

)
dt

= ∫ 1
0 V@R1−t (Z)H

−1
ζ (t)dt.

By (6.113) this completes the proof, with the correspondence between ζ ∈ A and µ ∈ M

given by (6.114).

Example 6.26. Consider ρ := AV@Rγ risk measure for some γ ∈ (0, 1). Assume that the
corresponding probability space is � = [0, 1] equipped with its Borel sigma algebra and
uniform probability measure P . We have here (see (6.70))

A =
{
ζ : 0 ≤ ζ(ω) ≤ γ−1, ω ∈ [0, 1], ∫ 1

0 ζ(ω)dω = 1
}
.

Consequently, the family of cumulative distribution functions H−1
ζ , ζ ∈ A, is formed by

left-side continuous monotonically nondecreasing on [0,1] functions with
∫ 1

0 H
−1
ζ (t)dt = 1

and range values 0 ≤ H−1
ζ (t) ≤ γ−1, t ∈ [0, 1]. Since V@R1−t (Z) is monotonically

nondecreasing in t function, it follows that the maximum in the right-hand side of (6.113)
is attained at ζ ∈ A such that H−1

ζ (t) = 0 for t ∈ [0, 1 − γ ], and H−1
ζ (t) = γ−1 for

t ∈ (1 − γ, 1]. The corresponding measure µ, defined by (6.114), is given by function
µ(α) = 1 for α ∈ [0, γ ] and µ(α) = 1 for α ∈ (γ, 1], i.e., µ is the measure of mass 1 at
the point γ . By the above proof of Theorem 6.24, this µ is the maximizer of the right-hand
side of (6.105). It follows that the representation (6.105) recovers the measure AV@Rγ , as
it should be.

For law invariant risk measures, it makes sense to discuss their monotonicity properties
with respect to various stochastic orders defined for (real valued) random variables. Many
stochastic orders can be characterized by a class U of functions u : R→ R as follows. For
(real valued) random variablesZ1 andZ2 it is said thatZ2 dominatesZ1, denotedZ2 �U Z1,
if E[u(Z2)] ≥ E[u(Z1)] for all u ∈ U for which the corresponding expectations do exist.
This stochastic order is called the integral stochastic order with generator U. In particular,
the usual stochastic order, written Z2 �(1) Z1, corresponds to the generator U formed by
all nondecreasing functions u : R→ R. Equivalently, Z2 �(1) Z1 iff HZ2(t) ≤ HZ1(t) for
all t ∈ R. The relation �(1) is also frequently called the first order stochastic dominance
(see Definition 4.3). We say that the integral stochastic order is increasing if all functions in
the set U are nondecreasing. The usual stochastic order is an example of increasing integral
stochastic order.

Definition 6.27. A law invariant risk measure ρ : Z → R is consistent (monotone) with
the integral stochastic order �

U if for all Z1, Z2 ∈ Z we have the implication{
Z2 �U Z1

}⇒ {ρ(Z2) ≥ ρ(Z1)
}
.
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For an increasing integral stochastic order we have that if Z2(ω) ≥ Z1(ω) for a.e.
ω ∈ �, then u(Z2(ω)) ≥ u(Z1(ω)) for any u ∈ U and a.e. ω ∈ �, and hence E[u(Z2)] ≥
E[u(Z1)]. That is, if Z2 � Z1 in the almost sure sense, then Z2 �U Z1. It follows that if ρ
is law invariant and consistent with respect to an increasing integral stochastic order, then
it satisfies the monotonicity condition (R2). In other words, if ρ does not satisfy condition
(R2), then it cannot be consistent with any increasing integral stochastic order. In particular,
for c > 1 the mean-semideviation risk measure, defined in Example 6.20, is not consistent
with any increasing integral stochastic order, provided that condition (6.91) holds.

A general way of proving consistency of law invariant risk measures with stochastic
orders can be obtained via the following construction. For a given pair of random variables
Z1 and Z2 in Z, consider another pair of random variables, Ẑ1 and Ẑ2, which have distribu-

tions identical to the original pair, i.e., Ẑ1
D∼ Z1 and Ẑ2

D∼ Z2. The construction is such that
the postulated consistency result becomes evident. For this method to be applicable, it is
convenient to assume that the probability space (�,F , P ) is nonatomic. Then there exists
a measurable function U : �→ R (uniform random variable) such that P(U ≤ t) = t for
all t ∈ [0, 1].

Theorem 6.28. Suppose that the probability space (�,F , P ) is nonatomic. Then the
following holds: if a risk measure ρ : Z→ R is law invariant, then it is consistent with the
usual stochastic order iff it satisfies the monotonicity condition (R2).

Proof. By the discussion preceding the theorem, it is sufficient to prove that (R2) implies
consistency with the usual stochastic order.

For a uniform random variable U(ω) consider the random variables Ẑ1 := H−1
Z1
(U)

and Ẑ2 := H−1
Z2
(U). We obtain that if Z2 �(1) Z1, then Ẑ2(ω) ≥ Ẑ1(ω) for all ω ∈ �, and

hence by virtue of (R2), ρ(Ẑ2) ≥ ρ(Ẑ1). By construction, Ẑ1
D∼ Z1 and Ẑ2

D∼ Z2. Since
the risk measure is law invariant, we conclude that ρ(Z2) ≥ ρ(Z1). Consequently, the risk
measure ρ is consistent with the usual stochastic order.

It is said that Z1 is smaller than Z2 in the increasing convex order, written Z1 �icx

Z2, if E[u(Z1)] ≤ E[u(Z2)] for all increasing convex functions u : R → R such that
the expectations exist. Clearly this is an integral stochastic order with the corresponding
generator given by the set of increasing convex functions. It is equivalent to the second
order stochastic dominance relation for the negative variables: −Z1 �(2) −Z2. (Recall
that we are dealing here with minimization rather than maximization problems.) Indeed,
applying Definition 4.4 to −Z1 and −Z2 for k = 2 and using identity (4.7) we see that

E
{[Z1 − η]+

} ≤ E
{[Z2 − η]+

}
, ∀η ∈ R. (6.115)

Since any convex nondecreasing function u(z) can be arbitrarily close approximated by a
positive combination of functions uk(z) = βk + [z − ηk]+, inequality (6.115) implies that
E[u(Z1)] ≤ E[u(Z2)], as claimed (compare with the statement (4.8)).

Theorem 6.29. Suppose that the probability space (�,F , P ) is nonatomic. Then any law
invariant lower semicontinuous coherent risk measure ρ : Z → R is consistent with the
increasing convex order.
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Proof. By using definition (6.22) of AV@Rα and the property that Z1 �icx Z2 iff condition
(6.115) holds, it is straightforward to verify that AV@Rα is consistent with the increasing
convex order. Now by using the representation (6.105) of Theorem 6.24 and noting that
the operations of taking convex combinations and maximum preserve consistency with the
increasing convex order, we can complete the proof.

Remark 20. For convex risk measures (without the positive homogeneity property), The-
orem 6.29 in the space L1(�,F , P ) can be derived from Theorem 4.52, which for the
increasing convex order can be written as follows:

{Z ∈ L1(�,F , P ) : Z �icx Y } = cl conv{Z ∈ L1(�,F , P ) : Z �(1) Y }. (6.116)

If Z is an element of the set in the left-hand side of (6.116), then there exists a sequence of
random variables Zk → Z, which are convex combinations of some elements of the set in
the right-hand side of (6.116), that is,

Zk =
Nk∑
j=1

αkjZ
k
j ,

Nk∑
j=1

αkj = 1, αkj ≥ 0, Zkj �(1) Y.

By convexity of ρ and by Theorem 6.28, we obtain

ρ(Zk) ≤
Nk∑
j=1

αkj ρ(Z
k
j ) ≤

Nk∑
j=1

αkj ρ(Y ) = ρ(Y ).

Passing to the limit with k →∞ and using lower semicontinuity of ρ, we obtain ρ(Z) ≤
ρ(Y ), as required.

If p > 1 the domain of ρ can be extended to L1(�,F , P ), while preserving its lower
semicontinuity (cf. Filipović and Svindland [66]).

Remark 21. For some measures of risk, in particular, for the mean-semideviation measures,
defined in Example 6.20, and for the Average Value-at-Risk, defined in Example 6.16,
consistency with the increasing convex order can be proved without the assumption that
the probability space (�,F , P ) is nonatomic by using the following construction. Let
(�,F , P ) be a nonatomic probability space; for example, we can take � as the interval
[0, 1] equipped with its Borel sigma algebra and uniform probability measure P . Then for
any finite set of probabilities pk > 0, k = 1, . . . , K ,

∑K
i=1 pk = 1, we can construct a

partition of the set � = ∪Kk=1Ak such that P(Ak) = pk , k = 1, . . . , K . Consider the linear
subspace of the respective space Lp(�,F , P ) formed by piecewise constant on the setsAk
functions Z : � → R. We can identify this subspace with the space of random variables
defined on a finite probability space of cardinality K with the respective probabilities pk ,
k = 1, . . . , K . By the above theorem, the mean-upper-semideviation risk measure (of
order p) defined on (�,F , P ) is consistent with the increasing convex order. This property
is preserved by restricting it to the constructed subspace. This shows that the mean-upper-
semideviation risk measures are consistent with the increasing convex order on any finite
probability space. This can be extended to the general probability spaces by continuity
arguments.
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Corollary 6.30. Suppose that the probability space (�,F , P ) is nonatomic. Letρ : Z→ R

be a law invariant lower semicontinuous coherent risk measure and G be a sigma subalgebra
of the sigma algebra F . Then

ρ
(
E [Z|G]

) ≤ ρ(Z), ∀Z ∈ Z, (6.117)

and

E [Z] ≤ ρ(Z), ∀Z ∈ Z. (6.118)

Proof. Consider Z ∈ Z and Z′ := E[Z|G]. For every convex function u : R→ R we have

E[u(Z′)] = E
[
u
(
E[Z|G])] ≤ E[E(u(Z)|G)] = E [u(Z)] ,

where the inequality is implied by Jensen’s inequality. This shows that Z′ �icx Z, and
hence (6.117) follows by Theorem 6.29.

In particular, for G := {�,∅}, it follows by (6.117) that ρ(Z) ≥ ρ (E [Z]), and since
ρ (E [Z]) = E[Z] this completes the proof.

An intuitive interpretation of property (6.117) is that if we reduce variability of a
random variableZ by employing conditional averagingZ′ = E[Z|G], then the risk measure
ρ(Z′) becomes smaller, while E[Z′] = E[Z].

6.3.4 Relation to Ambiguous Chance Constraints

Owing to the dual representation (6.36), measures of risk are related to robust and ambiguous
models. Consider a chance constraint of the form

P {C(x, ω) ≤ 0} ≥ 1− α. (6.119)

Here P is a probability measure on a measurable space (�,F ) and C : R
n × � →

R is a random function. It is assumed in this formulation of chance constraint that the
probability measure (distribution), with respect to which the corresponding probabilities are
calculated, is known. Suppose now that the underlying probability distribution is not known
exactly but rather is assumed to belong to a specified family of probability distributions.
Problems involving such constrains are called ambiguous chance constrained problems.
For a specified uncertainty set A of probability measures on (�,F ), the corresponding
ambiguous chance constraint defines a feasible set X ⊂ R

n, which can be written as

X := {x : µ{C(x, ω) ≤ 0} ≥ 1− α, ∀µ ∈ A
}
. (6.120)

The set X can be written in the following equivalent form:

X =
{
x ∈ R

n : sup
µ∈A

Eµ

[
1Ax
] ≤ α} , (6.121)

where Ax := {ω ∈ � : C(x, ω) > 0}. Recall that by the duality representation (6.37), with
the set A is associated a coherent risk measure ρ, and hence (6.121) can be written as

X = {x ∈ R
n : ρ (1Ax ) ≤ α} . (6.122)
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We discuss now constraints of the form (6.122) where the respective risk measure is defined
in a direct way. As before, we use spaces Z = Lp(�,F , P ), where P is viewed as a
reference probability measure.

It is not difficult to see that if ρ is a law invariant risk measure, then for A ∈ F the
quantity ρ(1A) depends only on P(A). Indeed, if Z := 1A for some A ∈ F , then its cdf
HZ(z) := P(Z ≤ z) is

HZ(z) =
 0 if z < 0,

1− P(A) if 0 ≤ z < 1,
1 if 1 ≤ z,

which clearly depends only on P(A).

• With every law invariant real valued risk measure ρ : Z→ R we associate function
ϕρ defined as ϕρ(t) := ρ (1A), where A ∈ F is any event such that P(A) = t , and
t ∈ T := {P(A) : A ∈ F }.

The function ϕρ is well defined because for law invariant risk measure ρ the quantity ρ (1A)
depends only on the probability P(A) and hence ρ (1A) is the same for any A ∈ F such
that P(A) = t for a given t ∈ T . Clearly T is a subset of the interval [0, 1], and 0 ∈ T
(since ∅ ∈ F ) and 1 ∈ T (since� ∈ F ). If P is a nonatomic measure, then for any A ∈ F
the set {P(B) : B ⊂ A, B ∈ F } coincides with the interval [0, P (A)]. In particular, if P
is nonatomic, then the set T = {P(A) : A ∈ F }, on which ϕρ is defined, coincides with
the interval [0, 1].

Proposition 6.31. Let ρ : Z→ R be a (real valued) law invariant coherent risk measure.
Suppose that the reference probability measure P is nonatomic. Then ϕρ(·) is a continuous
nondecreasing function defined on the interval [0, 1] such that ϕρ(0) = 0 and ϕρ(1) = 1,
and ϕρ(t) ≥ t for all t ∈ [0, 1].

Proof. Since the coherent risk measure ρ is real valued, it is continuous. Because ρ is
continuous and positively homogeneous, ρ(0) = 0 and hence ϕρ(0) = 0. Also by (R3), we
have that ρ(1�) = 1 and hence ϕρ(1) = 1. By Corollary 6.30 we have that ρ(1A) ≥ P(A)
for any A ∈ F and hence ϕρ(t) ≥ t for all t ∈ [0, 1].

Let tk ∈ [0, 1] be a monotonically increasing sequence tending to t∗. Since P is
a nonatomic, there exists a sequence A1 ⊂ A2 ⊂ · · · of F -measurable sets such that
P(Ak) = tk for all k ∈ N. It follows that the set A := ∪∞k=1Ak is F -measurable and
P(A) = t∗. Since 1Ak converges (in the norm topology of Z) to 1A, it follows by continuity
of ρ that ρ(1Ak ) tends to ρ(1A), and hence ϕρ(tk) tends to ϕρ(t∗). In a similar way we have
that ϕρ(tk)→ ϕρ(t

∗) for a monotonically decreasing sequence tk tending to t∗. This shows
that ϕρ is continuous.

For any 0 ≤ t1 < t2 ≤ 1 there exist sets A,B ∈ F such that B ⊂ A and P(B) = t1,
P(A) = t2. Since 1A � 1B , it follows by monotonicity of ρ that ρ(1A) ≥ ρ(1B). This
implies that ϕρ(t2) ≥ ϕρ(t1), i.e., ϕρ is nondecreasing.

Now consider again the setX of the form (6.120). Assuming conditions of Proposition
6.31, we obtain that this set X can be written in the following equivalent form:

X = {x : P {C(x, ω) ≤ 0} ≥ 1− α∗}, (6.123)
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where α∗ := ϕ−1
ρ (α). That is, X can be defined by a chance constraint with respect to the

reference distribution P and with the respective significance level α∗. Since ϕρ(t) ≥ t , for
any t ∈ [0, 1], it follows that α∗ ≤ α. Let us consider some examples.

Consider Average Value-at-Risk measure ρ := AV@Rγ , γ ∈ (0, 1]. By direct calcu-
lations it is straightforward to verify that for any A ∈ F

AV@Rγ (1A) =
{
γ−1P(A) if P(A) ≤ γ,

1 if P(A) > γ.

Consequently the corresponding function ϕρ(t) = γ−1t for t ∈ [0, γ ], and ϕρ(t) = 1 for
t ∈ [γ, 1]. Now letρ be a convex combination ofAverage Value-at-Risk measures, i.e., ρ :=∑m

i=1 λiρi , withρi := AV@Rγi and positive weightsλi summing up to one. By the definition
of the function ϕρ we have then that ϕρ =∑m

i=1 λiϕρi . It follows that ϕρ : [0, 1] → [0, 1]
is a piecewise linear nondecreasing concave function with ϕρ(0) = 0 and ϕρ(1) = 1. More
generally, let λ be a probability measure on (0, 1] and ρ := ∫ 1

0 AV@Rγ dλ(γ ). In that case,
the corresponding function ϕρ becomes a nondecreasing concave function with ϕρ(0) = 0
and ϕρ(1) = 1. We also can consider measures ρ given by the maximum of such integral
functions over some set M of probability measures on (0, 1]. In that case the respective
function ϕρ becomes the maximum of the corresponding nondecreasing concave functions.
By Theorem 6.24 this actually gives the most general form of the function ϕρ .

For instance, let Z := L1(�,F , P ) and ρ(Z) := (1 − β)E[Z] + βAV@Rγ (Z),
where β, γ ∈ (0, 1) and the expectations are taken with respect to the reference distribution
P . This risk measure was discussed in example 6.16. Then

ϕρ(t) =
{
(1− β + γ−1β)t if t ∈ [0, γ ],
β + (1− β)t if t ∈ (γ, 1]. (6.124)

It follows that for this risk measure and for α ≤ β + (1− β)γ ,

α∗ = α

1+ β(γ−1 − 1)
. (6.125)

In particular, for β = 1, i.e., for ρ = AV@Rγ , we have that α∗ = γα.
As another example consider the mean-upper-semideviation risk measure of order p.

That is, Z := Lp(�,F , P ) and

ρ(Z) := E[Z] + c
(
E

[[
Z − E[Z]]p+])1/p

(see Example 6.20). We have here that ρ(1A) = P(A) + c[P(A)(1 − P(A))p]1/p, and
hence

ϕρ(t) = t + c t1/p(1− t), t ∈ [0, 1]. (6.126)

In particular, for p = 1 we have that ϕρ(t) = (1+ c)t − ct2, and hence

α∗ = 1+ c −√(1+ c)2 − 4αc

2c
. (6.127)

Note that for c > 1 the above functionϕρ(·) is not monotonically nondecreasing on the inter-
val [0, 1]. This should be not surprising since for c > 1 and nonatomicP , the corresponding
mean-upper-semideviation risk measure is not monotone.
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6.4 Optimization of Risk Measures
As before, we use spaces Z = Lp(�,F , P ) and Z∗ = Lq(�,F , P ). Consider the
composite function φ(·) := ρ(F (·)), also denoted φ = ρ ◦ F , associated with a mapping
F : R

n → Z and a risk measure ρ : Z → R. We already studied properties of such
composite functions in section 6.3.1. Again we write f (x, ω) or fω(x) for [F(x)](ω) and
view f (x, ω) as a random function defined on the measurable space (�,F ). Note that
F(x) is an element of space Lp(�,F , P ) and hence f (x, ·) is F -measurable and finite
valued. If, moreover, f (·, ω) is continuous for a.e. ω ∈ �, then f (x, ω) is a Carathéodory
function, and hence is random lower semicontinuous.

In this section we discuss optimization problems of the form

Min
x∈X
{
φ(x) := ρ(F (x))}. (6.128)

Unless stated otherwise, we assume that the feasible set X is a nonempty convex closed
subset of R

n. Of course, if we use ρ(·) := E[·], then problem (6.128) becomes a standard
stochastic problem of optimizing (minimizing) the expected value of the random function
f (x, ω). In that case we can view the corresponding optimization problem as risk neutral.
However, a particular realization of f (x, ω) could be quite different from its expectation
E[f (x, ω)]. This motivates an introduction, in the corresponding optimization procedure,
of some type of risk control. In the analysis of portfolio selection (see section 1.4), we
discussed an approach of using variance as a measure of risk. There is, however, a problem
with such approach since the corresponding mean-variance risk measure is not monotone
(see Example 6.18). We shall discuss this later.

Unless stated otherwise we assume that the risk measure ρ is proper and lower semi-
continuous and satisfies conditions (R1)–(R2). By Theorem 6.4 we can use representation
(6.36) to write problem (6.128) in the form

Min
x∈X sup

ζ∈A
�(x, ζ ), (6.129)

where A := dom(ρ∗) and the function � : Rn ×Z∗ → R is defined by

�(x, ζ ) :=
∫
�

f (x, ω)ζ(ω)dP (ω)− ρ∗(ζ ). (6.130)

If, moreover, ρ is positively homogeneous, then ρ∗ is the indicator function of the set A and
hence ρ∗(·) is identically zero on A. That is, if ρ is a proper lower semicontinuous coherent
risk measure, then problem (6.128) can be written as the minimax problem

Min
x∈X sup

ζ∈A
Eζ [f (x, ω)], (6.131)

where

Eζ [f (x, ω)] :=
∫
�

f (x, ω)ζ(ω)dP (ω)

denotes the expectation with respect to ζdP . Note that, by the definition, F(x) ∈ Z and
ζ ∈ Z∗, and hence

Eζ [f (x, ω)] = 〈F(x), ζ 〉
is finite valued.
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Suppose that the mapping F : Rn → Z is convex, i.e., for a.e. ω ∈ � the function
f (·, ω) is convex. This implies that for every ζ � 0 the function �(·, ζ ) is convex and
if, moreover, ζ ∈ A, then �(·, ζ ) is real valued and hence continuous. We also have that
〈F(x), ζ 〉 is linear and ρ∗(ζ ) is convex in ζ ∈ Z∗, and hence for every x ∈ X the function
�(x, ·) is concave. Therefore, under various regularity conditions, there is no duality gap
between problem (6.128) and its dual

Max
ζ∈A

inf
x∈X

{∫
�

f (x, ω)ζ(ω)dP (ω)− ρ∗(ζ )
}
, (6.132)

which is obtained by interchanging the min and max operators in (6.129). (Recall that the
set X is assumed to be nonempty closed and convex.) In particular, if there exists a saddle
point (x̄, ζ̄ ) ∈ X×A of the minimax problem (6.129), then there is no duality gap between
problems (6.129) and (6.132), and x̄ and ζ̄ are optimal solutions of (6.129) and (6.132),
respectively.

Proposition 6.32. Suppose that mapping F : R
n → Z is convex and risk measure ρ :

Z → R is proper and lower semicontinuous and satisfies conditions (R1)–(R2). Then
(x̄, ζ̄ ) ∈ X × A is a saddle point of �(x, ζ ) iff ζ̄ ∈ ∂ρ(Z̄) and

0 ∈ NX(x̄)+ Eζ̄ [∂fω(x̄)], (6.133)

where Z̄ := F(x̄).

Proof. By the definition, (x̄, ζ̄ ) is a saddle point of �(x, ζ ) iff

x̄ ∈ arg min
x∈X �(x, ζ̄ ) and ζ̄ ∈ arg max

ζ∈A
�(x̄, ζ ). (6.134)

The first of the above conditions means that x̄ ∈ arg minx∈X ψ(x), where

ψ(x) :=
∫
�

f (x, ω)ζ̄ (ω)dP (ω).

SinceX is convex andψ(·) is convex real valued, by the standard optimality conditions this
holds iff 0 ∈ NX(x̄)+ ∂ψ(x̄). Moreover, by Theorem 7.47 we have ∂ψ(x̄) = Eζ̄ [∂fω(x̄)].
Therefore, condition (6.133) and the first condition in (6.134) are equivalent. The second
condition (6.134) and the condition ζ̄ ∈ ∂ρ(Z̄) are equivalent by (6.42).

Under the assumptions of Proposition 6.32, existence of ζ̄ ∈ ∂ρ(Z̄) in (6.133) can
be viewed as an optimality condition for problem (6.128). Sufficiency of that condition
follows directly from the fact that it implies that (x̄, ζ̄ ) is a saddle point of the min-max
problem (6.129). In order for that condition to be necessary we need to verify existence of
a saddle point for problem (6.129).

Proposition 6.33. Let x̄ be an optimal solution of the problem (6.128). Suppose that the
mapping F : R

n → Z is convex and risk measure ρ : Z → R is proper and lower
semicontinuous and satisfies conditions (R1)–(R2) and is continuous at Z̄ := F(x̄). Then
there exists ζ̄ ∈ ∂ρ(Z̄) such that (x̄, ζ̄ ) is a saddle point of �(x, ζ ).
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Proof. By monotonicity of ρ (condition (R2)) it follows from the optimality of x̄ that (x̄, Z̄)
is an optimal solution of the problem

Min
(x,Z)∈S

ρ(Z), (6.135)

where S := {(x, Z) ∈ X × Z : F(x) � Z}. Since F is convex, the set S is convex, and
since F is continuous (see Lemma 6.9), the set S is closed. Also because ρ is convex and
continuous at Z̄, the following (first order) optimality condition holds at (x̄, Z̄) (see Remark
34, page 403):

0 ∈ ∂ρ(Z̄)× {0} +NS(x̄, Z̄). (6.136)

This means that there exists ζ̄ ∈ ∂ρ(Z̄) such that (−ζ̄ , 0) ∈ NS(x̄, Z̄). This in turn implies
that

〈ζ̄ , Z − Z̄〉 ≥ 0, ∀(x, Z) ∈ S. (6.137)

Setting Z := F(x) we obtain that

〈ζ̄ , F (x)− F(x̄)〉 ≥ 0, ∀x ∈ X. (6.138)

It follows that x̄ is a minimizer of 〈ζ̄ , F (x)〉 over x ∈ X, and hence x̄ is a minimizer of
�(x, ζ̄ ) over x ∈ X. That is, x̄ satisfies first of the two conditions in (6.134). Moreover,
as it was shown in the proof of Proposition 6.32, this implies condition (6.133), and hence
(x̄, ζ̄ ) is a saddle point by Proposition 6.32.

Corollary 6.34. Suppose that problem (6.128) has optimal solution x̄, the mapping F :
R
n → Z is convex and risk measure ρ : Z→ R is proper and lower semicontinuous and

satisfies conditions (R1)–(R2), and is continuous at Z̄ := F(x̄). Then there is no duality
gap between problems (6.129) and (6.132), and problem (6.132) has an optimal solution.

Propositions 6.32 and 6.33 imply the following optimality conditions.

Theorem 6.35. Suppose that mapping F : Rn→ Z is convex and risk measure ρ : Z→ R

is proper and lower semicontinuous and satisfies conditions (R1)–(R2). Consider a point
x̄ ∈ X and let Z̄ := F(x̄). Then a sufficient condition for x̄ to be an optimal solution of the
problem (6.128) is existence of ζ̄ ∈ ∂ρ(Z̄) such that (6.133) holds. This condition is also
necessary if ρ is continuous at Z̄.

It could be noted that if ρ(·) := E[·], then its subdifferential consists of unique
subgradient ζ̄ (·) ≡ 1. In that case condition (6.133) takes the form

0 ∈ NX(x̄)+ E[∂fω(x̄)]. (6.139)

Note that since it is assumed that F(x) ∈ Lp(�,F , P ), the expectation E[fω(x)] is well
defined and finite valued for all x, and hence ∂E[fω(x)] = E[∂fω(x)] (see Theorem 7.47).
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6.4.1 Dualization of Nonanticipativity Constraints

We assume again that Z = Lp(�,F , P ) and Z∗ = Lq(�,F , P ), that F : R
n → Z

is convex and ρ : Z → R is proper lower semicontinuous and satisfies conditions (R1)
and (R2). A way to represent problem (6.128) is to consider the decision vector x as a
function of the elementary eventω ∈ � and then to impose an appropriate nonaniticipativity
constraint. That is, let M be a linear space of F -measurable mappings χ : �→ R

n. Define
Fχ(ω) := f (χ(ω), ω) and

MX := {χ ∈M : χ(ω) ∈ X, a.e. ω ∈ �}. (6.140)

We assume that the space M is chosen in such a way that Fχ ∈ Z for every χ ∈M and for
every x ∈ R

n the constant mapping χ(ω) ≡ x belongs to M. Then we can write problem
(6.128) in the following equivalent form:

Min
(χ,x)∈MX×Rn

ρ(Fχ) s.t. χ(ω) = x, a.e. ω ∈ �. (6.141)

Formulation (6.141) allows developing a duality framework associated with the nonan-
ticipativity constraint χ(·) = x. In order to formulate such duality, we need to specify
the space M and its dual. It looks natural to use M := Lp′(�,F , P ;Rn), for some
p′ ∈ [1,+∞), and its dual M∗ := Lq ′(�,F , P ;Rn), q ′ ∈ (1,+∞]. It is also possible to
employ M := L∞(�,F , P ;Rn). Unfortunately, this Banach space is not reflexive. Nev-
ertheless, it can be paired with the space L1(�,F , P ;Rn) by defining the corresponding
scalar product in the usual way. As long as the risk measure is lower semicontinuous and
subdifferentiable in the corresponding weak topology, we can use this setting as well.

The (Lagrangian) dual of problem (6.141) can be written in the form

Max
λ∈M∗

{
inf

(χ,x)∈MX×Rn
L(χ, x, λ)

}
, (6.142)

where

L(χ, x, λ) := ρ(Fχ)+ E
[
λT(χ − x)], (χ, x, λ) ∈M × R

n ×M
∗. (6.143)

Note that

inf
x∈Rn

L(χ, x, λ) =
{
L(χ, 0, λ) if E[λ] = 0,
−∞ if E[λ] �= 0.

Therefore the dual problem (6.143) can be rewritten in the form

Max
λ∈M∗

{
inf
χ∈MX

L0(χ, λ)

}
s.t. E[λ] = 0, (6.144)

where L0(χ, λ) := L(χ, 0, λ) = ρ(Fχ)+ E[λTχ ].
We have that the optimal value of problem (6.141) (which is the same as the optimal

value of problem (6.128)) is greater than or equal to the optimal value of its dual (6.144).
Moreover, under some regularity conditions, their optimal values are equal to each other. In
particular, if LagrangianL(χ, x, λ) has a saddle point ((χ̄ , x̄), λ̄), then there is no duality gap
between problems (6.141) and (6.144), and (χ̄ , x̄) and λ̄ are optimal solutions of problems
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(6.141) and (6.144), respectively. Noting that L(χ, 0, λ) is linear in x and in λ, we have
that ((χ̄ , x̄), λ̄) is a saddle point of L(χ, x, λ) iff the following conditions hold:

χ̄(ω) = x̄, a.e. ω ∈ �, and E[λ̄] = 0,
χ̄ ∈ arg min

χ∈MX

L0(χ, λ̄).
(6.145)

Unfortunately, it may be not be easy to verify existence of such saddle point.
We can approach the duality analysis by conjugate duality techniques. For a pertur-

bation vector y ∈M consider the problem

Min
(χ,x)∈MX×Rn

ρ(Fχ) s.t. χ(ω) = x + y(ω), (6.146)

and letϑ(y) be its optimal value. Note that a perturbation in the vector x, in the constraints of
problem (6.141), can be absorbed into y(ω). Clearly for y = 0, problem (6.146) coincides
with the unperturbed problem (6.141), and ϑ(0) is the optimal value of the unperturbed
problem (6.141). Assume that ϑ(0) is finite. Then there is no duality gap between problem
(6.141) and its dual (6.142) iff ϑ(y) is lower semicontinuous at y = 0. Again it may be
not easy to verify lower semicontinuity of the optimal value function ϑ :M→ R. By the
general theory of conjugate duality we have the following result.

Proposition 6.36. Suppose that F : R
n → Z is convex, ρ : Z → R satisfies conditions

(R1)–(R2) and the function ρ(Fχ), from M to R, is lower semicontinuous. Suppose, further,
that ϑ(0) is finite and ϑ(y) < +∞ for all y in a neighborhood (in the norm topology) of
0 ∈ M. Then there is no duality gap between problems (6.141) and (6.142), and the dual
problem (6.142) has an optimal solution.

Proof. Since ρ satisfies conditions (R1) and (R2) and F is convex, we have that the
function ρ(Fχ) is convex, and by the assumption it is lower semicontinuous. The assertion
then follows by a general result of conjugate duality for Banach spaces (see Theorem
7.77).

In order to apply the above result, we need to verify lower semicontinuity of the
function ρ(Fχ). This function is lower semicontinuous if ρ(·) is lower semicontinuous and
the mappingχ !→ Fχ , from M to Z, is continuous. If the set� is finite, and hence the spaces
Z and M are finite dimensional, then continuity of χ !→ Fχ follows from the continuity of
F . In the infinite dimensional setting this should be verified by specialized methods. The
assumption that ϑ(0) is finite means that the optimal value of the problem (6.141) is finite,
and the assumption that ϑ(y) < +∞ means that the corresponding problem (6.146) has a
feasible solution.

Interchangeability Principle for Risk Measures

By removing the nonanticipativity constraint χ(·) = x, we obtain the following relaxation
of the problem (6.141):

Min
χ∈MX

ρ(Fχ), (6.147)
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where MX is defined in (6.140). Similarly to the interchangeability principle for the expec-
tation operator (Theorem 7.80), we have the following result for monotone risk measures.
By inf x∈X F(x) we denote the pointwise minimum, i.e.,[

inf
x∈X F(x)

]
(ω) := inf

x∈X f (x, ω), ω ∈ �. (6.148)

Proposition 6.37. Let Z := Lp(�,F , P ) and M := Lp′(�,F , P ;Rn), where p, p′ ∈
[1,+∞], MX be defined in (6.140), ρ : Z → R be a proper risk measure satisfying
monotonicity condition (R2), and F : R

n → Z be such that inf x∈X F(x) ∈ Z. Suppose
that ρ is continuous at * := inf x∈X F(x). Then

inf
χ∈MX

ρ(Fχ) = ρ
(

inf
x∈X F(x)

)
. (6.149)

Proof. For any χ ∈MX we have that χ(·) ∈ X, and hence the following inequality holds:[
inf
x∈X F(x)

]
(ω) ≤ Fχ(ω) a.e. ω ∈ �.

By monotonicity of ρ this implies that ρ (*) ≤ ρ(Fχ), and hence

ρ (*) ≤ inf
χ∈MX

ρ(Fχ). (6.150)

Since ρ is proper we have that ρ (*) > −∞. If ρ (*) = +∞, then by (6.150) the left-hand
side of (6.149) is also +∞ and hence (6.149) holds. Therefore we can assume that ρ (*)
is finite.

Let us derive now the converse of (6.150) inequality. Since it is assumed that* ∈ Z,
we have that *(ω) is finite valued for a.e. ω ∈ � and measurable. Therefore, for a
sequence εk ↓ 0 and a.e. ω ∈ � and all k ∈ N, we can choose χ

k
(ω) ∈ X such that

|f (χ
k
(ω), ω) − *(ω)| ≤ εk and χ

k
(·) are measurable. We also can truncate χ

k
(·), if

necessary, in such a way that each χ
k

belongs to MX, and f (χ
k
(ω), ω) monotonically

converges to *(ω) for a.e. ω ∈ �. We have then that f (χ
k
(·), ·) − *(·) is nonnegative

valued and is dominated by a function from the space Z. It follows by the Lebesgue
dominated convergence theorem that Fχ

k
converges to* in the norm topology of Z. Since

ρ is continuous at*, it follows that ρ(Fχ
k
) tends to ρ(*). Also inf χ∈MX

ρ(Fχ) ≤ ρ(Fχ
k
),

and hence the required converse inequality

inf
χ∈MX

ρ(Fχ) ≤ ρ (*) (6.151)

follows.

Remark 22. It follows from (6.149) that if

χ̄ ∈ arg min
χ∈MX

ρ(Fχ), (6.152)

then

χ̄(ω) ∈ arg min
x∈X f (x, ω) a.e. ω ∈ �. (6.153)
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Conversely, suppose that the function f (x, ω) is random lower semicontinuous. Then the
multifunction ω !→ arg minx∈X f (x, ω) is measurable. Therefore, χ̄(ω) in the left-hand
side of (6.153) can be chosen to be measurable. If, moreover, χ̄ ∈ M (this holds, in
particular, if the set X is bounded and hence χ̄(·) is bounded), then the inclusion (6.152)
follows.

Consider now a setting of two-stage programming. That is, suppose that the function
[F(x)](ω) = f (x, ω) of the first-stage problem

Min
x∈X ρ(F (x)) (6.154)

is given by the optimal value of the second-stage problem

Min
y∈G(x,ω)

g(x, y, ω), (6.155)

where g : R
n × R

m × � → R and G : R
n × � ⇒ R

m. Under appropriate regularity
conditions, from which the most important is the monotonicity condition (R2), we can
apply the interchangeability principle to the optimization problem (6.155) to obtain

ρ(F (x)) = inf
y(·)∈G(x,·)

ρ(g(x, y(ω), ω)), (6.156)

where now y(·) is an element of an appropriate functional space and the notation y(·) ∈
G(x, ·) means that y(ω) ∈ G(x, ω) w.p. 1. If the interchangeability principle (6.156)
holds, then the two-stage problem (6.154)–(6.155) can be written as one large optimization
problem:

Min
x∈X, y(·)∈G(x,·)

ρ(g(x, y(ω), ω)). (6.157)

In particular, suppose that the set � is finite, say � = {ω1, . . . , ωK}, i.e., there is a fi-
nite number K of scenarios. In that case we can view function Z : � → R as vector
(Z(ω1), . . . , Z(ωK)) ∈ R

K and hence identify the space Z with R
K . Then problem (6.157)

takes the form

Min
x∈X, yk∈G(x,ωk), k=1,...,K

ρ [(g(x, y1, ω1), . . . , g(x, yK, ωK))] . (6.158)

Moreover, consider the linear case where X := {x : Ax = b, x ≥ 0}, g(x, y, ω) :=
cTx + q(ω)Ty and

G(x, ω) := {y : T (ω)x +W(ω)y = h(ω), y ≥ 0}.
Assume that ρ satisfies conditions (R1)–(R3) and the set � = {ω1, . . . , ωK} is finite. Then
problem (6.158) takes the form

Min
x,y1,...,yK

cTx + ρ [(qT
1 y1, . . . , q

T
KyK
)]

s.t. Ax = b, x ≥ 0, Tkx +Wkyk = hk, yk ≥ 0, k = 1, . . . , K,
(6.159)

where (qk, Tk,Wk, hk) := (q(ωk), T (ωk),W(ωk), h(ωk)), k = 1, . . . , K .



SPbook
2009/8/20
page 295

�

�

�

�

�

�

�

�

6.4. Optimization of Risk Measures 295

6.4.2 Examples

Let Z := L1(�,F , P ) and consider

ρ(Z) := E[Z] + inf
t∈R

E
{
β1[t − Z]+ + β2[Z − t]+

}
, Z ∈ Z, (6.160)

where β1 ∈ [0, 1] and β2 ≥ 0 are some constants. Properties of this risk measure were
studied in Example 6.16 (see (6.67) and (6.68) in particular). We can write the corresponding
optimization problem (6.128) in the following equivalent form:

Min
(x,t)∈X×R

E {fω(x)+ β1[t − fω(x)]+ + β2[fω(x)− t]+} . (6.161)

That is, by adding one extra variable we can formulate the corresponding optimization
problem as an expectation minimization problem.

Risk Averse Optimization of an Inventory Model

Let us consider again the inventory model analyzed in section 1.2. Recall that the objective
of that model is to minimize the total cost

F(x, d) = cx + b[d − x]+ + h[x − d]+,
where c, b, and h are nonnegative constants representing costs of ordering, backordering,
and holding, respectively. Again we assume that b > c > 0, i.e., the backorder cost
is bigger than the ordering cost. A risk averse extension of the corresponding (expected
value) problem (1.4) can be formulated in the form

Min
x≥0

{
f (x) := ρ[F(x,D)]}, (6.162)

where ρ is a specified risk measure.
Assume that the risk measure ρ is coherent, i.e., satisfies conditions (R1)–(R4), and

that demand D = D(ω) belongs to an appropriate space Z = Lp(�,F , P ). Assume,
further, that ρ : Z → R is real valued. It follows that there exists a convex set A ⊂ P,
where P ⊂ Z∗ is the set of probability density functions, such that

ρ(Z) = sup
ζ∈A

∫
�

Z(ω)ζ(ω)dP (ω), Z ∈ Z.

Consequently we have that

ρ[F(x,D)] = sup
ζ∈A

∫
�

F(x,D(ω))ζ(ω)dP (ω). (6.163)

To each ζ ∈ P corresponds the cumulative distribution functionH ofD with respect
to the measure Q := ζdP , that is,

H(z) = Q(D ≤ z) = Eζ [1D≤z] =
∫
{ω:D(ω)≤z}

ζ(ω)dP (ω). (6.164)
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We have then that ∫
�

F(x,D(ω))ζ(ω)dP (ω) =
∫
F(x, z)dH(z).

Denote by M the set of cumulative distribution functionsH associated with densities ζ ∈ A.
The correspondence between ζ ∈ A and H ∈M is given by formula (6.164) and depends
on D(·) and the reference probability measure P . Then we can rewrite (6.163) in the form

ρ[F(x,D)] = sup
H∈M

∫
F(x, z)dH(z) = sup

H∈M
EH [F(x,D)]. (6.165)

This leads to the following minimax formulation of the risk averse optimization problem
(6.162):

Min
x≥0

sup
H∈M

EH [F(x,D)]. (6.166)

Note that we also have that ρ(D) = supH∈M EH [D].
In the subsequent analysis we deal with the minimax formulation (6.166), rather than

the risk averse formulation (6.162), viewing M as a given set of cumulative distribution
functions. We show next that the minimax problem (6.166), and hence the risk averse
problem (6.162), structurally is similar to the corresponding (expected value) problem (1.4).
We assume that everyH ∈M is such thatH(z) = 0 for any z < 0. (Recall that the demand
cannot be negative.) We also assume that supH∈M EH [D] < +∞, which follows from the
assumption that ρ(·) is real valued.

Proposition 6.38. Let M be a set of cumulative distribution functions such that H(z) = 0
for any H ∈ M and z < 0, and supH∈M EH [D] < +∞. Consider function f (x) :=
supH∈M EH [F(x,D)]. Then there exists a cdf H̄ , depending on the set M and η :=
b/(b + h), such that H̄ (z) = 0 for any z < 0, and the function f (x) can be written in the
form

f (x) = b sup
H∈M

EH [D] + (c − b)x + (b + h)
∫ x

−∞
H̄ (z)dz. (6.167)

Proof. We have (see formula (1.5)) that for H ∈M,

EH [F(x,D)] = bEH [D] + (c − b)x + (b + h)
∫ x

0
H(z)dz.

Therefore we can write f (x) = (c − b)x + (b + h)g(x), where

g(x) := sup
H∈M

{
ηEH [D] +

∫ x

−∞
H(z)dz

}
. (6.168)

Since every H ∈ M is a monotonically nondecreasing function, we have that x !→∫ x
−∞H(z)dz is a convex function. It follows that the function g(x) is given by the maximum

of convex functions and hence is convex. Moreover, g(x) ≥ 0 and

g(x) ≤ η sup
H∈M

EH [D] + [x]+, (6.169)
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and hence g(x) is finite valued for any x ∈ R. Also, for any H ∈ M and z < 0 we have
that H(z) = 0, and hence g(x) = η supH∈M EH [D] for any x < 0.

Consider the right-hand-side derivative of g(x):

g
+(x) := lim

t↓0

g(x + t)− g(x)

t
,

and define H̄ (·) := g+(·). Since g(x) is real valued convex, its right-hand-side derivative
g+(x) exists and is finite, and for any x ≥ 0 and a < 0,

g(x) = g(a)+
∫ x

a

g
+(z)dz = η sup

H∈M
EH [D] +

∫ x

−∞
H̄ (z)dz. (6.170)

Note that definition of the function g(·), and hence H̄ (·), involves the constant η and set M

only. Let us also observe that the right-hand-side derivative g+(x), of a real valued convex
function, is monotonically nondecreasing and right-side continuous. Moreover, g+(x) = 0
for x < 0 since g(x) is constant for x < 0. We also have that g+(x) tends to one as
x →+∞. Indeed, since g+(x) is monotonically nondecreasing it tends to a limit, denoted
r , as x → +∞. We have then that g(x)/x → r as x → +∞. It follows from (6.169) that
r ≤ 1, and by (6.168) that for any H ∈M,

lim inf
x→+∞

g(x)

x
≥ lim inf

x→+∞
1

x

∫ x

−∞
H(z)dz ≥ 1,

and hence r ≥ 1. It follows that r = 1.
We obtain that H̄ (·) = g+(·) is a cumulative distribution function of some probability

distribution and the representation (6.167) holds.

It follows from the representation (6.167) that the set of optimal solutions of the risk
averse problem (6.162) is an interval given by the set of κ-quantiles of the cdf H̄ (·), where
κ := b−c

b+h . (Compare with Remark 1, page 3.)
In some specific cases it is possible to calculate the corresponding cdf H̄ in a closed

form. Consider the risk measure ρ defined in (6.160),

ρ(Z) := E[Z] + inf
t∈R

E
{
β1[t − Z]+ + β2[Z − t]+

}
,

where the expectations are taken with respect to some reference cdfH ∗(·). The correspond-
ing set M is formed by cumulative distribution functions H(·) such that

(1− β1)

∫
S

dH ∗ ≤
∫
S

dH ≤ (1+ β2)

∫
S

dH ∗ (6.171)

for any Borel set S ⊂ R. (Compare with formula (6.69).) Recall that for β1 = 1 this
risk measure is ρ(Z) = AV@Rα(Z) with α = 1/(1 + β2). Suppose that the reference
distribution of the demand is uniform on the interval [0, 1], i.e., H ∗(z) = z for z ∈ [0, 1].
It follows that any H ∈M is continuous, H(0) = 0 and H(1) = 1, and

EH [D] =
∫ 1

0
zdH(z) = zH(z)∣∣10 − ∫ 1

0
H(z)dz = 1−

∫ 1

0
H(z)dz.
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Consequently we can write function g(x), defined in (6.168), for x ∈ [0, 1] in the form

g(x) = η + sup
H∈M

{
(1− η)

∫ x

0
H(z)dz− η

∫ 1

x

H(z)dz

}
. (6.172)

Suppose, further, that h = 0 (i.e., there are no holding costs) and hence η = 1. In that case

g(x) = 1− inf
H∈M

∫ 1

x

H(z)dz for x ∈ [0, 1]. (6.173)

By using the first inequality of (6.171) withS := [0, z]we obtain thatH(z) ≥ (1−β1)z

for anyH ∈M and z ∈ [0, 1]. Similarly, by the second inequality of (6.171) withS := [z, 1]
we have that H(z) ≥ 1 + (1 + β2)(z − 1) for any H ∈ M and z ∈ [0, 1]. Consequently,
the cdf

H̄ (z) := max{(1− β1)z, (1+ β2)z− β2}, z ∈ [0, 1], (6.174)

is dominated by any other cdf H ∈M, and it can be verified that H̄ ∈M. Therefore, the
minimum on the right-hand side of (6.173) is attained at H̄ for any x ∈ [0, 1], and hence
this cdf H̄ fulfills (6.167).

Note that for any β1 ∈ (0, 1) and β2 > 0, the cdf H̄ (·) defined in (6.174) is strictly less
than the reference cdf H ∗(·) on the interval (0, 1). Consequently, the corresponding risk
averse optimal solution H̄−1(κ) is bigger than the risk neutral optimal solutionH ∗−1(κ). It
should be not surprising that in the absence of holding costs it will be safer to order a larger
quantity of the product.

Risk Averse Portfolio Selection

Consider the portfolio selection problem introduced in section 1.4. Arisk averse formulation
of the corresponding optimization problem can be written in the form

Min
x∈X ρ

(−∑n
i=1 ξixi

)
, (6.175)

where ρ is a chosen risk measure and X := {x ∈ R
n : ∑n

i=1 xi = W0, x ≥ 0}. We
use the negative of the return as an argument of the risk measure, because we developed
our theory for the minimization, rather than maximization framework. An example below
shows a possible problem with using risk measures with dispersions measured by variance
or standard deviation.

Example 6.39. Let n = 2, W0 = 1 and the risk measure ρ be of the form

ρ(Z) := E[Z] + cD[Z], (6.176)

where c > 0 and D[·] is a dispersion measure. Let the dispersion measure be either
D[Z] := √Var[Z] or D[Z] := Var[Z]. Suppose, further, that the space � := {ω1, ω2}
consists of two points with associated probabilities p and 1 − p for some p ∈ (0, 1).
Define (random) return rates ξ1, ξ2 : � → R as follows: ξ1(ω1) = a and ξ1(ω2) = 0,
where a is some positive number, and ξ2(ω1) = ξ2(ω2) = 0. Obviously, it is better to
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invest in asset 1 than asset 2. Now, for D[Z] := √Var[Z], we have that ρ(−ξ2) = 0 and
ρ(−ξ1) = −pa + ca√p(1− p). It follows that ρ(−ξ1) > ρ(−ξ2) for any c > 0 and p <
(1+ c−2)−1. Similarly, for D[Z] := Var[Z] we have that ρ(−ξ1) = −pa + ca2p(1− p),
ρ(−ξ2) = 0, and hence ρ(−ξ1) > ρ(−ξ2) again, provided p < 1 − (ca)−1. That is,
although ξ2 dominates ξ1 in the sense that ξ1(ω) ≥ ξ2(ω) for every possible realization of
(ξ1(ω), ξ2(ω)), we have that ρ(ξ1) > ρ(ξ2).

Here [F(x)](ω) := −ξ1(ω)x1 − ξ2(ω)x2. Let x̄ := (1, 0) and x∗ := (0, 1). Note
that the feasible set X is formed by vectors t x̄ + (1 − t)x∗, t ∈ [0, 1]. We have that
[F(x)](ω) = −ξ1(ω)x1, and hence [F(x̄)](ω) is dominated by [F(x)](ω) for any x ∈ X
and ω ∈ �. And yet, under the specified conditions, we have that ρ[F(x̄)] = ρ(−ξ1) is
greater thanρ[F(x∗)] = ρ(−ξ2), and hence x̄ is not an optimal solution of the corresponding
optimization (minimization) problem. This should be not surprising, because the chosen
risk measure is not monotone, i.e., it does not satisfy the condition (R2), for c > 0. (See
Examples 6.18 and 6.19.)

Suppose now that ρ is a real valued coherent risk measure. We can then write problem
(6.175) in the corresponding min-max form (6.131), that is,

Min
x∈X sup

ζ∈A

n∑
i=1

(−Eζ [ξi]
)
xi.

Equivalently,

Max
x∈X inf

ζ∈A

n∑
i=1

(
Eζ [ξi]

)
xi. (6.177)

Since the feasible set X is compact, problem (6.175) always has an optimal solution x̄.
Also (see Proposition 6.33), the min-max problem (6.177) has a saddle point, and (x̄, ζ̄ ) is
a saddle point iff

ζ̄ ∈ ∂ρ(Z̄) and x̄ ∈ arg max
x∈X

n∑
i=1

µ̄ixi, (6.178)

where Z̄(ω) := −∑n
i=1 ξi(ω)x̄i and µ̄i := Eζ̄ [ξi].

An interesting insight into the risk averse solution is provided by its game-theoretical
interpretation. ForW0 = 1 the portfolio allocations x can be interpreted as a mixed strategy
of the investor. (For another W0, the fractions xi/W0 are the mixed strategy.) The measure
ζ represents the mixed strategy of the opponent (the market). It is chosen not from the set
of all possible mixed strategies but rather from the set A. The risk averse solution (6.178)
corresponds to the equilibrium of the game.

It is not difficult to see that the set arg maxx∈X
∑n

i=1 µ̄ixi is formed by all convex
combinations of vectorsW0ei , i ∈ I, where ei ∈ R

n denotes the ith coordinate vector (with
zero entries except the ith entry equal to 1), and

I := {i ′ : µ̄i ′ = max1≤i≤n µ̄i, i ′ = 1, . . . , n
}
.

Also ∂ρ(Z) ⊂ A; see formula (6.43) for the subdifferential ∂ρ(Z).
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6.5 Statistical Properties of Risk Measures
All examples of risk measures discussed in section 6.3.2 were constructed with respect to
a reference probability measure (distribution) P . Suppose now that the “true” probability
distribution P is estimated by an empirical measure (distribution) PN based on a sample
of size N . In this section we discuss statistical properties of the respective estimates of the
“true values” of the corresponding risk measures.

6.5.1 Average Value-at-Risk

Recall that theAverage Value-at-Risk, AV@Rα(Z), at a levelα ∈ (0, 1) of a random variable
Z, is given by the optimal value of the minimization problem

Min
t∈R

E
{
t + α−1[Z − t]+

}
, (6.179)

where the expectation is taken with respect to the probability distributionP ofZ. We assume
that E|Z| < +∞, which implies that AV@Rα(Z) is finite. Suppose now that we have an iid
random sampleZ1, . . . , ZN ofN realizations ofZ. Then we can estimate θ∗ := AV@Rα(Z)
by replacing distribution P with its empirical estimate48 PN := 1

N

∑N
j=1 #(Z

j ). This leads

to the sample estimate θ̂N , of θ∗ = AV@Rα(Z), given by the optimal value of the following
problem:

Min
t∈R

t + 1

αN

N∑
j=1

[
Zj − t]+

 . (6.180)

Let us observe that problem (6.179) can be viewed as a stochastic programming
problem and problem (6.180) as its sample average approximation. That is,

θ∗ = inf
t∈R

f (t) and θ̂N = inf
t∈R

f̂N (t),

where

f (t) = t + α−1
E[Z − t]+ and f̂N (t) = t + 1

αN

N∑
j=1

[
Zj − t]+ .

Therefore, results of section 5.1 can be applied here in a straightforward way. Recall that
the set of optimal solutions of problem (6.179) is the interval [t∗, t∗∗], where

t∗ = inf {z : HZ(z) ≥ 1− α} = V@Rα(Z) and t∗∗ = sup{z : HZ(z) ≤ 1− α}
are the respective left- and right-side (1 − α)-quantiles of the distribution of Z (see page
258). Since for any α ∈ (0, 1) the interval [t∗, t∗∗] is finite and problem (6.179) is convex,
we have by Theorem 5.4 that

θ̂N → θ∗ w.p. 1 as N →∞. (6.181)

That is, θ̂N is a consistent estimator of θ∗ = AV@Rα(Z).

48Recall that #(z) denotes measure of mass one at point z.
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Assume now that E[Z2] < +∞. Then the assumptions (A1) and (A2) of Theorem
5.7 hold, and hence

θ̂N = inf
t∈[t∗,t∗∗] f̂N (t)+ op(N

−1/2). (6.182)

Moreover, if t∗ = t∗∗, i.e., the left- and right-side (1− α)-quantiles of the distribution of Z
are the same, then

N1/2
(
θ̂N − θ∗

)
D→ N (0, σ 2), (6.183)

where σ 2 = α−2
Var ([Z − t∗]+).

The estimator θ̂N has a negative bias, i.e., E[θ̂N ] − θ∗ ≤ 0, and (see Proposition 5.6)

E[θ̂N ] ≤ E[θ̂N+1], N = 1, . . . , (6.184)

i.e., the bias is monotonically decreasing with increase of the sample size N . If t∗ = t∗∗,
then this bias is of order O(N−1) and can be estimated using results of section 5.1.3.
The first and second order derivatives of the expectation function f (t) here are f ′(t) =
1+α−1(HZ(t)−1), provided that the cumulative distribution functionHZ(·) is continuous
at t , and f ′′(t) = α−1hZ(t), provided that the density hZ(t) = ∂HZ(t)/∂t exists. We obtain
(see Theorem 5.8 and the discussion on page 168), under appropriate regularity conditions,
in particular if t∗ = t∗∗ = V@Rα(Z) and the density hZ(t∗) = ∂HZ(t

∗)/∂t exists and
hZ(t

∗) �= 0, that

θ̂N − f̂N (t∗)=N−1 inf τ∈R

{
τZ + 1

2τ
2f ′′(t∗)

}+ op(N−1)

=− αZ2

2NhZ(t∗) + op(N−1),
(6.185)

where Z ∼ N (0, γ 2) with

γ 2 = Var

(
α−1 ∂[Z − t∗]+

∂t

)
= HZ(t

∗)(1−HZ(t
∗))

α2
= 1− α

α
.

Consequently, under appropriate regularity conditions,

N
[
θ̂N − f̂N (t∗)

]
D→−

[
1− α

2hZ(t∗)

]
χ2

1 (6.186)

and (see Remark 32 on page 382)

E[θ̂N ] − θ∗ = − 1− α
2NhZ(t∗)

+ o(N−1). (6.187)

6.5.2 Absolute Semideviation Risk Measure

Consider the mean absolute semideviation risk measure

ρc(Z) := E {Z + c[Z − E(Z)]+} , (6.188)

where c ∈ [0, 1] and the expectation is taken with respect to the probability distribution
P of Z. We assume that E|Z| < +∞, and hence ρc(Z) is finite. For a random sample
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Z1, . . . , ZN of Z, the corresponding estimator of θ∗ := ρc(Z) is

θ̂N = N−1
N∑
j=1

(
Zj + c[Zj − Z̄]+

)
, (6.189)

where Z̄ = N−1∑N
j=1 Z

j .
We have that ρc(Z) is equal to the optimal value of the following convex–concave

minimax problem

Min
t∈R

max
γ∈[0,1]

E [F(t, γ, Z)] , (6.190)

where

F(t, γ, z) := z+ cγ [z− t]+ + c(1− γ )[t − z]+
= z+ c[z− t]+ + c(1− γ )(z− t). (6.191)

This follows by virtue of Corollary 6.3. More directly we can argue as follows. Denote
µ := E[Z]. We have that

sup
γ∈[0,1]

E
{
Z + cγ [Z − t]+ + c(1− γ )[t − Z]+

}
= E[Z] + cmax

{
E([Z − t]+),E([t − Z]+)

}
.

Moreover, E([Z − t]+) = E([t − Z]+) if t = µ, and either E([Z − t]+) or E([t − Z]+)
is bigger than E([Z − µ]+) if t �= µ. This implies the assertion and also shows that the
minimum in (6.190) is attained at unique point t∗ = µ. It also follows that the set of saddle
points of the minimax problem (6.190) is given by {µ} × [γ ∗, γ ∗∗], where

γ ∗ = Pr(Z < µ) and γ ∗∗ = Pr(Z ≤ µ) = HZ(µ). (6.192)

In particular, if the cdf HZ(·) is continuous at µ = E[Z], then there is unique saddle point
(µ,HZ(µ)).

Consequently, θ̂N is equal to the optimal value of the corresponding SAA problem

Min
t∈R

max
γ∈[0,1]

N−1
N∑
j=1

F(t, γ, Zj ). (6.193)

Therefore we can apply results of section 5.1.4 in a straightforward way. We obtain that θ̂N
converges w.p. 1 to θ∗ as N → ∞. Moreover, assuming that E[Z2] < +∞ we have by
Theorem 5.10 that

θ̂N = max
γ∈[γ ∗,γ ∗∗]N

−1∑N
j=1 F(µ, γ, Z

j )+ op(N−1/2)

= Z̄ + cN−1∑N
j=1[Zj − µ]+ + c*(Z̄ − µ)+ op(N−1/2),

(6.194)

where Z̄ = N−1∑N
j=1 Z

j and function *(·) is defined as

*(z) :=
{
(1− γ ∗)z if z > 0,
(1− γ ∗∗)z if z ≤ 0.
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If, moreover, the cdf HZ(·) is continuous at µ, and hence γ ∗ = γ ∗∗ = HZ(µ), then

N1/2(θ̂N − θ∗) D→ N(0, σ 2), (6.195)

where σ 2 = Var[F(µ,HZ(µ), Z)].
This analysis can be extended to risk averse optimization problems of the form (6.128).

That is, consider problem

Min
x∈X

{
ρc[G(x, ξ)] = E

{
G(x, ξ)+ c[G(x, ξ)− E(G(x, ξ))]+

}}
, (6.196)

whereX ⊂ R
n andG : X×�→ R. Its SAA is obtained by replacing the true distribution

of the random vector ξ with the empirical distribution associated with a random sample
ξ 1, . . . , ξN , that is,

Min
x∈X

1
N

N∑
j=1

{
G(x, ξ j )+ c

[
G(x, ξ j )− 1

N

∑N
j=1 G(x, ξ

j )
]
+

}
. (6.197)

Assume that the setX is convex compact and functionG(·, ξ) is convex for a.e. ξ . Then, for
c ∈ [0, 1], problems (6.196) and (6.197) are convex. By using the min-max representation
(6.190), problem (6.196) can be written as the minimax problem

Min
(x,t)∈X×R

max
γ∈[0,1]

E [F(t, γ,G(x, ξ))] , (6.198)

where functionF(t, γ, z) is defined in (6.191). The functionF(t, γ, z) is convex and mono-
tonically increasing in z. Therefore, by convexity ofG(·, ξ), the functionF(t, γ,G(x, ξ)) is
convex in x ∈ X, and hence (6.198) is a convex–concave minimax problem. Consequently,
results of section 5.1.4 can be applied.

Let ϑ∗ and ϑ̂N be the optimal values of the true problem (6.196) and the SAA problem
(6.197), respectively, and S be the set of optimal solutions of the true problem (6.196). By
Theorem 5.10 and the above analysis we obtain, assuming that conditions specified in
Theorem 5.10 are satisfied, that

ϑ̂N = N−1 inf
x∈S

t=E[G(x,ξ)]
max

γ∈[γ ∗,γ ∗∗]


N∑
j=1

F
(
t, γ,G(x, ξ j )

)+ op(N−1/2), (6.199)

where

γ ∗ := Pr
{
G(x, ξ) < E[G(x, ξ)]} and γ ∗∗ := Pr

{
G(x, ξ) ≤ E[G(x, ξ)]}, x ∈ S.

Note that the points
(
(x,E[G(x, ξ)]), γ ), where x ∈ S and γ ∈ [γ ∗, γ ∗∗], form the set

of saddle points of the convex–concave minimax problem (6.198), and hence the interval
[γ ∗, γ ∗∗] is the same for any x ∈ S.

Moreover, assume that S = {x̄} is a singleton, i.e., problem (6.196) has unique
optimal solution x̄, and the cdf of the random variable Z = G(x̄, ξ) is continuous at
µ := E[G(x̄, ξ)], and hence γ ∗ = γ ∗∗. Then it follows that N1/2(ϑ̂N − ϑ∗) converges in
distribution to normal with zero mean and variance

Var
{
G(x̄, ξ)+ c[G(x̄, ξ)− µ]+ + c(1− γ ∗)(G(x̄, ξ)− µ)

}
.
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6.5.3 Von Mises Statistical Functionals

In the two examples, of AV@Rα and absolute semideviation, of risk measures considered in
the above sections it was possible to use their variational representations in order to apply
results and methods developed in section 5.1. A possible approach to deriving large sample
asymptotics of law invariant coherent risk measures is to use the Kusuoka representation
described in Theorem 6.24 (such approach was developed in [147]). In this section we
discuss an alternative approach of Von Mises statistical functionals borrowed from statistics.
We view now a (law invariant) risk measure ρ(Z) as a function F(P ) of the corresponding
probability measure P . For example, with the (upper) semideviation risk measure σ+p [Z],
defined in (6.5), we associate the functional

F(P ) :=
(
EP

[(
Z − EP [Z]

)p
+
])1/p

. (6.200)

The sample estimate of F(P ) is obtained by replacing probability measure P with the
empirical measure PN . That is, we estimate θ∗ = F(P ) by θ̂N = F(PN).

LetQ be an arbitrary probability measure, defined on the same probability space asP ,
and consider the convex combination (1 − t)P + tQ = P + t (Q − P), with t ∈ [0, 1],
of P and Q. Suppose that the following limit exists:

F
′(P,Q− P) := lim

t↓0

F(P + t (Q− P))− F(P )

t
. (6.201)

The above limit is just the directional derivative of F(·) at P in the direction Q − P . If,
moreover, the directional derivative F′(P, ·) is linear, then F(·) is Gâteaux differentiable
at P . Consider now the approximation

F(PN)− F(P ) ≈ F
′(P, PN − P). (6.202)

By this approximation,

N1/2(θ̂N − θ∗) ≈ F
′(P,N1/2(PN − P)), (6.203)

and we can use F′(P,N1/2(PN − P)) to derive asymptotics of N1/2(θ̂N − θ∗).
Suppose, further, that F′(P, ·) is linear, i.e., F(·) is Gâteaux differentiable at P . Then,

since PN = N−1∑N
j=1 #(Z

j ), we have that

F
′(P, PN − P) = 1

N

N∑
j=1

IFF(Z
j ), (6.204)

where

IFF(z) :=
N∑
j=1

F
′(P,#(z)− P) (6.205)

is the so-called influence function (also called influence curve) of F.
It follows from the linearity of F′(P, ·) that EP [IFF(Z)] = 0. Indeed, linearity of

F′(P, ·) means that it is a linear functional and hence can be represented as

F
′(P,Q− P) =

∫
g d(Q− P) =

∫
g dQ− EP [g(Z)]
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for some function g in an appropriate functional space. Consequently, IFF(z) = g(z) −
EP [g(Z)], and hence

EP [IFF(Z)] = EP {g(Z)− EP [g(Z)]} = 0.

Then by the CLT we have that N−1/2∑N
j=1 IFF(Z

j ) converges in distribution to normal
with zero mean and variance EP [IFF(Z)

2]. This suggests the following asymptotics:

N1/2(θ̂N − θ∗) D→ N
(
0,EP [IFF(Z)

2]) . (6.206)

It should be mentioned at this point that the above derivations do not prove in a rigorous
way validity of the asymptotics (6.206). The main technical difficulty is to give a rigorous
justification for the approximation (6.203) leading to the corresponding convergence in
distribution. This can be compared with the Delta method, discussed in section 7.2.7
and applied in section 5.1, where first (and second) order approximations were derived in
functional spaces rather than spaces of measures. Anyway, formula (6.206) gives correct
asymptotics and is routinely used in statistical applications.

Let us consider, for example, the statical functional

F(P ) := EP

[
Z − EP [Z]

]
+, (6.207)

associated with σ+1 [Z]. Denote µ := EP [Z]. Then

F(P + t (Q− P))− F(P ) = t
(
EQ

[
Z − µ]+ − EP

[
Z − µ]+)

+EP

[
Z − µ− t (EQ[Z] − µ)

]
+ + o(t).

Moreover, the right-side derivative at t = 0 of the second term in the right-hand side of the
above equation is (1−HZ(µ))(EQ[Z] − µ), provided that the cdf HZ(z) is continuous at
z = µ. It follows that if the cdf HZ(z) is continuous at z = µ, then

F
′(P,Q− P) = EQ

[
Z − µ]+ − EP

[
Z − µ]+ + (1−HZ(µ))(EQ[Z] − µ),

and hence

IFF(z) = [z− µ]+ − EP

[
Z − µ]+ + (1−HZ(µ))(z− µ). (6.208)

It can be seen now that EP [IFF(Z)] = 0 and

EP [IFF(Z)
2] = Var

{[Z − µ]+ + (1−HZ(µ))(Z − µ)
}
.

That is, the asymptotics (6.206) here are exactly the same as the ones derived in the previous
section 6.5.2 (compare with (6.195)).

In a similar way, it is possible to compute the influence function of the statistical
functional defined in (6.200), associated with σ+p [Z], for p > 1. For example, for p = 2
the corresponding influence function can be computed, provided that the cdf HZ(z) is
continuous at z = µ, as

IFF(z) = 1

2θ∗
(
[z− µ]2+ − θ∗2 + 2κ(1−HZ(µ))(z− µ)

)
, (6.209)

where θ∗ := F(P ) = (EP [Z − µ]2+)1/2 and κ := EP [Z − µ]+ = 1
2 EP |Z − µ|.
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6.6 The Problem of Moments
Due to the duality representation (6.37) of a coherent risk measure, the corresponding risk
averse optimization problem (6.128) can be written as the minimax problem (6.131). So far,
risk measures were defined on an appropriate functional space, which in turn was dependent
on a reference probability distribution. One can take an opposite point of view by defining
a min-max problem of the form

Min
x∈X sup

P∈M
EP [f (x, ω)] (6.210)

in a direct way for a specified set M of probability measures on a measurable space (�,F ).
Note that we do not assume in this section existence of a reference measureP and do not work
in a functional space of corresponding density functions. In fact, it will be essential here
to consider discrete measures on the space (�,F ). We denote by P̄ the set of probability
measures49 on (�,F ) and EP [f (x, ω)] is given by the integral

EP [f (x, ω)] =
∫
�

f (x, ω)dP (ω).

The set M can be viewed as an uncertainty set for the underlying probability dis-
tribution. Of course, there are various ways to define the uncertainty set M. In some
situations, it is reasonable to assume that we have knowledge about certain moments of the
corresponding probability distribution. That is, the set M is defined by moment constraints
as follows:

M :=
{
P ∈ P̄ : EP [ψi(ω)] = bi, i = 1, . . . , p,

EP [ψi(ω)] ≤ bi, i = p + 1, . . . , q

}
, (6.211)

where ψi : � → R, i = 1, . . . , q, are measurable functions. Note that the condition
P ∈ P̄, i.e., that P is a probability measure, can be formulated explicitly as the constraint50∫
�
dP = 1, P � 0.

We assume that every finite subset of� is F -measurable. This is a mild assumption.
For example, if� is a metric space equipped with its Borel sigma algebra, then this certainly
holds true. We denote by P̄∗m the set of probability measures on (�,F ) having a finite
support of at most m points. That is, every measure P ∈ P̄∗m can be represented in the
form P =∑m

i=1 αi#(ωi), where αi are nonnegative numbers summing up to one and#(ω)
denotes measure of mass one at the point ω ∈ �. Similarly, we denote M∗

m := M ∩ P̄∗m.
Note that the set M is convex while, for a fixed m, the set M∗

m is not necessarily convex.
By Theorem 7.32, to any P ∈ M corresponds a probability measure Q ∈ P̄ with a finite
support of at most q + 1 points such that EP [ψi(ω)] = EQ[ψi(ω)], i = 1, . . . , q. That is,
if the set M is nonempty, then its subset M∗

q+1 is also nonempty. Consider the function

g(x) := sup
P∈M

EP [f (x, ω)]. (6.212)

Proposition 6.40. For any x ∈ X we have that

g(x) = sup
P∈M∗

q+1

EP [f (x, ω)]. (6.213)

49The set P̄ of probability measures should be distinguished from the setP of probability density functions
used before.

50Recall that the notation P � 0 means that P is a nonnegative (not necessarily probability) measure on
(�,F ).
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Proof. If the set M is empty, then its subset M∗
q+1 is also empty, and hence g(x) as well as

the optimal value of the right-hand side of (6.213) are equal to +∞. So suppose that M is
nonempty. Consider a point x ∈ X and P ∈M. By Theorem 7.32 there exists Q ∈M∗

q+2
such that EP [f (x, ω)] = EQ[f (x, ω)]. It follows that g(x) is equal to the maximum of
EP [f (x, ω)] over P ∈M∗

q+2, which in turn is equal to the optimal value of the problem

Max
ω1 ,...,ωm∈�

α∈Rm+

m∑
j=1

αjf (x, ωj )

s.t.
m∑
j=1

αjψi(ωj ) = bi, i = 1, . . . , p,

m∑
j=1

αjψi(ωj ) ≤ bi, i = p + 1, . . . , q,

m∑
j=1

αj = 1,

(6.214)

wherem := q + 2. For fixed ω1, . . . , ωm ∈ �, the above is a linear programming problem.
Its feasible set is bounded and its optimum is attained at an extreme point of its feasible
set which has at most q + 1 nonzero components of α. Therefore it suffices to take the
maximum over P ∈M∗

q+1.

For a given x ∈ X, the (Lagrangian) dual of the problem

Max
P∈M

EP [f (x, ω)] (6.215)

is the problem

Min
λ∈R×Rp×R

q−p
+

sup
P�0

Lx(P, λ), (6.216)

where

Lx(P, λ) :=
∫
�
f (x, ω)dP (ω)+ λ0

(
1− ∫

�
dP (ω)

)+∑q

i=1 λi
(
bi −

∫
�
ψi(ω)dP (ω)

)
.

It is straightforward to verify that

sup
P�0

Lx(P, λ) =
{
λ0 +∑q

i=1 biλi if f (x, ω)− λ0 −∑q

i=1 λiψi(ω) ≤ 0,
+∞ otherwise.

The last assertion follows since for any ω̄ ∈ � and α > 0 we can take P := α#(ω̄), in
which case

EP

[
f (x, ω)− λ0 −

q∑
i=1

λiψi(ω)

]
= α
[
f (x, ω̄)− λ0 −

q∑
i=1

λiψi(ω̄)

]
.
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Consequently, we can write the dual problem (6.216) in the form

Min
λ∈R×Rp×R

q−p
+
λ0 +

q∑
i=1

biλi

s.t. λ0 +
q∑
i=1

λiψi(ω) ≥ f (x, ω), ω ∈ �.
(6.217)

If the set� is finite, then problem (6.215) and its dual (6.217) are linear programming
problems. In that case, there is no duality gap between these problems unless both are
infeasible. If the set � is infinite, then the dual problem (6.217) becomes a linear semi-
infinite programming problem. In that case, one needs to verify some regularity conditions in
order to ensure the no-duality-gap property. One such regularity condition will be, “the dual
problem (6.217) has a nonempty and bounded set of optimal solutions” (see Theorem 7.8).
Another regularity condition ensuring the no-duality-gap property is, “the set� is a compact
metric space equipped with its Borel sigma algebra and functions ψi(·), i = 1, . . . , q, and
f (x, ·) are continuous on �.”

If for every x ∈ X there is no duality gap between problems (6.215) and (6.217), then
the corresponding min-max problem (6.210) is equivalent to the following semi-infinite
programming problem:

Min
x∈X, λ∈R×Rp×R

q−p
+
λ0 +

q∑
i=1

biλi

s.t. λ0 +
q∑
i=1

λiψi(ω) ≥ f (x, ω), ω ∈ �.
(6.218)

Remark 23. Let� be a nonempty measurable subset of R
d , equipped with its Borel sigma

algebra, and let M be the set of all probability measures supported on�. Then by the above
analysis we have that it suffices in problem (6.210) to take the maximum over measures of
mass one, and hence problem (6.210) is equivalent to the following (deterministic) minimax
problem:

Min
x∈X sup

ω∈�
f (x, ω). (6.219)

6.7 Multistage Risk Averse Optimization
In this section we discuss an extension of risk averse optimization to a multistage setting.
In order to simplify the presentation we start our analysis with a discrete process in which
evolution of the state of the system is represented by a scenario tree.

6.7.1 Scenario Tree Formulation

Consider a scenario tree representation of evolution of the corresponding data process (see
section 3.1.3). The basic idea of multistage stochastic programming is that if we are currently
at a state of the system at stage t , represented by a node of the scenario tree, then our decision
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at that node is based on our knowledge about the next possible realizations of the data process,
which are represented by its children nodes at stage t + 1. In the risk neutral approach we
optimize the corresponding conditional expectation of the objective function. This allows
us to write the associated dynamic programming equations. This idea can be extended to
optimization of a risk measure conditional on a current state of the system. We now discuss
such construction in detail.

As in section 3.1.3, we denote by �t the set of all nodes at stage t = 1, . . . , T , by
Kt := |�t | the cardinality of �t and by Ca the set of children nodes of a node a of the
tree. Note that {Ca}a∈�t forms a partition of the set �t+1, i.e., Ca ∩ Ca′ = ∅ if a �= a′ and
�t+1 = ∪a∈�tCa , t = 1, . . . , T − 1. With the set �T we associate sigma algebra FT of all
its subsets. Let FT−1 be the subalgebra of FT generated by sets Ca , a ∈ �T−1, i.e., these
sets form the set of elementary events of FT−1. (Recall that {Ca}a∈�T−1 forms a partition
of �T .) By this construction, there is a one-to-one correspondence between elementary
events of FT−1 and the set �T−1 of nodes at stage T − 1. By continuing this process we
construct a sequence of sigma algebras F1 ⊂ · · · ⊂ FT . (Such a sequence of nested sigma
algebras is called filtration.) Note that F1 corresponds to the unique root node and hence
F1 = {∅, �T }. In this construction, there is a one-to-one correspondence between nodes of
�t and elementary events of the sigma algebra Ft , and hence we can identify every node
a ∈ �t with an elementary event of Ft . By taking all children of every node of Ca at later
stages, we eventually can identify with Ca a subset of �T .

Suppose, further, that there is a probability distribution defined on the scenario tree.
As discussed in section 3.1.3, such probability distribution can be defined by introducing
conditional probabilities of going from a node of the tree to its children nodes. That is, with
a node a ∈ �t is associated a probability vector51 pa ∈ R

|Ca | of conditional probabilities of
moving from a to nodes of Ca . Equipped with probability vector pa , the set Ca becomes
a probability space, with the corresponding sigma algebra of all subsets of Ca , and any
function Z : Ca → R can be viewed as a random variable. Since the space of functions
Z : Ca → R can be identified with the space R

|Ca |, we identify such random variableZ with
an element of the vector space R

|Ca |. With every Z ∈ R
|Ca | is associated the expectation

Epa [Z], which can be considered as a conditional expectation given that we are currently at
node a.

Now with every node a at stage t = 1, . . . , T − 1 we associate a risk measure ρa(Z)
defined on the space of functions Z : Ca → R, that is, we choose a family of risk measures

ρa : R|Ca | → R, a ∈ �t, t = 1, . . . , T − 1. (6.220)

Of course, there are many ways to define such risk measures. For instance, for a given
probability distribution on the scenario tree, we can use conditional expectations

ρa(Z) := Epa [Z], a ∈ �t, t = 1, . . . , T − 1. (6.221)

Such choice of risk measures ρa leads to the risk neutral formulation of a corresponding
multistage stochastic program. For a risk averse approach we can use any class of coherent
risk measures discussed in section 6.3.2, as, for example,

ρa[Z] := inf
t∈R

{
t + λ−1

a Epa
[
Z − t]+}, λa ∈ (0, 1), (6.222)

51Avectorp = (p1, . . . , pn) ∈ R
n is said to be a probability vector if all its componentspi are nonnegative

and
∑n

i=1 pi = 1. If Z = (Z1, . . . , Zn) ∈ R
n is viewed as a random variable, then its expectation with

respect to p is Ep[Z] =∑n
i=1 piZi .
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corresponding to AV@R risk measure and

ρa[Z] := Epa [Z] + caEpa
[
Z − Epa [Z]

]
+, ca ∈ [0, 1], (6.223)

corresponding to the absolute semideviation risk measure.
Since �t+1 is the union of the disjoint sets Ca , a ∈ �t , we can write R

Kt+1 as the
Cartesian product of the spaces R

|Ca |, a ∈ �t . That is, R
Kt+1 = R

|Ca1 | × · · ·×R
|CaKt |, where{

a1, . . . , aKt

} = �t . Define the mappings

ρt+1 := (ρa1 , . . . , ρaKt ) : RKt+1 → R
Kt , t = 1, . . . , T − 1, (6.224)

associated with risk measures ρa . Recall that the set �t+1 of nodes at stage t + 1 is
identified with the set of elementary events of sigma algebra Ft+1, and its sigma subalgebra
Ft is generated by sets Ca , a ∈ �t .

We denote by ZT the space of all functions Z : �T → R. As mentioned, we can
identify every such function with a vector of the space R

KT , i.e., the space ZT can be
identified with the space R

KT . We have that a function Z : �T → R is FT−1-measurable
iff it is constant on every set Ca , a ∈ �T−1. We denote by ZT−1 the subspace of ZT

formed by FT−1-measurable functions. The space ZT−1 can be identified with R
KT−1 . And

so on, we can construct a sequence Zt , t = 1, . . . , T , of spaces of Ft -measurable functions
Z : �T → R such that Z1 ⊂ · · · ⊂ ZT and each Zt can be identified with the space R

Kt .
Recall that K1 = 1, and hence Z1 can be identified with R. We view the mapping ρt+1,
defined in (6.224), as a mapping from the space Zt+1 into the space Zt . Conversely, with
any mapping ρt+1 : Zt+1 → Zt we can associate a family of risk measures of the form
(6.220).

We say that a mapping ρt+1 : Zt+1 → Zt is a conditional risk mapping if it satisfies
the following conditions:52

(R′1) Convexity:

ρt+1(αZ + (1− α)Z′) � αρt+1(Z)+ (1− α)ρt+1(Z
′)

for any Z,Z′ ∈ Zt+1 and α ∈ [0, 1].
(R′2) Monotonicity: If Z,Z′ ∈ Zt+1 and Z � Z′, then ρt+1(Z) � ρt+1(Z

′).

(R′3) Translation equivariance: If Y ∈ Zt andZ ∈ Zt+1, then ρt+1(Z+Y ) = ρt+1(Z)+Y.
(R′4) Positive homogeneity: If α ≥ 0 and Z ∈ Zt+1, then ρt+1(αZ) = αρt+1(Z).

It is straightforward to see that conditions (R′1), (R′2), and (R′4) hold iff the corresponding
conditions (R1), (R2), and (R4), defined in section 6.3, hold for every risk measure ρa

associated with ρt+1. Also by construction of ρt+1, we have that condition (R′3) holds
iff condition (R3) holds for all ρa . That is, ρt+1 is a conditional risk mapping iff every
corresponding risk measure ρa is a coherent risk measure.

By Theorem 6.4 with each coherent risk measure ρa , a ∈ �t , is associated a set A(a)

of probability measures (vectors) such that

ρa(Z) = max
p∈A(a)

Ep[Z]. (6.225)

52For Z1, Z2 ∈ Zt the inequality Z2 � Z1 is understood componentwise.
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Here Z ∈ R
Kt+1 is a vector corresponding to function Z : �t+1 → R, and A(a) = At+1(a)

is a closed convex set of probability vectorsp ∈ R
Kt+1 such thatpk = 0 if k ∈ �t+1\Ca , i.e.,

all probability measures of At+1(a) are supported on the set Ca . We can now represent the
corresponding conditional risk mapping ρt+1 as a maximum of conditional expectations as
follows. Let ν = (νa)a∈�t be a probability distribution on�t , assigning positive probability
νa to every a ∈ �t , and define

Ct+1 :=
{
µ =

∑
a∈�t

νap
a : pa ∈ At+1(a)

}
. (6.226)

It is not difficult to see that Ct+1 ⊂ R
Kt+1 is a convex set of probability vectors. Moreover,

since each At+1(a) is compact, the set Ct+1 is also compact and hence is closed. Consider
a probability distribution (measure) µ =∑a∈�t νap

a ∈ Ct+1. We have that for a ∈ �t , the
corresponding conditional distribution given the event Ca is pa , and53

Eµ [Z|Ft ] (a) = Epa [Z], Z ∈ Zt+1. (6.227)

It follows then by (6.225) that

ρt+1(Z) = max
µ∈Ct+1

Eµ [Z|Ft ] , (6.228)

where the maximum on the right-hand side of (6.228) is taken pointwise in a ∈ �t . That
is, formula (6.228) means that

[ρt+1(Z)](a) = max
p∈At+1(a)

Ep[Z], Z ∈ Zt+1, a ∈ �t. (6.229)

Note that in this construction, choice of the distribution ν is arbitrary and any distribution
of Ct+1 agrees with the distribution ν on �t .

We are ready now to give a formulation of risk averse multistage programs. For a
sequence ρt+1 : Zt+1 → Zt , t = 1, . . . , T − 1, of conditional risk mappings, consider the
following risk averse formulation analogous to the nested risk neutral formulation (3.1):

Min
x1∈X1

f1(x1)+ ρ2

[
inf

x2∈X2(x1,ω)
f2(x2, ω)+ · · ·

+ ρT−1
[

inf
xT−1∈XT (xT−2,ω)

fT−1(xT−1, ω)

+ ρT
[

inf
xT ∈XT (xT−1,ω)

fT (xT , ω)
]]]
.

(6.230)

Hereω is an element of� := �T , the objective functions ft : Rnt−1×�→ R are real valued
functions, and Xt : Rnt−1 × � ⇒ R

nt , t = 2, . . . , T , are multifunctions such that ft (xt , ·)
and Xt (xt−1, ·) are Ft -measurable for all xt and xt−1. Note that if the corresponding risk
measures ρa are defined as conditional expectations (6.221), then the multistage problem
(6.230) coincides with the risk neutral multistage problem (3.1).

53Recall that the conditional expectation Eµ[ · |Ft ] is a mapping from Zt+1 into Zt .
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There are several ways in which the nested formulation (6.230) can be formalized.
Similarly to (3.3), we can write problem (6.230) in the form

Min
x1,x2,··· ,xT

f1(x1)+ ρ2

[
f2(x2(ω), ω)+ · · ·

+ ρT−1
[
fT−1 (xT−1(ω), ω)+ ρT [fT (xT (ω), ω)]

]]
s.t. x1 ∈ X1, x t (ω) ∈ Xt (x t−1(ω), ω), t = 2, . . . , T .

(6.231)

Optimization in (6.231) is performed over functions x t : �→ R, t = 1, . . . , T , satisfying
the corresponding constraints, which imply that each x t (ω) is Ft -measurable and hence
each ft (x t (ω), ω) is Ft -measurable. The requirement for x t (ω) to be Ft -measurable is
another way of formulating the nonanticipativity constraints. Therefore, it can be viewed
that the optimization in (6.231) is performed over feasible policies.

Consider the function % : Z1 × · · · ×ZT → R defined as

%(Z1, . . . , ZT ) := Z1 + ρ2

[
Z2 + · · · + ρT−1

[
ZT−1 + ρT [ZT ]

]]
. (6.232)

By condition (R′3) we have that

ρT−1
[
ZT−1 + ρT [ZT ]

] = ρT−1 ◦ ρT
[
ZT−1 + ZT

]
.

By continuing this process we obtain that

%(Z1, . . . , ZT ) = ρ̄(Z1 + . . .+ ZT ), (6.233)

where ρ̄ := ρ2 ◦ · · · ◦ ρT . We refer to ρ̄ as the composite risk measure. That is,

ρ̄(Z1 + · · · + ZT ) = Z1 + ρ2

[
Z2 + · · · + ρT−1

[
ZT−1 + ρT [ZT ]

]]
, (6.234)

defined for Zt ∈ Zt , t = 1, . . . , T . Recall that Z1 is identified with R, and hence Z1 is a
real number and ρ̄ : ZT → R is a real valued function. Conditions (R′1)–(R′4) imply that
ρ̄ is a coherent risk measure.

As above, we have that since fT−1 (xT−1(ω), ω) is FT−1-measurable, it follows by
condition (R′3) that

fT−1 (xT−1(ω), ω)+ ρT [fT (xT (ω), ω)] = ρT [fT−1 (xT−1(ω), ω)+ fT (xT (ω), ω)] .
Continuing this process backward, we obtain that the objective function of (6.231) can be
formulated using the composite risk measure. That is, problem (6.231) can be written in
the form

Min
x1,x2,...,xT

ρ̄
[
f1(x1)+ f2(x2(ω), ω)+ · · · + fT (xT (ω), ω)

]
s.t. x1 ∈ X1, x t (ω) ∈ Xt (x t−1(ω), ω), t = 2, . . . , T .

(6.235)

If the conditional risk mappings are defined as the respective conditional expectations, then
the composite risk measure ρ̄ becomes the corresponding expectation operator, and (6.235)
coincides with the multistage program written in the form (3.3). Unfortunately, it is not easy
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to write the composite risk measure ρ̄ in a closed form even for relatively simple conditional
risk mappings other than conditional expectations.

An alternative approach to formalize the nested formulation (6.230) is to write dynamic
programming equations. That is, for the last period T we have

QT (xT−1, ω) := inf
xT ∈XT (xT−1,ω)

fT (xT , ω), (6.236)

QT (xT−1, ω) := ρT [QT (xT−1, ω)], (6.237)

and for t = T − 1, . . . , 2, we recursively apply the conditional risk measures

Qt (xt−1, ω) := ρt [Qt(xt−1, ω)] , (6.238)

where

Qt(xt−1, ω) := inf
xt∈Xt (xt−1,ω)

{
ft (xt , ω)+Qt+1(xt , ω)

}
. (6.239)

Of course, equations (6.238) and (6.239) can be combined into one equation:54

Qt(xt−1, ω) = inf
xt∈Xt (xt−1,ω)

{
ft (xt , ω)+ ρt+1 [Qt+1(xt , ω)]

}
. (6.240)

Finally, at the first stage we solve the problem

Min
x1∈X1

f1(x1)+ ρ2[Q2(x1, ω)]. (6.241)

It is important to emphasize that conditional risk mappings ρt (Z) are defined on real valued
functionsZ(ω). Therefore, it is implicitly assumed in the above equations that the cost-to-go
(value) functionsQt(xt−1, ω) are real valued. In particular, this implies that the considered
problem should have relatively complete recourse. Also, in the above development of the
dynamic programming equations, the monotonicity condition (R′2) plays a crucial role,
because only then we can move the optimization under the risk operation.

Remark 24. By using representation (6.228), we can write the dynamic programming
equations (6.240) in the form

Qt(xt−1, ω) = inf
xt∈Xt (xt−1,ω)

{
ft (xt , ω)+ sup

µ∈Ct+1

Eµ

[
Qt+1(xt )

∣∣Ft

]
(ω)

}
. (6.242)

Note that the left- and right-hand-side functions in (6.242) are Ft -measurable, and hence
this equation can be written in terms of a ∈ �t instead ofω ∈ �. Recall that everyµ ∈ Ct+1

is representable in the form µ =∑a∈�t νap
a (see (6.226)) and that

Eµ

[
Qt+1(xt )

∣∣Ft

]
(a) = Epa [Qt+1(xt )], a ∈ �t. (6.243)

We say that the problem is convex if the functions ft (·, ω),Qt(·, ω) and the sets Xt (xt−1, ω)

are convex for every ω ∈ � and t = 1, . . . , T . If the problem is convex, then (since the

54With some abuse of the notation we write Qt+1(xt , ω) for the value of Qt+1(xt ) at ω ∈ �, and
ρt+1 [Qt+1(xt , ω)] for ρt+1 [Qt+1(xt )] (ω).
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set Ct+1 is convex compact) the inf and sup operators on the right-hand side of (6.242) can
be interchanged to obtain a dual problem, and for a given xt−1 and every a ∈ �t the dual
problem has an optimal solution p̄a ∈ At+1(a). Consequently, for µ̄t+1 :=∑a∈�t νap̄

a an
optimal solution of the original problem and the corresponding cost-to-go functions satisfy
the following dynamic programming equations:

Qt(xt−1, ω) = inf
xt∈Xt (xt−1,ω)

{
ft (xt , ω)+ Eµ̄t+1

[
Qt+1(xt )|Ft

]
(ω)
}
. (6.244)

Moreover, it is possible to choose the “worst case” distributions µ̄t+1 in a consistent way,
i.e., such that each µ̄t+1 coincides with µ̄t on Ft . That is, consider the first-stage problem
(6.241). We have that (recall that at the first stage there is only one node, F1 = {∅, �} and
C2 = A2)

ρ2[Q2(x1)] = sup
µ∈C2

Eµ[Q2(x1)|F1] = sup
µ∈C2

Eµ[Q2(x1)]. (6.245)

By convexity and since C2 is compact, we have that there is µ̄2 ∈ C2(an optimal solution
of the dual problem) such that the optimal value of the first-stage problem is equal to the
optimal value and the set of optimal solutions of the first-stage problem is contained in the
set of optimal solutions of the problem

Min
x1∈X1

Eµ̄2 [Q2(x1)]. (6.246)

Let x̄1 be an optimal solution of the first-stage problem. Then we can choose µ̄3 ∈ C3, of
the form µ̄3 :=∑a∈�2

νap̄
a such that (6.244) holds with t = 2 and x1 = x̄1. Moreover, we

can take the probability measure ν = (νa)a∈�2 to be the same as µ̄2, and hence to ensure that
µ̄3 coincides with µ̄2 on F2. Next, for every node a ∈ �2 choose a corresponding (second-
stage) optimal solution and repeat the construction to produce an appropriate µ̄4 ∈ C4, and
so on for later stages.

In that way, assuming existence of optimal solutions, we can construct a probability
distribution µ̄2, . . . , µ̄T on the considered scenario tree such that the obtained multistage
problem, of the standard form (3.1), has the same cost-to-go (value) functions as the orig-
inal problem (6.230) and has an optimal solution which also is an optimal solution of the
problem (6.230). (In that sense, the obtained multistage problem, driven by dynamic pro-
gramming equations (6.244), is almost equivalent to the original problem.)

Remark 25. Let us define, for every node a ∈ �t , t = 1, . . . , T − 1, the corresponding set
A(a) = At+1(a) to be the set of all probability measures (vectors) on the set Ca . (Recall
thatCa ⊂ �t+1 is the set of children nodes of a and that all probability measures of At+1(a)

are supported on Ca .) Then the maximum on the right-hand side of (6.225) is attained at a
measure of mass one at a point of the set Ca . Consequently, by (6.243), for such choice of
the sets At+1(a) the dynamic programming equations (6.242) can be written as

Qt(xt−1, a) = inf
xt∈Xt (xt−1,a)

{
ft (xt , a)+max

ω∈Ca
Qt+1(xt , ω)

}
, a ∈ �t. (6.247)

It is interesting to note (see Remark 24, page 313) that if the problem is convex,
then it is possible to construct a probability distribution (on the considered scenario tree),
defined by a sequence µ̄t , t = 2, . . . , T , of consistent probability distributions, such that the
obtained (risk neutral) multistage program is almost equivalent to the min-max formulation
(6.247).
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6.7.2 Conditional Risk Mappings

In this section we discuss a general concept of conditional risk mappings which can be
applied to a risk averse formulation of multistage programs. The material of this section
can be considered as an extension to an infinite dimensional setting of the developments
presented in the previous section. Similarly to the presentation of coherent risk measures,
given in section 6.3, we use the framework of Lp spaces, p ∈ [1,+∞). That is, let �
be a sample space equipped with sigma algebras F1 ⊂ F2 (i.e., F1 is subalgebra of F2)
and a probability measure P on (�,F2). Consider the spaces Z1 := Lp(�,F1, P ) and
Z2 := Lp(�,F2, P ). Since F1 is a subalgebra of F2, it follows that Z1 ⊂ Z2.

We say that a mapping ρ : Z2 → Z1 is a conditional risk mapping if it satisfies the
following conditions:

(R′1) Convexity:
ρ(αZ + (1− α)Z′) � αρ(Z)+ (1− α)ρ(Z′)

for any Z,Z′ ∈ Z2 and α ∈ [0, 1].
(R′2) Monotonicity: If Z,Z′ ∈ Z2 and Z � Z′, then ρ(Z) � ρ(Z′).
(R′3) Translation equivariance: If Y ∈ Z1 and Z ∈ Z2, then

ρ(Z + Y ) = ρ(Z)+ Y .

(R′4) Positive homogeneity: If α ≥ 0 and Z ∈ Z2, then ρ(αZ) = αρ(Z).
The above conditions coincide with the respective conditions of the previous section

which were defined in a finite dimensional setting. If the sigma algebra F1 is trivial, i.e.,
F1 = {∅, �}, then the space Z1 can be identified with R, and conditions (R′1)–(R′4) define
a coherent risk measure. Examples of coherent risk measures, discussed in section 6.3.2,
have conditional risk mapping analogues which are obtained by replacing the expectation
operator with the corresponding conditional expectation E[ · |F1] operator. Let us look at
some examples.

Conditional Expectation. In itself, the conditional expectation mapping E[ · |F1] :
Z2 → Z1 is a conditional risk mapping. Indeed, for any p ≥ 1 and Z ∈ Lp(�,F2, P ) we
have by Jensen inequality that E

[|Z|p|F1
] � ∣∣E[Z|F1]

∣∣p, and hence∫
�

∣∣E[Z|F1]
∣∣pdP ≤ ∫

�

E
[|Z|p|F1

]
dP = E

[|Z|p] < +∞. (6.248)

This shows that, indeed, E[ · |F1] maps Z2 into Z1. The conditional expectation is a linear
operator, and hence conditions (R′1) and (R′4) follow. The monotonicity condition (R′2)
also clearly holds, and condition (R′3) is a property of conditional expectation.

Conditional AV@R. An analogue of the AV@R risk measure can be defined as
follows. Let Zi := L1(�,Fi , P ), i = 1, 2. Forα ∈ (0, 1) define mapping AV@Rα( · |F1) :
Z2 → Z1 as

[AV@Rα(Z|F1)](ω) := inf
Y∈Z1

{
Y (ω)+ α−1

E
[[Z − Y ]+∣∣F1

]
(ω)
}
, ω ∈ �. (6.249)
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It is not difficult to verify that, indeed, this mapping satisfies conditions (R′1)–(R′4). Simi-
larly to (6.68), for β ∈ [0, 1] and α ∈ (0, 1), we can also consider the following conditional
risk mapping:

ρα,β|F1(Z) := (1− β)E[Z|F1] + βAV@Rα(Z|F1). (6.250)

Of course, the above conditional risk mapping ρα,β|F1 corresponds to the coherent risk mea-
sure ρα,β(Z) := (1− β)E[Z] + βAV@Rα(Z).

Conditional Mean-Upper-Semideviation. An analogue of the mean-upper-semi-
deviation risk measure (of orderp) can be constructed as follows. Let Zi := Lp(�,Fi , P ),
i = 1, 2. For c ∈ [0, 1] define

ρc|F1(Z) := E[Z|F1] + c
(
E

[[
Z − E[Z|F1]

]p
+
∣∣F1

])1/p
. (6.251)

In particular, for p = 1 this gives an analogue of the absolute semideviation risk measure.
In the discrete case of scenario tree formulation (discussed in the previous section)

the above examples correspond to taking the same respective risk measure at every node of
the considered tree at stage t = 1, . . . , T .

Consider a conditional risk mapping ρ : Z2 → Z1. With a set A ∈ F1, such that
P(A) �= 0, we associate the function

ρA(Z) := E[ρ(Z)|A], Z ∈ Z2, (6.252)

where E[Y |A] := 1
P(A)

∫
A
YdP denotes the conditional expectation of random variable

Y ∈ Z1 given event A ∈ F1. Clearly conditions (R′1)–(R′4) imply that the corresponding
conditions (R1)–(R4) hold for ρA, and hence ρA is a coherent risk measure defined on the
space Z2 = Lp(�,F2, P ). Moreover, for any B ∈ F1 we have by (R′3) that

ρA(Z + α1B) := E[ρ(Z)+ α1B |A] = ρA(Z)+ αP (B|A) ∀α ∈ R, (6.253)

where P(B|A) = P(B ∩ A)/P (A).
Since ρA is a coherent risk measure, by Theorem 6.4 it can be represented in the form

ρA(Z) = sup
ζ∈A(A)

∫
�

ζ(ω)Z(ω)dP (ω) (6.254)

for some set A(A) ⊂ Lq(�,F2, P ) of probability density functions. Let us make the
following observation:

• Each density ζ ∈ A(A) is supported on the set A.

Indeed, for any B ∈ F1, such that P(B ∩ A) = 0, and any α ∈ R, we have by (6.253) that
ρA(Z+α1B) = ρA(Z). On the other hand, if there exists ζ ∈ A(A) such that

∫
B
ζdP > 0,

then it follows from (6.254) that ρA(Z + α1B) tends to +∞ as α→+∞.

Similarly to (6.228), we show now that a conditional risk mapping can be represented
as a maximum of a family of conditional expectations. We consider a situation where the
subalgebra F1 has a countable number of elementary events. That is, there is a (countable)
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partition {Ai}i∈N of the sample space � which generates F1, i.e., ∪i∈NAi = �, the sets Ai ,
i ∈ N, are disjoint and form the family of elementary events of sigma algebra F1. Since F1

is a subalgebra of F2, we have of course that Ai ∈ F2, i ∈ N. We also have that a function
Z : �→ R is F1-measurable iff it is constant on every set Ai , i ∈ N.

Consider a conditional risk mapping ρ : Z2 → Z1. Let

N := {i ∈ N : P(Ai) �= 0}
and ρAi , i ∈ N, be the corresponding coherent risk measures defined in (6.252). By (6.254)
with every ρAi , i ∈ N, is associated set A(Ai) of probability density functions, supported
on the set Ai , such that

ρAi (Z) = sup
ζ∈A(Ai )

∫
�

ζ(ω)Z(ω)dP (ω). (6.255)

Now let ν = (νi)i∈N be a probability distribution (measure) on (�,F1), assigning proba-
bility νi to the event Ai , i ∈ N. Assume that ν is such that ν(Ai) = 0 iff P(Ai) = 0 (i.e., µ
is absolutely continuous with respect to P and P is absolutely continuous with respect to ν
on (�,F1)); otherwise the probability measure ν is arbitrary. Define the following family
of probability measures on (�,F2):

C :=
{
µ =

∑
i∈N

νiµi : dµi = ζidP, ζi ∈ A(Ai), i ∈ N

}
. (6.256)

Note that since
∑

i∈N νi = 1, every µ ∈ C is a probability measure. For µ ∈ C, with
respective densities ζi ∈ A(Ai) and dµi = ζidP , and Z ∈ Z2 we have that

Eµ[Z|F1] =
∑
i∈N

Eµi [Z|F1]. (6.257)

Moreover, since ζi is supported on Ai ,

Eµi [Z|F1](ω) =
{ ∫

Ai
ZζidP if ω ∈ Ai,

0 otherwise.
(6.258)

By the max-representations (6.255) it follows that for Z ∈ Z2 and ω ∈ Ai ,

sup
µ∈C

Eµ[Z|F1](ω) = sup
ζi∈A(Ai )

∫
Ai

ZζidP = ρAi (Z). (6.259)

Also since [ρ(Z)](·) is F1-measurable, and hence is constant on every set Ai , we have that
[ρ(Z)](ω) = ρAi (Z) for every ω ∈ Ai , i ∈ N. We obtain the following result.

Proposition 6.41. Let Zi := Lp(�,Fi , P ), i = 1, 2, with F1 ⊂ F2, and let ρ : Z2 → Z1

be a conditional risk mapping. Suppose that F1 has a countable number of elementary
events. Then

ρ(Z) = sup
µ∈C

Eµ[Z|F1], ∀Z ∈ Z2, (6.260)

where C is a family of probability measures on (�,F2), specified in (6.256), corresponding
to a probability distribution ν on (�,F1).
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6.7.3 Risk Averse Multistage Stochastic Programming

There are several ways in which risk averse stochastic programming can be formulated in
a multistage setting. We now discuss a nested formulation similar to the derivations of
section 6.7.1. Let (�,F , P ) be a probability space and F1 ⊂ · · · ⊂ FT be a sequence of
nested sigma algebras with F1 = {∅, �} being trivial sigma algebra and FT = F . (Such
sequence of sigma algebras is called a filtration.) Forp ∈ [1,+∞) let Zt := Lp(�,Ft , P ),
t = 1, . . . , T , be the corresponding sequence of spaces of Ft -measurable and p-integrable
functions, and let ρt+1|Ft

: Zt+1 → Zt , t = 1, . . . , T −1, be a selected family of conditional
risk mappings. It is straightforward to verify that the composition

ρt |Ft−1 ◦ · · · ◦ ρT |FT−1 : ZT

ρT |FT−1−→ ZT−1
ρT−1|FT−2−→ · · · ρt |Ft−1−→ Zt−1, (6.261)

t = 2, . . . , T , of such conditional risk mappings is also a conditional risk mapping. In
particular, the space Z1 can be identified with R and hence the composition ρ2|F1 ◦ · · · ◦
ρT |FT−1 : ZT → R is a real valued coherent risk measure.

Similarly to (6.230), we consider the following nested risk averse formulation of
multistage programs:

Min
x1∈X1

f1(x1)+ ρ2|F1

[
inf

x2∈X2(x1,ω)
f2(x2, ω)+ · · ·

+ ρT−1|FT−2

[
inf

xT−1∈XT (xT−2,ω)
fT−1(xT−1, ω)

+ ρT |FT−1

[
inf

xT ∈XT (xT−1,ω)
fT (xT , ω)

]]]
.

(6.262)

Here ft : R
nt−1 × � → R and Xt : R

nt−1 × � ⇒ R
nt , t = 2, . . . , T , are such that

ft (xt , ·) ∈ Zt and Xt (xt−1, ·) are Ft -measurable for all xt and xt−1.
As was discussed in section 6.7.1, the above nested formulation (6.262) has two

equivalent interpretations. Namely, it can be formulated as

Min
x1,x2,...,xT

f1(x1)+ ρ2|F1

[
f2(x2(ω), ω)+ · · ·

+ ρT−1|FT−2 [fT−1 (xT−1(ω), ω)

+ ρT |FT−1 [fT (xT (ω), ω)]]
]

s.t. x1 ∈ X1, x t (ω) ∈ Xt (x t−1(ω), ω), t = 2, . . . , T ,

(6.263)

where the optimization is performed over Ft -measurable x t : � → R, t = 1, . . . , T ,
satisfying the corresponding constraints, and such that ft (x t (·), ·) ∈ Zt . Recall that the
nonanticipativity is enforced here by the Ft -measurability of x t (·). By using the composite
risk measure ρ̄ := ρ2|F1 ◦ · · · ◦ ρT |FT−1 , we also can write (6.263) in the form

Min
x1,x2,...,xT

ρ̄
[
f1(x1)+ f2(x2(ω), ω)+ · · · + fT (xT (ω), ω)

]
s.t. x1 ∈ X1, x t (ω) ∈ Xt (x t−1(ω), ω), t = 2, . . . , T .

(6.264)
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Recall that for Zt ∈ Zt , t = 1, . . . , T ,

ρ̄(Z1 + · · · + ZT ) = Z1 + ρ2|F1

[
Z2 + · · · + ρT−1|FT−2

[
ZT−1 + ρT |FT−1 [ZT ]

]]
, (6.265)

and that conditions (R′1)–(R′4) imply that ρ̄ : ZT → R is a coherent risk measure.
Alternatively we can write the corresponding dynamic programming equations (com-

pare with (6.236)–(6.241)):

QT (xT−1, ω) = inf
xT ∈XT (xT−1,ω)

fT (xT , ω), (6.266)

Qt(xt−1, ω) = inf
xt∈Xt (xt−1,ω)

{
ft (xt , ω)+Qt+1(xt , ω)

}
, t = T − 1, . . . , 2, (6.267)

where
Qt (xt−1, ω) = ρt |Ft−1 [Qt(xt−1, ω)] , t = T , . . . , 2. (6.268)

Finally, at the first stage we solve the problem

Min
x1∈X1

f1(x1)+ ρ2|F1 [Q2(x1, ω)]. (6.269)

We need to ensure here that the cost-to-go functions are p-integrable, i.e., Qt(xt−1, ·) ∈ Zt

for t = 1, . . . , T − 1 and all feasible xt−1.
In applications we often deal with a data process represented by a sequence of random

vectors ξ1, . . . , ξT , say, defined on a probability space (�,F , P ). We can associate with
this data process filtration Ft := σ(ξ1, . . . , ξt ), t = 1, . . . , T , where σ(ξ1, . . . , ξt ) denotes
the smallest sigma algebra with respect to which ξ[t] = (ξ1, . . . , ξt ) is measurable. How-
ever, it is more convenient to deal with conditional risk mappings defined directly in terms
of the data process rather that the respective sequence of sigma algebras. For example,
consider

ρt |ξ[t−1](Z) := (1− βt )E
[
Z|ξ[t−1]

]+ βtAV@Rαt (Z|ξ[t−1]), t = 2, . . . , T , (6.270)

where

AV@Rαt (Z|ξ[t−1]) := inf
Y∈Zt−1

{
Y + α−1

t E
[[Z − Y ]+∣∣ξ[t−1]

]}
. (6.271)

Here βt ∈ [0, 1] and αt ∈ (0, 1) are chosen constants, Zt := L1(�,Ft , P ), where Ft is the
smallest filtration associated with the process ξt , and the minimum on the right-hand side
of (6.271) is taken pointwise in ω ∈ �. Compared with (6.249), the conditional AV@R is
defined in (6.271) in terms of the conditional expectation with respect to the history ξ[t−1]
of the data process rather than the corresponding sigma algebra Ft−1. We can also consider
conditional mean-upper-semideviation risk mappings of the form

ρt |ξ[t−1](Z) := E[Z|ξ[t−1]] + ct
(
E

[[
Z − E[Z|ξ[t−1]]

]p
+
∣∣ξ[t−1]

])1/p
, (6.272)

defined in terms of the data process. Note that with ρt |ξ[t−1] , defined in (6.270) or (6.272), is
associated coherent risk measure ρt which is obtained by replacing the conditional expecta-
tions with respective (unconditional) expectations. Note also that if random variableZ ∈ Zt
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is independent of ξ[t−1], then the conditional expectations on the right-hand sides of (6.270)–
(6.272) coincide with the respective unconditional expectations, and hence ρt |ξ[t−1](Z) does
not depend on ξ[t−1] and coincides with ρt (Z).

Let us also assume that the objective functions ft (xt , ξt ) and feasible sets Xt (xt−1, ξt )

are given in terms of the data process. Then formulation (6.263) takes the form

Min
x1,x2,...,xT

f1(x1)+ ρ2|ξ[1]

[
f2(x2(ξ[2]), ξ2)+ · · ·

+ ρT−1|ξ[T−2]

[
fT−1

(
xT−1(ξ[T−1]), ξT−1

)
+ ρT |ξ[T−1]

[
fT
(
xT (ξ[T ]), ξT

) ]]]
s.t. x1 ∈ X1, x t (ξ[t]) ∈ Xt (x t−1(ξ[t−1]), ξt ), t = 2, . . . , T ,

(6.273)

where the optimization is performed over feasible policies.
The corresponding dynamic programming equations (6.267)–(6.268) take the form

Qt(xt−1, ξ[t]) = inf
xt∈Xt (xt−1,ξt )

{
ft (xt , ξt )+Qt+1(xt , ξ[t])

}
, (6.274)

where

Qt+1(xt , ξ[t]) = ρt+1|ξ[t]
[
Qt+1(xt , ξ[t+1])

]
. (6.275)

Note that if the process ξt is stagewise independent, then the conditional expectations co-
incide with the respective unconditional expectations, and hence (similar to the risk neutral
case) functions Qt+1(xt , ξ[t]) = Qt+1(xt ) do not depend on ξ[t], and the cost-to-go functions
Qt(xt−1, ξt ) depend only on ξt rather than ξ[t].

Of course, if we set ρt |ξ[t−1](·) := E
[ · |ξ[t−1]

]
, then the above equations (6.274) co-

incide with the corresponding risk neutral dynamic programming equations. Also, in that
case the composite measure ρ̄ becomes the corresponding expectation operator and hence
formulation (6.264) coincides with the respective risk neutral formulation (3.3). Unfortu-
nately, in the general case it is quite difficult to write the composite measure ρ̄ in an explicit
form.

Multiperiod Coherent Risk Measures

It is possible to approach risk averse multistage stochastic programming in the following
framework. As before, let Ft be a filtration and Zt := Lp(�,Ft , P ), t = 1, . . . , T .
Consider the space Z := Z1×· · ·×ZT . Recall that since F1 = {∅, �}, the space Z1 can be
identified with R. With space Z we can associate its dual space Z∗ := Z∗1×· · ·×Z∗T , where
Z∗t = Lq(�,Ft , P ) is the dual of Zt . For Z = (Z1, . . . , ZT ) ∈ Z and ζ = (ζ1, . . . , ζT ) ∈
Z∗ their scalar product is defined in the natural way:

〈ζ, Z〉 :=
T∑
t=1

∫
�

ζt (ω)Zt(ω)dP (ω). (6.276)

Note that Z can be equipped with a norm, consistent with ‖ · ‖p norms of its components,
which makes it a Banach space. For example, we can use ‖Z‖ :=∑T

t=1 ‖Zt‖p. This norm
induces the dual norm ‖ζ‖∗ = max{‖ζ1‖q, . . . , ‖ζT ‖q} on the space Z∗.
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Consider a function % : Z → R. For such a function it makes sense to talk about
conditions (R1), (R2), and (R4) defined in section 6.3, with Z � Z′ understood componen-
twise. We say that %(·) is a multiperiod risk measure if it satisfies the respective conditions
(R1), (R2), and (R4). Similarly to the analysis of section 6.3, we have the following results.
By Theorem 7.79 it follows from convexity (condition (R1)) and monotonicity (condition
(R2)), and since %(·) is real valued, that %(·) is continuous. By the Fenchel–Moreau theo-
rem, we have that convexity, continuity, and positive homogeneity (condition (R4)) imply
the dual representation

%(Z) = sup
ζ∈A
〈ζ, Z〉, ∀Z ∈ Z, (6.277)

where A is a convex, bounded, and weakly∗ closed subset of Z∗ (and hence, by the Banach–
Alaoglu theorem, A is weakly∗ compact). Moreover, it is possible to show, exactly in the
same way as in the proof of Theorem 6.4, that condition (R2) holds iff ζ � 0 for every
ζ ∈ A. Conversely, if % is given in the form (6.277) with A being a convex weakly∗ compact
subset of Z∗ such that ζ � 0 for every ζ ∈ A, then % is a (real valued) multiperiod risk
measure. An analogue of the condition (R3) (translation equivariance) is more involved;
we will discuss this later.

For any multiperiod risk measure %, we can formulate the risk averse multistage
program

Min
x1,x2,...,xT

%
(
f1(x1), f2(x2(ω), ω), . . . , fT (xT (ω), ω)

)
s.t. x1 ∈ X1, x t (ω) ∈ Xt (x t−1(ω), ω), t = 2, . . . , T ,

(6.278)

where optimization is performed over Ft -measurable x t : �→ R, t = 1, . . . , T , satisfying
the corresponding constraints, and such that ft (x t (·), ·) ∈ Zt . The nonanticipativity is
enforced here by the Ft -measurability of x t (ω).

Let us make the following observation. If we are currently at a certain stage of the
system, then we know the past and hence it is reasonable to require that our decisions
be based on that information alone and should not involve unknown data. This is the
nonanticipativity constraint, which was discussed in the previous sections. However, if we
believe in the considered model, we also have an idea what can and what cannot happen
in the future. Think, for example, about a scenario tree representing evolution of the data
process. If we are currently at a certain node of that tree, representing the current state of
the system, we already know that only scenarios passing through this node can happen in
the future. Therefore, apart from the nonanticipativity constraint, it is also reasonable to
think about the following concept, which we refer to as the time consistency principle:

• At every state of the system, optimality of our decisions should not depend on scenarios
which we already know cannot happen in the future.

In order to formalize this concept of time consistency we need to say, of course, what
we optimize (say, minimize) at every state of the process, i.e., to formulate a respective opti-
mality criterion associated with every state of the system. The risk neutral formulation (3.3)
of multistage stochastic programming, discussed in Chapter 3, automatically satisfies the
time consistency requirement (see below). The risk averse case is more involved and needs
discussion. We say that multiperiod risk measure % is time consistent if the corresponding
multistage problem (6.278) satisfies the above principle of time consistency.
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Consider the class of functionals % : Z → R of the form (6.232), i.e., functionals
representable as

%(Z1, . . . , ZT ) = Z1 + ρ2|F1

[
Z2 + · · · + ρT−1|FT−2

[
ZT−1 + ρT |FT−1 [ZT ]

]]
, (6.279)

where ρt+1|Ft
: Zt+1 → Zt , t = 1, . . . , T − 1, is a sequence of conditional risk mappings.

It is not difficult to see that conditions (R′1), (R′2), and (R′4) (defined in section 6.7.2),
applied to every conditional risk mapping ρt+1|Ft

, imply respective conditions (R1), (R2),
and (R4) for the functional % of the form (6.279). That is, (6.279) defines a particular class
of multiperiod risk measures.

Of course, for % of the form (6.279), optimization problem (6.278) coincides with
the nested formulation (6.263). Recall that if the set � is finite, then we can formulate
multistage risk averse optimization in the framework of scenario trees. As it was discussed
in section 6.7.1, nested formulation (6.263) is implied by the approach where with every
node of the scenario tree is associated a coherent risk measure applied to the next stage of the
scenario tree. In particular, this allows us to write the corresponding dynamic programming
equations and implies that an associated optimal policy has the decomposition property.
That is, if the process reached a certain node at stage t , then the remaining decisions of the
optimal policy are also optimal with respect to this node considered as the starting point
of the process. It follows that the multiperiod risk measure of the form (6.279) is time
consistent and the corresponding approach to risk averse optimization satisfies the time
consistency principle.

It is interesting and important to give an intrinsic characterization of the nested ap-
proach to multiperiod risk measures. Unfortunately, this seems to be too difficult and we
will give only a partial answer to this question. Let observe first that for any Z = (Z1, . . . ,

ZT ) ∈ Z,

E[Z1 + · · · + ZT ] = Z1 + E|F1

[
Z2 + · · · + E|FT−1

[
ZT−1 + E|FT

[ZT ]
]]
, (6.280)

where E|Ft
[ · ] = E[ · |Ft ] are the corresponding conditional expectation operators. That is,

the expectation risk measure %(Z1, . . . , ZT ) := E[Z1 + · · · + ZT ] is time consistent and
the risk neutral formulation (3.3) of multistage stochastic programming satisfies the time
consistency principle.

Consider the following condition:

(R3-d) For any Z = (Z1, . . . , ZT ) ∈ Z, Yt ∈ Zt , t = 1, . . . , T − 1, and a ∈ R it holds
that

%(Z1, . . . , Zt , Zt+1 + Yt , . . . , ZT ) = %(Z1, . . . , Zt + Yt , Zt+1, . . . , ZT ), (6.281)

%(Z1 + a, . . . , ZT ) = a + %(Z1, . . . , ZT ). (6.282)

Proposition 6.42. Let % : Z → R be a multiperiod risk measure. Then the following
conditions (i)–(iii) are equivalent:

(i) There exists a coherent risk measure ρ̄ : ZT → R such that

%(Z1, . . . , ZT ) = ρ̄(Z1 + · · · + ZT ) ∀(Z1, . . . , ZT ) ∈ Z. (6.283)

(ii) Condition (R3-d) is fulfilled.
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(iii) There exists a nonempty, convex, bounded, and weakly∗ closed subset AT of
probability density functions PT ⊂ Z∗T such that the dual representation (6.277) holds with
the corresponding set A of the form

A = {(ζ1, . . . , ζT ) : ζT ∈ AT , ζt = E[ζT |Ft ], t = 1, . . . , T − 1
}
. (6.284)

Proof. If condition (i) is satisfied, then for any Z = (Z1, . . . , ZT ) ∈ Z and Yt ∈ Zt ,

%(Z1, . . . , Zt , Zt+1 + Yt , . . . , ZT ) = ρ̄(Z1 + · · · + ZT + Yt )
= %(Z1, . . . , Zt + Yt , Zt+1, . . . , ZT ).

Property (6.282) also follows by condition (R3) of ρ̄. That is, condition (i) implies condition
(R3-d).

Conversely, suppose that condition (R3-d) holds. Then forZ = (Z1, Z2, . . . , ZT )we
have that %(Z1, Z2, . . . , ZT ) = %(0, Z1 + Z2, . . . , ZT ). Continuing in this way, we obtain
that

%(Z1, . . . , ZT ) = %(0, . . . , 0, Z1 + · · · + ZT ).
Define

ρ̄(WT ) := %(0, . . . , 0,WT ), WT ∈ ZT .

Conditions (R1), (R2), and (R4) for % imply the respective conditions for ρ̄. Moreover, for
a ∈ R we have

ρ̄(WT + a) = %(0, . . . , 0,WT + a) = %(0, . . . , a,WT ) = · · · = %(a, . . . , 0,WT )

= a + %(0, . . . , 0,WT ) = ρ̄(WT )+ a.
That is, ρ̄ is a coherent risk measure, and hence (ii) implies (i).

Now suppose that condition (i) holds. By the dual representation (see Theorem 6.4
and Proposition 6.5), there exists a convex, bounded, and weakly∗ closed set AT ⊂ PT

such that
ρ̄(WT ) = sup

ζT ∈AT

〈ζT ,WT 〉, WT ∈ ZT . (6.285)

Moreover, for WT = Z1 + · · · + ZT we have 〈ζT ,WT 〉 = ∑T
t=1 E [ζT Zt ], and since Zt is

Ft -measurable,
E [ζT Zt ] = E

[
E[ζT Zt |Ft ]

] = E
[
ZtE[ζT |Ft ]

]
. (6.286)

That is, (i) implies (iii). Conversely, suppose that (iii) holds. Then (6.285) defines a coherent
risk measure ρ̄. The dual representation (6.277) together with (6.284) imply (6.283). This
shows that conditions (i) and (iii) are equivalent.

As we know, condition (i) of the above proposition is necessary for the multiperiod risk
measure % to be representable in the nested form (6.279). (See section 6.7.3 and equation
(6.265) in particular.) This condition, however, is not sufficient. It seems to be quite difficult
to give a complete characterization of coherent risk measures ρ̄ representable in the form

ρ̄(Z1 + · · · + ZT ) = Z1 + ρ2|F1

[
Z2 + · · · + ρT−1|FT−2

[
ZT−1 + ρT |FT−1 [ZT ]

]]
(6.287)
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for all Z = (Z1, . . . , ZT ) ∈ Z, and some sequence ρt+1|Ft
: Zt+1 → Zt , t = 1, . . . , T − 1,

of conditional risk mappings.

Remark 26. Of course, condition ζt = E[ζT |Ft ], t = 1, . . . , T − 1, of (6.284) can be
written as

ζt = E[ζt+1|Ft ], t = 1, . . . , T − 1. (6.288)

That is, if representation (6.283) holds for some coherent risk measure ρ̄(·), then any element
(ζ1, . . . , ζT ) of the dual set A, in the representation (6.277 ) of %(·), forms a martingale
sequence.

Example 6.43. Let ρτ |Fτ−1 : Zτ → Zτ−1 be a conditional risk mapping for some 2 ≤ τ ≤
T , and let ρ1(Z1) := Z1, Z1 ∈ R, and ρt |Ft−1 := E|Ft−1 , t = 2, . . . , T , t �= τ . That is, we
take here all conditional risk mappings to be the respective conditional expectations except
(an arbitrary) conditional risk mapping ρτ |Fτ−1 at the period t = τ . It follows that

%(Z1, . . . , ZT ) = E
[
Z1 + · · · + Zτ−1 + ρτ |Fτ−1

[
E|Fτ
[Zτ + · · · + ZT ]

]]
= E

[
ρτ |Fτ−1

[
E|Fτ
[Z1 + · · · + ZT ]

]]
.

(6.289)

That is,

ρ̄(WT ) = E
[
ρτ |Fτ−1 [E|Fτ

[WT ]
]]
, WT ∈ ZT , (6.290)

is the corresponding (composite) coherent risk measure.
Coherent risk measures of the form (6.290) have the following property:

ρ̄(WT + Yτ−1) = ρ̄(WT )+ E[Yτ−1], ∀WT ∈ ZT , ∀Yτ−1 ∈ Zτ−1. (6.291)

By (6.284) the above condition (6.291) means that the corresponding set A, defined in
(6.284), has the additional property that ζt = E[ζT ] = 1, t = 1, . . . , τ − 1, i.e., these
components of ζ ∈ A are constants (equal to one).

In particular, for τ = T the composite risk measure (6.290) becomes

ρ̄(WT ) = E
[
ρT |FT−1 [WT ]

]
, WT ∈ ZT . (6.292)

Further, let ρT |FT−1 : ZT → ZT−1 be the conditional mean absolute deviation, i.e.,

ρT |FT−1 [ZT ] := E|FT−1

[
ZT + c

∣∣ZT − E|FT−1 [ZT ]
∣∣], (6.293)

c ∈ [0, 1/2]. The corresponding composite coherent risk measure here is

ρ̄(WT ) = E[WT ] + cE
∣∣WT − E|FT−1 [WT ]

∣∣ , WT ∈ ZT . (6.294)

For T > 2 the risk measure (6.294) is different from the mean absolute deviation
measure

ρ̃(WT ) := E[WT ] + cE
∣∣WT − E[WT ]

∣∣, WT ∈ ZT , (6.295)

and that the multiperiod risk measure

%(Z1, . . . , ZT ) := ρ̃(Z1+· · ·+ZT ) = E[Z1+· · ·+ZT ]+cE
∣∣Z1+· · ·+ZT−E[Z1+· · ·+ZT ]

∣∣
corresponding to (6.295) is not time consistent.
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Risk Averse Multistage Portfolio Selection

We discuss now the example of portfolio selection. A nested formulation of multistage
portfolio selection can be written as

Min
{
ρ̄(−WT ) := ρ1

[
· · · ρT−1|WT−2

[
ρT |WT−1 [−WT ]

]]}
s.t. Wt+1 =

n∑
i=1

ξi,t+1xit ,

n∑
i=1

xit = Wt, xt ≥ 0, t = 0, · · · , T − 1.
(6.296)

We use here conditional risk mappings formulated in terms of the respective conditional
expectations, like the conditional AV@R (see (6.270)) and conditional mean semideviations
(see (6.272)), and the notation ρt |Wt−1 stands for a conditional risk mapping defined in terms
of the respective conditional expectations given Wt−1. By ρt (·) we denote the correspond-
ing (unconditional) risk measures. For example, to the conditional AV@Rα( · |ξ[t−1]) corre-
sponds the respective (unconditional) AV@Rα( · ). If we set ρt |Wt−1 := E|Wt−1 , t = 1, . . . , T ,
then since

E
[ · · ·E[E [−WT |WT−1]

∣∣WT−2
]] = E[−WT ],

we obtain the risk neutral formulation. Note also that in order to formulate this as a mini-
mization, rather than a maximization, problem we changed the sign of ξit .

Suppose that the random process ξt is stagewise independent. Let us write dynamic
programming equations. At the last stage we have to solve problem

Min
xT−1≥0,WT

ρT |WT−1 [−WT ]

s.t. WT =
n∑
i=1

ξiT xi,T−1,

n∑
i=1

xi,T−1 = WT−1.
(6.297)

Since WT−1 is a function of ξ[T−1], by the stagewise independence we have that ξT , and
hence WT , are independent of WT−1. It follows by positive homogeneity of ρT that the
optimal value of (6.297) is QT−1(WT−1) = WT−1νT−1, where νT−1 is the optimal value of

Min
xT−1≥0,WT

ρT [−WT ]

s.t. WT =
n∑
i=1

ξiT xi,T−1,

n∑
i=1

xi,T−1 = 1,
(6.298)

and an optimal solution of (6.297) is x̄T−1(WT−1) = WT−1x
∗
T−1, where x∗T−1 is an optimal

solution of (6.298). Continuing in this way, we obtain that the optimal policy x̄t (Wt) here
is myopic. That is, x̄t (Wt) = Wtx

∗
t , where x∗t is an optimal solution of

Min
xt≥0,Wt+1

ρt+1[−Wt+1]

s.t. Wt+1 =
n∑
i=1

ξi,t+1xit ,

n∑
i=1

xit = 1
(6.299)

(compare with section 1.4.3). Note that the composite risk measure ρ̄ can be quite compli-
cated here.
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An alternative, multiperiod risk averse approach can be formulated as

Min ρ[−WT ]

s.t. Wt+1 =
n∑
i=1

ξi,t+1xit ,

n∑
i=1

xit = Wt, xt ≥ 0, t = 0, . . . , T − 1,
(6.300)

for an explicitly defined risk measure ρ. Let, for example,

ρ(·) := (1− β)E[ · ] + βAV@Rα( · ), β ∈ [0, 1], α ∈ (0, 1). (6.301)

Then problem (6.300) becomes

Min (1− β)E[−WT ] + β
(− r + α−1

E[r −WT ]+
)

s.t. Wt+1 =
n∑
i=1

ξi,t+1xit ,

n∑
i=1

xit = Wt, xt ≥ 0, t = 0, . . . , T − 1,
(6.302)

where r ∈ R is the (additional) first-stage decision variable. After r is decided, at the
first stage, the problem comes to minimizing E[U(WT )] at the last stage, where U(W) :=
(1− β)W + βα−1[W − r]+ can be viewed as a disutility function.

The respective dynamic programming equations become as follows. The last-stage
value function QT−1(WT−1, r) is given by the optimal value of the problem

Min
xT−1≥0,WT

E
[− (1− β)WT + βα−1[r −WT ]+

]
s.t. WT =

n∑
i=1

ξiT xi,T−1,

n∑
i=1

xi,T−1 = WT−1.
(6.303)

Proceeding in this way, at stages t = T − 2, . . . , 1 we consider the problems

Min
xt≥0,Wt+1

E {Qt+1(Wt+1, r)}

s.t. Wt+1 =
n∑
i=1

ξi,t+1xit ,

n∑
i=1

xit = Wt,
(6.304)

whose optimal value is denoted Qt(Wt, r). Finally, at stage t = 0 we solve the problem

Min
x0≥0,r,W1

− βr + E[Q1(W1, r)]

s.t. W1 =
n∑
i=1

ξi1xi0,

n∑
i=1

xi0 = W0.
(6.305)

In the above multiperiod risk averse approach, the optimal policy is not myopic and the
property of time consistency is not satisfied.
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Risk Averse Multistage Inventory Model

Consider the multistage inventory problem (1.17). The nested risk averse formulation of
that problem can be written as

Min
xt≥yt

c1(x1 − y1)+ ρ1

[
ψ1(x1,D1)+ c2(x2 − y2)+ ρ2|D[1]

[
ψ2(x2,D2)+ · · ·

+ cT−1(xT−1 − yT−1)+ ρT−1|D[T−2]
[
ψT−1(xT−1,DT−1)

+ cT (xT − yT )+ ρT |D[T−1] [ψT (xT ,DT )]
]]]

s.t. yt+1 = xt −Dt, t = 1, . . . , T − 1,

(6.306)

where y1 is a given initial inventory level, ψt(xt , dt ) := bt [dt − xt ]+ + ht [xt − dt ]+, and
ρt |D[t−1](·), t = 2, . . . , T , are chosen conditional risk mappings. Recall that the notation
ρt |D[t−1](·) stands for a conditional risk mapping obtained by using conditional expectations,
conditional on D[t−1], and note that ρ1(·) is real valued and is a coherent risk measure.

As discussed earlier, there are two equivalent interpretations of problem (6.306). We
can write it as an optimization problem with respect to feasible policies x t (d[t−1]) (compare
with (6.273)):

Min
x1,x2,...,xT

c1(x1 − y1)+ ρ1

[
ψ1(x1,D1)+ c2(x2(D1)− x1 +D1)

+ ρ2|D1

[
ψ2(x2(D1),D2)+ · · ·

+ cT−1(xT−1(D[T−2])− xT−2(D[T−3])+DT−2)

+ ρT−1|D[T−2]
[
ψT−1(xT−1(D[T−2]),DT−1)

+ cT (xT (D[T−1])− xT−1(D[T−2])+DT−1)

+ ρT |D[T−1] [ψT (xT (D[T−1]),DT )]
]]]

s.t. x1 ≥ y1, x2(D1) ≥ x1 −D1,

x t (D[t−1]) ≥ x t−1(D[t−2])−Dt−1, t = 3, . . . , T .

(6.307)

Alternatively, we can write dynamic programming equations. At the last stage t = T ,
for observed inventory level yT , we need to solve the problem

Min
xT≥yT

cT (xT − yT )+ ρT |D[T−1]
[
ψT (xT ,DT )

]
. (6.308)

The optimal value of problem (6.308) is denoted QT (yT ,D[T−1]). Continuing in this way,
we write for t = T − 1, . . . , 2 the following dynamic programming equations:

Qt(yt ,D[t−1]) = min
xt≥yt

ct (xt − yt )+ ρt |D[t−1]
[
ψ(xt ,Dt)+Qt+1

(
xt −Dt,D[t]

) ]
.

(6.309)
Finally, at the first stage we need to solve the problem

Min
x1≥y1

c1(x1 − y1)+ ρ1
[
ψ(x1,D1)+Q2 (x1 −D1,D1)

]
. (6.310)
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Suppose now that the process Dt is stagewise independent. Then, by exactly the
same argument as in section 1.2.3, the cost-to-go (value) function Qt(yt , d[t−1]) = Qt(yt ),
t = 2, . . . , T , is independent of d[t−1], and by convexity arguments the optimal policy
x̄t = x̄ t (d[t−1]) is a basestock policy. That is, x̄t = max{yt , x∗t }, where x∗t is an optimal
solution of

Min
xt
ctxt + ρt

[
ψ(xt ,Dt)+Qt+1 (xt −Dt)

]
. (6.311)

Recall that ρt denotes the coherent risk measure corresponding to the conditional risk map-
ping ρt |D[t−1] .

Exercises
6.1. Let Z ∈ L1(�,F , P ) be a random variable with cdf H(z) := P {Z ≤ z}. Note

that limz↓t H (z) = H(t) and denote H−(t) := limz↑t H (z). Consider functions
φ1(t) := E[t − Z]+, φ2(t) := E[Z − t]+ and φ(t) := β1φ1(t) + β2φ2(t), where
β1, β2 are positive constants. Show thatφ1,φ2, andφ are real valued convex functions
with subdifferentials

∂φ1(t) = [H−(t),H(t)] and ∂φ2(t) = [−1+H−(t),−1+H(t)],

∂φ(t) = [(β1 + β2)H
−(t)− β2, (β1 + β2)H(t)− β2].

Conclude that the set of minimizers of φ(t) over t ∈ R is the (closed) interval of
[β2/(β1 + β2)]-quantiles of H(·).

6.2. (i) Let Y ∼ N (µ, σ 2). Show that

V@Rα(Y ) = µ+ zασ, (6.312)

where zα := �−1(1− α), and

AV@Rα(Y ) = µ+
σ

α
√

2π
e−z

2
α/2. (6.313)

(ii) Let Y 1, . . . , YN be an iid sample of Y ∼ N (µ, σ 2). Compute the asymptotic
variance and asymptotic bias of the sample estimator θ̂N , of θ∗ = AV@Rα(Y ),
defined on page 300.

6.3. Consider the chance constraint

Pr

{
n∑
i=1

ξixi ≥ b
}
≥ 1− α, (6.314)

where ξ ∼ N (µ,Σ) (see problem (1.43)). Note that this constraint can be written
as

V@Rα

(
b −

n∑
i=1

ξixi

)
≤ 0. (6.315)
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Consider the following constraint:

AV@Rγ

(
b −

n∑
i=1

ξixi

)
≤ 0. (6.316)

Show that constraints (6.314) and (6.316) are equivalent if zα = 1
γ
√

2π
e−z

2
γ /2.

6.4. Consider the function φ(x) := AV@Rα(Fx), where Fx = Fx(ω) = F(x, ω) is
a real valued random variable, on a probability space (�,F , P ), depending on
x ∈ R

n. Assume that (i) for a.e. ω ∈ � the function F(·, ω) is continuously
differentiable on a neighborhood V of a point x0 ∈ R

n, (ii) the families |F(x, ω)|,
x ∈ V , and ‖∇xF (x, ω)‖, x ∈ V , are dominated by a P -integrable function, and
(iii) the random variable Fx has continuous distribution for all x ∈ V . Show that
under these conditions, φ(x) is directionally differentiable at x0 and

φ′(x0, d) = α−1 inf
t∈[a,b]E

{
dT∇x([F(x0, ω)− t]+)

}
, (6.317)

where a and b are the respective left- and right-side (1− α)-quantiles of the cdf of
the random variable Fx0 . Conclude that if, moreover, a = b = V@Rα(Fx0), then
φ(·) is differentiable at x0 and

∇φ(x0) = α−1
E
[
1{Fx0>a}(ω)∇xF (x0, ω)

]
. (6.318)

Hint: Use Theorem 7.44 together with the Danskin theorem, Theorem 7.21.
6.5. Show that the set of saddle points of the minimax problem (6.190) is given by
{µ} × [γ ∗, γ ∗∗], where γ ∗ and γ ∗∗ are defined in (6.192).

6.6. Consider the absolute semideviation risk measure

ρc(Z) := E {Z + c[Z − E(Z)]+} , Z ∈ L1(�,F , P ),

where c ∈ [0, 1], and the following risk averse optimization problem:

Min
x∈X E

{
G(x, ξ)+ c[G(x, ξ)− E(G(x, ξ))]+

}︸ ︷︷ ︸
ρc[G(x,ξ)]

. (6.319)

Viewing the optimal value of problem (6.319) as the Von Mises statistical functional
of the probability measure P , compute its influence function.
Hint: Use derivations of section 6.5.3 together with the Danskin theorem.

6.7. Consider the risk averse optimization problem (6.162) related to the inventory model.
Let the corresponding risk measure be of the form ρλ(Z) = E[Z] + λD(Z), where
D(Z) is a measure of variability of Z = Z(ω) and λ is a nonnegative trade-off
coefficient between expectation and variability. Higher values of λ reflect a higher
degree of risk aversion. Suppose that ρλ is a coherent risk measure for all λ ∈ [0, 1]
and let Sλ be the set of optimal solutions of the corresponding risk averse problem.
Suppose that the sets S0 and S1 are nonempty.

Show that if S0∩S1 = ∅, then Sλ is monotonically nonincreasing or monotonically
nondecreasing inλ ∈ [0, 1]depending on whetherS0 > S1 orS0 < S1. IfS0∩S1 �= ∅,
then Sλ = S0 ∩ S1 for any λ ∈ (0, 1).
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6.8. Consider the news vendor problem with cost function

F(x, d) = cx + b[d − x]+ + h[x − d]+, where b > c ≥ 0, h > 0,

and the minimax problem

Min
x≥0

sup
H∈M

EH [F(x,D)], (6.320)

where M is the set of cumulative distribution functions (probability measures) sup-
ported on (final) interval [l, u] ⊂ R+ and having a given mean d̄ ∈ [l, u]. Show
that for any x ∈ [l, u] the maximum of EH [F(x,D)] over H ∈M is attained at the
probability measure H̄ = p#(l) + (1 − p)#(u), where p = (u − d̄)/(u − l), i.e.,
the cdf H̄ (·) is the step function

H̄ (z) =
 0 if z < l,

p if l ≤ z < u,

1 if u ≤ z.

Conclude that H̄ is the cdf specified in Proposition 6.38 and that x̄ = H̄−1(κ), where
κ = (b − c)/(b + h), is the optimal solution of problem (6.320). That is, x̄ = l if
κ < p and x̄ = u if κ > p, where κ = b−c

b+h .
6.9. Consider the following version of the news vendor problem. A news vendor has to

decide about quantity x of a product to purchase at the cost of c per unit. He can
sell this product at the price s per unit and unsold products can be returned to the
vendor at the price of r per unit. It is assumed that 0 ≤ r < c < s. If the demand
D turns out to be greater than or equal to the order quantity x, then he makes profit
sx − cx = (s − c)x, while if D is less than x, his profit is sD + r(x − D) − cx.
Thus the profit is a function of x and D and is given by

F(x,D) =
{
(s − c)x if x ≤ D,
(r − c)x + (s − r)D if x > D.

(6.321)

(a) Assuming that demand D ≥ 0 is a random variable with cdf H(·), show that
the expectation function f (x) := EH [F(x,D)] can be represented in the form

f (x) = (s − c)x − (s − r)
∫ x

0
H(z)dz. (6.322)

Conclude that the set of optimal solutions of the problem

Max
x≥0

{
f (x) := EH [F(x,D)]

}
(6.323)

is an interval given by the set of κ-quantiles of the cdf H(·) with κ := (s −
c)/(s − r).

(b) Consider the following risk averse version of the news vendor problem:

Min
x≥0

{
φ(x) := ρ[−F(x,D)]}. (6.324)
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Here ρ is a real valued coherent risk measure representable in the form (6.165)
and H ∗ is the corresponding reference cdf.
(i) Show that the function φ(x) = ρ[−F(x,D)] can be represented in the form

φ(x) = (c − s)x + (s − r)
∫ x

0
H̄ (z)dz (6.325)

for some cdf H̄ .
(ii) Show that if ρ(·) := AV@Rα(·), then H̄ (z) = max

{
α−1H ∗(z), 1

}
. Con-

clude that in that case, optimal solutions of the risk averse problem (6.324) are
smaller than the risk neutral problem (6.323).

6.10. Let Zi := Lp(�,Fi , P ), i = 1, 2, with F1 ⊂ F2, and let ρ : Z2 → Z1.

(a) Show that if ρ is a conditional risk mapping, Y ∈ Z1 and Y � 0, then ρ(YZ) =
Yρ(Z) for any Z ∈ Z2.

(b) Suppose that the mapping ρ satisfies conditions (R′1)–(R′3), but not necessarily
the positive homogeneity condition (R′4). Show that it can be represented in
the form

[ρ(Z)](ω) = sup
µ∈C

{
Eµ[Z|F1](ω)− [ρ∗(µ)](ω)

}
, (6.326)

where C is a set of probability measures on (�,F2) and

[ρ∗(µ)](ω) = sup
Z∈Z2

{
Eµ[Z|F1](ω)− [ρ(Z)](ω)

}
. (6.327)

You may assume that F1 has a countable number of elementary events.

6.11. Consider the following risk averse approach to multistage portfolio selection. Let
ξ1, . . . , ξT be the respective data process (of random returns) and consider the fol-
lowing chance constrained nested formulation:

Max E[WT ]

s.t. Wt+1 =
n∑
i=1

ξi,t+1xit ,

n∑
i=1

xit = Wt, xt ≥ 0,

Pr
{
Wt+1 ≥ κWt

∣∣ ξ[t]} ≥ 1− α, t = 0, . . . , T − 1,

(6.328)

where κ ∈ (0, 1) and α ∈ (0, 1) are given constants. Dynamic programming equa-
tions for this problem can be written as follows. At the last stage t = T − 1, the
cost-to-go functionQT−1(WT−1, ξ[T−1]) is given by the optimal value of the problem

Max
xT−1≥0,WT

E
[
WT

∣∣ ξ[T−1]
]

s.t. WT =
n∑
i=1

ξiT xi,T−1,

n∑
i=1

xi,T−1 = WT−1,

Pr
{
WT ≥ κWT−1

∣∣ ξ[T−1]
}
,

(6.329)
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and at stage t = T − 2, . . . , 1, the cost-to-go function Qt(Wt, ξ[t]) is given by the
optimal value of the problem

Max
xt≥0,Wt+1

E
[
Qt+1(Wt+1, ξ[t+1])

∣∣ ξ[t]]
s.t. Wt+1 =

n∑
i=1

ξi,t+1xi,t ,

n∑
i=1

xi,t = Wt,

Pr
{
Wt+1 ≥ κWt

∣∣ ξ[t]} .
(6.330)

Assuming that the process ξt is stagewise independent, show that the optimal policy
is myopic and is given by x̄t (Wt) = Wtx

∗
t , where x∗t is an optimal solution of the

problem

Max
xt≥0

n∑
i=1

E
[
ξi,t+1

]
xi,t

s.t.
n∑
i=1

xi,t = 1, Pr

{
n∑
i=1

ξi,t+1xi,t ≥ κ
}
≥ 1− α.

(6.331)
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Chapter 7

Background Material

Alexander Shapiro

In this chapter we discuss some concepts and results from convex analysis, probability,
functional analysis, and optimization theories needed for a development of the material in
this book. Of course, a careful derivation of the required material goes far beyond the scope
of this book. We give or outline proofs of some results while others are referred to the
literature. Of course, this choice is somewhat subjective.

We denote by R
n the standard n-dimensional vector space, of (column) vectors x =

(x1, . . . , xn)
T, equipped with the scalar product xTy =∑n

i=1 xiyi . Unless stated otherwise,
we denote by ‖ · ‖ the Euclidean norm ‖x‖ = √xTx. The notation AT stands for the
transpose of matrix (vector) A, and := stands for equal by definition, to distinguish it from
the usual equality sign. By R := R ∪ {−∞} ∪ {+∞} we denote the set of extended real
numbers. The domain of an extended real valued function f : Rn→ R is defined as

domf := {x ∈ R
n : f (x) < +∞}.

It is said that f is proper if f (x) > −∞ for all x ∈ R
n and its domain, domf , is

nonempty. The function f is said to be lower semicontinuous at a point x0 ∈ R
n if

f (x0) ≤ lim inf x→x0 f (x). It is said that f is lower semicontinuous if it is lower semi-
continuous at every point of R

n. The largest lower semicontinuous function which is less
than or equal to f is denoted lsc f . It is not difficult to show that f is lower semicontinuous
iff its epigraph

epif := {(x, α) ∈ R
n+1 : f (x) ≤ α}

is a closed subset of R
n+1. We often have to deal with polyhedral functions.

Definition 7.1. An extended real valued function f : Rn → R is called polyhedral if it is
proper convex and lower semicontinuous, its domain is a convex closed polyhedron, and
f (·) is piecewise linear on its domain.

333
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By 1A(·) we denote the characteristic55 function

1A(x) :=
{

1 if x ∈ A,
0 if x �∈ A (7.1)

and by IA(·) the indicator function

IA(x) :=
{

0 if x ∈ A,
+∞ if x �∈ A (7.2)

of set A.
By cl(A) we denote the topological closure of set A ⊂ R

n. For sets A,B ⊂ R
n we

denote by
dist(x,A) := inf x ′∈A ‖x − x ′‖ (7.3)

the distance from x ∈ R
n to A, and by

D(A,B) := supx∈A dist(x, B) and H(A,B) := max
{
D(A,B),D(B,A)

}
(7.4)

the deviation of the set A from the set B and the Hausdorff distance between the sets A and
B, respectively. By the definition, dist(x,A) = +∞ if A is empty, and H(A,B) = +∞ if
A or B is empty.

7.1 Optimization and Convex Analysis

7.1.1 Directional Differentiability

Consider a mapping g : Rn→ R
m. It is said that g is directionally differentiable at a point

x0 ∈ R
n in a direction h ∈ R

n if the limit

g′(x0, h) := lim
t↓0

g(x0 + th)− g(x0)

t
(7.5)

exists, in which case g′(x0, h) is called the directional derivative of g(x) at x0 in the direc-
tion h. If g is directionally differentiable at x0 in every direction h ∈ R

n, then it is said
that g is directionally differentiable at x0. Note that whenever exists, g′(x0, h) is positively
homogeneous in h, i.e., g′(x0, th) = tg′(x0, h) for any t ≥ 0. If g(x) is directionally differ-
entiable at x0 and g′(x0, h) is linear in h, then it is said that g(x) is Gâteaux differentiable
at x0. Equation (7.5) can be also written in the form

g(x0 + h) = g(x0)+ g′(x0, h)+ r(h), (7.6)

where the remainder term r(h) is such that r(th)/t → 0, as t ↓ 0, for any fixed h ∈ R
n.

If, moreover, g′(x0, h) is linear in h and the remainder term r(h) is “uniformly small” in
the sense that r(h)/‖h‖ → 0 as h → 0, i.e., r(h) = o(h), then it is said that g(x) is
differentiable at x0 in the sense of Fréchet, or simply differentiable at x0.

Clearly, Fréchet differentiability implies Gâteaux differentiability. The converse of
that is not necessarily true. However, the following theorem shows that for locally Lipschitz

55Function 1A(·) is often also called the indicator function of the set A. We call it here characteristic
function in order to distinguish it from the indicator function IA(·).



SPbook
2009/8/20
page 335

�

�

�

�

�

�

�

�

7.1. Optimization and Convex Analysis 335

continuous mappings both concepts do coincide. Recall that a mapping (function) g : Rn→
R
m is said to be Lipschitz continuous on a set X ⊂ R

n if there is a constant c ≥ 0 such that

‖g(x1)− g(x2)‖ ≤ c‖x1 − x2‖, ∀x1, x2 ∈ X.
If g is Lipschitz continuous on a neighborhood of every point ofX (probably with different
Lipschitz constants), then it is said that g is locally Lipschitz continuous on X.

Theorem 7.2. Suppose that mapping g : Rn → R
m is Lipschitz continuous in a neighbor-

hood of a point x0 ∈ R
n and directionally differentiable at x0. Then g′(x0, ·) is Lipschitz

continuous on R
n and

lim
h→0

g(x0 + h)− g(x0)− g′(x0, h)

‖h‖ = 0. (7.7)

Proof. For h1, h2 ∈ R
n we have

‖g′(x0, h1)− g′(x0, h2)‖ = lim
t↓0

‖g(x0 + th1)− g(x0 + th2)‖
t

.

Also, since g is Lipschitz continuous near x0, say, with Lipschitz constant c, we have that
for t > 0, small enough

‖g(x0 + th1)− g(x0 + th2)‖ ≤ ct‖h1 − h1‖.
It follows that ‖g′(x0, h1)− g′(x0, h2)‖ ≤ c‖h1 − h1‖ for any h1, h2 ∈ R

n, i.e., g′(x0, ·) is
Lipschitz continuous on R

n.
Consider now a sequence tk ↓ 0 and a sequence {hk} converging to a point h ∈ R

n.
We have that

g(x0 + tkhk)− g(x0) =
(
g(x0 + tkh)− g(x0)

)+ (g(x0 + tkhk)− g(x0 + tkh)
)

and

‖g(x0 + tkhk)− g(x0 + tkh)‖ ≤ ctk‖hk − h‖
for all k large enough. It follows that

g′(x0, h) = lim
k→∞

g(x0 + tkhk)− g(x0)

tk
. (7.8)

The proof of (7.7) can be completed now by arguing by a contradiction and using the fact
that every bounded sequence in R

n has a convergent subsequence.

We have that g is differentiable at a point x ∈ R
n iff

g(x + h)− g(x) = [∇g(x)]h+ o(h), (7.9)

where ∇g(x) is the so-called m × n Jacobian matrix of partial derivatives
[
∂gi(x)/∂xj

]
,

i = 1, . . . , m, j = 1, . . . , n. If m = 1, i.e., g(x) is real valued, we call ∇g(x) the gradient
of g at x. In that case, (7.9) takes the form

g(x + h)− g(x) = hT∇g(x)+ o(h). (7.10)
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Note that when g(·) is real valued, we write its gradient ∇g(x) as a column vector. This is
why there is a slight discrepancy between the notation of (7.10) and notation of (7.9), where
the Jacobian matrix is of order m × n. If g(x, y) is a function (mapping) of two vector
variables x and y and we consider derivatives of g(·, y) while keeping y constant, we write
the corresponding gradient (Jacobian matrix) as ∇xg(x, y).

Clarke Generalized Gradient

Consider now a locally Lipschitz continuous function f : U → R defined on an open
set U ⊂ R

n. By Rademacher’s theorem we have that f (x) is differentiable on U almost
everywhere. That is, the subset of U where f is not differentiable has Lebesgue measure
zero. At a point x̄ ∈ U consider the set of all limits of the form limk→∞ ∇f (xk) such that
xk → x̄ and f is differentiable at xk . This set is nonempty and compact, and its convex
hull is called Clarke generalized gradient of f at x̄ and denoted ∂◦f (x̄). The generalized
directional derivative of f at x̄ is defined as

f ◦(x̄, d) := lim sup
x→x̄
t↓0

f (x + td)− f (x)
t

. (7.11)

It is possible to show that f ◦(x̄, ·) is the support function of the set ∂◦f (x̄). That is,

f ◦(x̄, d) = sup
z∈∂◦f (x̄)

zTd, ∀d ∈ R
n. (7.12)

Function f is called regular in the sense of Clarke, or Clarke-regular, at x̄ ∈ R
n if

f (·) is directionally differentiable at x̄ and f ′(x̄, ·) = f ◦(x̄, ·). Any convex function f
is Clarke-regular and its Clarke generalized gradient ∂◦f (x̄) coincides with the respective
subdifferential in the sense of convex analysis. For a concave function f , the function −f
is Clarke-regular, and we shall call it Clarke-regular with the understanding that we modify
the regularity requirement above to apply to −f . In this case we have also ∂◦(−f )(x̄) =
−∂◦f (x̄).

We say that f is continuously differentiable at a point x̄ ∈ U if ∂◦f (x̄) is a singleton.
In other words, f is continuously differentiable at x̄ if f is differentiable at x̄ and ∇f (x) is
continuous at x̄ on the set where f is differentiable. Note that continuous differentiability
of f at a point x̄ does not imply differentiability of f at every point of any neighborhood
of the point x̄.

Consider a composite real valued function f (x) := g(h(x)) with h : Rm → R
n and

g : Rn→ R, and assume that g and h are locally Lipschitz continuous. Then

∂◦f (x) ⊂ cl
{
conv

(∑n
i=1 αivi : α ∈ ∂◦g(y), vi ∈ ∂◦hi(x), i = 1, . . . , n

)}
, (7.13)

where α = (α1, . . . , αn), y = h(x) and h1, . . . , hn are components of h. The equality in
(7.13) holds true if any one of the following conditions is satisfied: (i) g and hi , i = 1, . . . n,
are Clarke-regular and every element in ∂◦g(y) has nonnegative components, (ii) g is
differentiable and n = 1, and (iii) g is Clarke-regular and h is differentiable.

7.1.2 Elements of Convex Analysis

Let C be a subset of R
n. It is said that x ∈ R

n is an interior point of C if there is a
neighborhood N of x such that N ⊂ C. The set of interior points of C is denoted int(C).
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The convex hull of C, denoted conv(C), is the smallest convex set including C. It is said
that C is a cone if for any x ∈ C and t ≥ 0 it follows that tx ∈ C. The polar cone of a cone
C ⊂ R

n is defined as

C∗ := {z ∈ R
n : zTx ≤ 0, ∀ x ∈ C} . (7.14)

We have that the polar of the polar cone C∗∗ = (C∗)∗ is equal to the topological closure of
the convex hull of C and that C∗∗ = C iff the cone C is convex and closed.

Let C be a nonempty convex subset of R
n. The affine space generated by C is the

space of points in R
n of the form tx + (1− t)y, where x, y ∈ C and t ∈ R. It is said that

a point x ∈ R
n belongs to the relative interior of the set C if x is an interior point of C

relative to the affine space generated by C, i.e., there exists a neighborhood of x such that
its intersection with the affine space generated by C is included in C. The relative interior
set of C is denoted ri(C). Note that if the interior of C is nonempty, then the affine space
generated byC coincides with R

n, and hence in that case ri(C) = int(C). Note also that the
relative interior of any convex set C ⊂ R

n is nonempty. The recession cone of the set C is
formed by vectors h ∈ R

n such that for any x ∈ C and any t > 0 it follows that x+ th ∈ C.
The recession cone of the convex set C is convex and is closed if the set C is closed. Also
the convex set C is bounded iff its recession cone is {0}.

Theorem 7.3 (Helly). Let Ai , i ∈ I, be a family of convex subsets of R
n. Suppose that the

intersection of any n+ 1 sets of this family is nonempty and either the index set I is finite
or the sets Ai , i ∈ I, are closed and there exists no common nonzero recession direction to
the sets Ai , i ∈ I. Then the intersection of all sets Ai , i ∈ I, is nonempty.

The support function s(·) = sC(·) of a (nonempty) set C ⊂ R
n is defined as

s(h) := supz∈C zTh. (7.15)

The support function s(·) is convex, positively homogeneous, and lower semicontinuous.
The support function of a set C coincides with the support function of the set cl(convC).
If s1(·) and s2(·) are support functions of convex closed sets C1 and C2, respectively, then
s1(·) ≤ s2(·) iff C1 ⊂ C2 and s1(·) = s2(·) iff C1 = C2.

Let C ⊂ R
n be a convex closed set. The normal cone to C at a point x0 ∈ C is

defined as

NC(x0) :=
{
z : zT(x − x0) ≤ 0, ∀x ∈ C} . (7.16)

By definition NC(x0) := ∅ if x0 �∈ C. The topological closure of the radial cone RC(x0) :=
∪t>0 {t (C − x0)} is called the tangent cone toC at x0 ∈ C, and denoted TC(x0). Both cones
TC(x0) and NC(x0) are closed and convex, and each one is the polar cone of the other.

Consider an extended real valued function f : R
n → R. It is not difficult to show

that f is convex iff its epigraph epif is a convex subset of R
n+1. Suppose that f is a

convex function and x0 ∈ R
n is a point such that f (x0) is finite. Then f (x) is directionally

differentiable at x0, and its directional derivative f ′(x0, ·) is an extended real valued convex
positively homogeneous function and can be written in the form

f ′(x0, h) = inf
t>0

f (x0 + th)− f (x0)

t
. (7.17)
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Moreover, if x0 is in the interior of the domain of f (·), then f (x) is Lipschitz continuous
in a neighborhood of x0, the directional derivative f ′(x0, h) is finite valued for any h ∈ R

n,
and f (x) is differentiable at x0 iff f ′(x0, h) is linear in h.

It is said that a vector z ∈ R
n is a subgradient of f (x) at x0 if

f (x)− f (x0) ≥ zT(x − x0), ∀x ∈ R
n. (7.18)

The set of all subgradients of f (x), at x0, is called the subdifferential and denoted ∂f (x0).
The subdifferential ∂f (x0) is a closed convex subset of R

n. It is said that f is subdiffer-
entiable at x0 if ∂f (x0) is nonempty. If f is subdifferentiable at x0, then the normal cone
Ndom f (x0), to the domain of f at x0, forms the recession cone of the set ∂f (x0). It is also
clear that if f is subdifferentiable at x0, then f (x) > −∞ for any x and hence f is proper.

By the duality theory of convex analysis we have that if the directional derivative
f ′(x0, ·) is lower semicontinuous, then

f ′(x0, h) = sup
z∈∂f (x0)

zTh, ∀h ∈ R
n, (7.19)

i.e., f ′(x0, ·) is the support function of the set ∂f (x0). In particular, if x0 is an interior point
of the domain of f (x), then f ′(x0, ·) is continuous, ∂f (x0) is nonempty and compact, and
(7.19) holds. Conversely, if ∂f (x0) is nonempty and compact, then x0 is an interior point of
the domain of f (x). Also, f (x) is differentiable at x0 iff ∂f (x0) is a singleton, i.e., contains
only one element, which then coincides with the gradient ∇f (x0).

Theorem 7.4 (Moreau–Rockafellar). Let fi : Rn → R, i = 1, . . . , m, be proper convex
functions, f (·) := f1(·) + · · · + fm(·) and x0 be a point such that fi(x0) are finite, i.e.,
x0 ∈ ∩mi=1dom fi . Then

∂f1(x0)+ · · · + ∂fm(x0) ⊂ ∂f (x0). (7.20)

Moreover,

∂f1(x0)+ · · · + ∂fm(x0) = ∂f (x0) (7.21)

if any one of the following conditions holds: (i) the set ∩mi=1ri(dom fi) is nonempty, (ii) the
functions f1, . . . , fk , k ≤ m, are polyhedral and the intersection of the sets ∩ki=1dom fi
and ∩mi=k+1ri(dom fi) is nonempty, or (iii) there exists a point x̄ ∈ dom fm such that
x̄ ∈ int(dom fi), i = 1, . . . , m− 1.

In particular, if all functionsf1, . . . , fm in the above theorem are polyhedral, then (7.21)
holds without an additional regularity condition.

Let f : Rn→ R be an extended real valued function. The conjugate function of f is

f ∗(z) := sup
x∈Rn

{zTx − f (x)}. (7.22)

The conjugate function f ∗ : R
n → R is always convex and lower semicontinuous. The

conjugate of f ∗ is denoted f ∗∗. Note that if f (x) = −∞ at some x ∈ R
n, then f ∗(·) ≡ +∞

and f ∗∗(·) ≡ −∞.

Theorem 7.5 (Fenchel–Moreau). Let f : R
n → R be a proper extended real valued

convex function. Then
f ∗∗ = lsc f. (7.23)



SPbook
2009/8/20
page 339

�

�

�

�

�

�

�

�

7.1. Optimization and Convex Analysis 339

It follows from (7.23) that if f is proper and convex, then f ∗∗ = f iff f is lower
semicontinuous. Also, it immediately follows from the definitions that

z ∈ ∂f (x) iff f ∗(z)+ f (x) = zTx.

By applying that to the function f ∗∗, instead of f , we obtain that z ∈ ∂f ∗∗(x) iff f ∗∗∗(z)+
f ∗∗(x) = zTx. Now by the Fenchel–Moreau theorem we have that f ∗∗∗ = f ∗, and hence
z ∈ ∂f ∗∗(x) iff f ∗(z)+ f ∗∗(x) = zTx. Consequently, we obtain

∂f ∗∗(x) = arg max
z∈Rn

{
zTx − f ∗(z)} , (7.24)

and if f ∗∗(x) = f (x) and is finite, then ∂f ∗∗(x) = ∂f (x).

Strong Convexity. LetX ⊂ R
n be a nonempty closed convex set. It is said that a function

f : X→ R is strongly convex, with parameter c > 0, if56

tf (x ′)+ (1− t)f (x) ≥ f (tx ′ + (1− t)x)+ 1
2ct (1− t)‖x ′ − x‖2 (7.25)

for all x, x ′ ∈ X and t ∈ [0, 1]. It is not difficult to verify that f is strongly convex iff the
function ψ(x) := f (x)− 1

2c‖x‖2 is convex on X.
Indeed, convexity of ψ means that the inequality

tf (x ′)− 1
2ct‖x ′‖2 + (1− t)f (x)− 1

2c(1− t)‖x‖2

≥ f (tx ′ + (1− t)x)− 1
2c‖tx ′ + (1− t)x‖2

holds for all t ∈ [0, 1] and x, x ′ ∈ X. By the identity

t‖x ′‖2 + (1− t)‖x‖2 − ‖tx ′ + (1− t)x‖2 = t (1− t)‖x ′ − x‖2,

this is equivalent to (7.25).
If the set X has a nonempty interior and f : X→ R is continuous and differentiable

at every point x ∈ int(X), then f is strongly convex iff

f (x ′) ≥ f (x)+ (x ′ − x)T∇f (x)+ 1
2c‖x ′ − x‖2, ∀x, x ′ ∈ int(X) (7.26)

or, equivalently, iff

(x ′ − x)T(∇f (x ′)− ∇f (x)) ≥ c‖x ′ − x‖2, ∀x, x ′ ∈ int(X). (7.27)

7.1.3 Optimization and Duality

Consider a real valued function L : X× Y → R, where X and Y are arbitrary sets. We can
associate with the function L(x, y) the following two optimization problems:

Minx∈X
{
f (x) := supy∈Y L(x, y)

}
, (7.28)

Maxy∈Y {g(y) := inf x∈X L(x, y)} , (7.29)

56Unless stated otherwise, we denote by ‖ · ‖ the Euclidean norm on R
n.
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viewed as dual to each other. We have that for any x ∈ X and y ∈ Y ,

g(y) = inf
x ′∈X L(x

′, y) ≤ L(x, y) ≤ sup
y ′∈Y

L(x, y ′) = f (x),

and hence the optimal value of problem (7.28) is greater than or equal to the optimal value
of problem (7.29). It is said that a point (x̄, ȳ) ∈ X × Y is a saddle point of L(x, y) if

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ), ∀(x, y) ∈ X × Y. (7.30)

Theorem 7.6. The following holds: (i) The optimal value of problem (7.28) is greater than
or equal to the optimal value of problem (7.29). (ii) Problems (7.28) and (7.29) have the
same optimal value and each has an optimal solution iff there exists a saddle point (x̄, ȳ).
In that case x̄ and ȳ are optimal solutions of problems (7.28) and (7.29), respectively.
(iii) If problems (7.28) and (7.29) have the same optimal value, then the set of saddle points
coincides with the Cartesian product of the sets of optimal solutions of (7.28) and (7.29).

Suppose that there is no duality gap between problems (7.28) and (7.29), i.e., their
optimal values are equal to each other, and let ȳ be an optimal solution of problem (7.29).
By the above we have that the set of optimal solutions of problem (7.28) is contained in the
set of optimal solutions of the problem

Min
x∈X L(x, ȳ), (7.31)

and the common optimal value of problems (7.28) and (7.29) is equal to the optimal value
of (7.31). In applications of the above results to optimization problems with constraints, the
function L(x, y) usually is the Lagrangian and y is a vector of Lagrange multipliers. The
inclusion of the set of optimal solutions of (7.28) into the set of optimal solutions of (7.31)
can be strict (see the following example).

Example 7.7. Consider the linear problem

Min
x∈R

x s.t. x ≥ 0. (7.32)

This problem has unique optimal solution x̄ = 0 and can be written in the minimax form
(7.28) with L(x, y) := x − yx, Y := R+ and X := R. The objective function g(y) of its
dual (of the form (7.29)) is equal to−∞ for all y except y = 1 for which g(y) = 0. There is
no duality gap here between the primal and dual problems and the dual problem has unique
feasible point ȳ = 1, which is also its optimal solution. The corresponding problem (7.31)
takes here the form of minimizingL(x, 1) ≡ 0 over x ∈ R, with the set of optimal solutions
equal to R. That is, in this example the set of optimal solutions of (7.28) is a strict subset
of the set of optimal solutions of (7.31).

Conjugate Duality

An alternative approach to duality, referred to as conjugate duality, is the following. Con-
sider an extended real valued function ψ : Rn × R

m → R. Let ϑ(y) be the optimal value
of the parameterized problem

Min
x∈Rn

ψ(x, y), (7.33)
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i.e., ϑ(y) := inf x∈Rn ψ(x, y). Note that implicitly the optimization in the above problem is
performed over the domain of the function ψ(·, y), i.e., domψ(·, y) can be viewed as the
feasible set of problem (7.33).

The conjugate of the function ϑ(y) can be expressed in terms of the conjugate of
ψ(x, y). That is, the conjugate of ψ is

ψ∗(x∗, y∗) := sup
(x,y)∈Rn×Rm

{
(x∗)Tx + (y∗)Ty − ψ(x, y)} ,

and hence the conjugate of ϑ can be written as

ϑ∗(y∗) := supy∈Rm

{
(y∗)Ty − ϑ(y)} = supy∈Rm

{
(y∗)Ty − inf x∈Rn ψ(x, y)

}
= sup(x,y)∈Rn×Rm

{
(y∗)Ty − ψ(x, y)} = ψ∗(0, y∗).

Consequently, the conjugate of ϑ∗ is

ϑ∗∗(y) = sup
y∗∈Rm

{
(y∗)Ty − ψ∗(0, y∗)} . (7.34)

This leads to the following dual of (7.33):

Max
y∗∈Rm

{
(y∗)Ty − ψ∗(0, y∗)} . (7.35)

In the above formulation of problem (7.33) and its (conjugate) dual (7.35) we have
that ϑ(y) and ϑ∗∗(y) are optimal values of (7.33) and (7.35), respectively. Suppose that
ϑ(·) is convex. Then we have by the Fenchel–Moreau theorem that either ϑ∗∗(·) is identi-
cally −∞, or

ϑ∗∗(y) = (lscϑ)(y), ∀y ∈ R
m. (7.36)

It follows that ϑ∗∗(y) ≤ ϑ(y) for any y ∈ R
m. It is said that there is no duality gap between

(7.33) and its dual (7.35) if ϑ∗∗(y) = ϑ(y).
Suppose now that the functionψ(x, y) is convex (as a function of (x, y) ∈ R

n×R
m).

Then it is straightforward to verify that the optimal value function ϑ(y) is also convex. It
is said that the problem (7.33) is subconsistent for a given value of y if lscϑ(y) < +∞.
If problem (7.33) is feasible, i.e., domψ(·, y) is nonempty, then ϑ(y) < +∞, and hence
(7.33) is subconsistent.

Theorem 7.8. Suppose that the function ψ(·, ·) is convex. Then the following holds:
(i) The optimal value function ϑ(·) is convex. (ii) If problem (7.33) is subconsistent, then
ϑ∗∗(y) = ϑ(y) iff the optimal value function ϑ(·) is lower semicontinuous at y. (iii) If
ϑ∗∗(y) is finite, then the set of optimal solutions of the dual problem (7.35) coincides with
∂ϑ∗∗(y). (iv) The set of optimal solutions of the dual problem (7.35) is nonempty and
bounded iff ϑ(y) is finite and ϑ(·) is continuous at y.

A few words about the above statements are now in order. Assertion (ii) follows by the
Fenchel–Moreau theorem. Assertion (iii) follows from formula (7.24). If ϑ(·) is continuous
at y, then it is lower semicontinuous at y, and hence ϑ∗∗(y) = ϑ(y). Moreover, in that case
∂ϑ∗∗(y) = ∂ϑ(y) and is nonempty and bounded provided that ϑ(y) is finite. It follows
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then that the set of optimal solutions of the dual problem (7.35) is nonempty and bounded.
Conversely, if the set of optimal solutions of (7.35) is nonempty and bounded, then, by (iii),
∂ϑ∗∗(y) is nonempty and bounded, and hence by convex analysis ϑ(·) is continuous at y.
Note also that if ∂ϑ(y) is nonempty, then ϑ∗∗(y) = ϑ(y) and ∂ϑ∗∗(y) = ∂ϑ(y).

The above analysis can be also used to describe differentiability properties of the
optimal value function ϑ(·) in terms of its subdifferentials.

Theorem 7.9. Suppose that the function ψ(·, ·) is convex and let y ∈ R
m be a given

point. Then the following holds: (i) The optimal value function ϑ(·) is subdifferentiable at
y iff ϑ(·) is lower semicontinuous at y and the dual problem (7.35) possesses an optimal
solution. (ii) The subdifferential ∂ϑ(y) is nonempty and bounded iff ϑ(y) is finite and the
set of optimal solutions of the dual problem (7.35) is nonempty and bounded. (iii) In both
above cases ∂ϑ(y) coincides with the set of optimal solutions of the dual problem (7.35).

Since ϑ(·) is convex, we also have that ∂ϑ(y) is nonempty and bounded iff ϑ(y) is
finite and y ∈ int(dom ϑ). The condition y ∈ int(dom ϑ)means the following: there exists
a neighborhood N of y such that for any y ′ ∈ N the domain of ψ(·, y ′) is nonempty.

As an example, let us consider the problem

Min x∈X f (x)

s.t. gi(x)+ yi ≤ 0, i = 1, . . . , m,
(7.37)

where X is a subset of R
n, f (x) and gi(x) are real valued functions, and y = (y1, . . . , ym)

is a vector of parameters. We can formulate this problem in the form (7.33) by defining

ψ(x, y) := f̄ (x)+ F(G(x)+ y),

where f̄ (x) := f (x)+ IX(x) (recall that IX denotes the indicator function of the setX) and
F(·) is the indicator function of the negative orthant, i.e., F(z) := 0 if zi ≤ 0, i = 1, . . . , m,
and F(z) := +∞ otherwise, and G(x) := (g1(x), . . . , gm(x)).

Suppose that the problem (7.37) is convex, that is, the set X and the functions f (x)
and gi(x), i = 1, . . . , m, are convex. Then it is straightforward to verify that the function
ψ(x, y) is also convex. Let us calculate the conjugate of the function ψ(x, y),

ψ∗(x∗, y∗) = sup
(x,y)∈Rn×Rm

{
((x∗)Tx + (y∗)Ty − f̄ (x)− F(G(x)+ y)}

= sup
x∈Rn

{
(x∗)Tx − f̄ (x)− (y∗)TG(x)+ sup

y∈Rm

[
(y∗)T(G(x)+ y)− F(G(x)+ y)]} .

By change of variables z = G(x)+ y we obtain that

sup
y∈Rm

[
(y∗)T(G(x)+ y)− F(G(x)+ y)] = sup

z∈Rm

[
(y∗)Tz− F(z)] = IR

m+(y
∗).

Therefore we obtain

ψ∗(x∗, y∗) = sup
x∈X

{
(x∗)Tx − L(x, y∗)}+ IR

m+(y
∗),
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where L(x, y∗) := f (x)+∑m
i=1 y

∗
i gi(x) is the Lagrangian of the problem. Consequently,

the dual of the problem (7.37) can be written in the form

Max
λ≥0

{
λTy + inf

x∈X L(x, λ)
}
. (7.38)

Note that we changed the notation from y∗ to λ in order to emphasize that the above
problem (7.38) is the standard Lagrangian dual of (7.37) with λ being vector of Lagrange
multipliers. The results of Propositions 7.8 and 7.9 can be applied to problem (7.37) and its
dual (7.38) in a straightforward way.

As another example, consider a function L : Rn× Y → R, where Y is a vector space
(not necessarily finite dimensional), and the corresponding pair of dual problems (7.28) and
(7.29). Define

ϕ(y, z) := sup
x∈Rn

{
zTx − L(x, y)}, (y, z) ∈ Y × R

n. (7.39)

Note that the problem

Max
y∈Y {−ϕ(y, 0)} (7.40)

coincides with the problem (7.29). Note also that for every y ∈ Y the function ϕ(y, ·) is
the conjugate of L(·, y). Suppose that for every y ∈ Y the function L(·, y) is convex and
lower semicontinuous. Then by the Fenchel–Moreau theorem we have that the conjugate
of the conjugate of L(·, y) coincides with L(·, y). Consequently, the dual of (7.40), of the
form (7.35), coincides with the problem (7.28). This leads to the following result.

Theorem 7.10. Let Y be an abstract vector space and L : Rn × Y → R. Suppose that:
(i) for every x ∈ R

n the function L(x, ·) is concave, (ii) for every y ∈ Y the function L(·, y)
is convex and lower semicontinuous, and (iii) problem (7.28) has a nonempty and bounded
set of optimal solutions. Then the optimal values of problems (7.28) and (7.29) are equal
to each other.

Proof. Consider function ϕ(y, z), defined in (7.39), and the corresponding optimal value
function

ϑ(z) := inf
y∈Y ϕ(y, z). (7.41)

Since ϕ(y, z) is given by maximum of convex in (y, z) functions, it is convex, and hence
ϑ(z) is also convex. We have that−ϑ(0) is equal to the optimal value of the problem (7.29)
and −ϑ∗∗(0) is equal to the optimal value of (7.28). We also have that

ϑ∗(z∗) = sup
y∈Y

L(z∗, y)

and (see (7.24))

∂ϑ∗∗(0) = − arg minz∗∈Rn ϑ∗(z∗) = − arg minz∗∈Rn

{
supy∈Y L(z∗, y)

}
.

That is, −∂ϑ∗∗(0) coincides with the set of optimal solutions of the problem (7.28). It
follows by assumption (iii) that ∂ϑ∗∗(0) is nonempty and bounded. Since ϑ∗∗ : Rn → R
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is a convex function, this in turn implies that ϑ∗∗(·) is continuous in a neighborhood of
0 ∈ R

n. It follows that ϑ(·) is also continuous in a neighborhood of 0 ∈ R
n, and hence

ϑ∗∗(0) = ϑ(0). This completes the proof.

Remark 27. Note that it follows from the lower semicontinuity of L(·, y) that the max-
function f (x) = supy∈Y L(x, y) is also lower semicontinuous. Indeed, the epigraph of
f (·) is given by the intersection of the epigraphs of L(·, y), y ∈ Y , and hence is closed.
Therefore, if in addition, the setX ⊂ R

n is compact and problem (7.28) has a finite optimal
value, then the set of optimal solutions of (7.28) is nonempty and compact, and hence
bounded.

Hoffman’s Lemma

The following result about Lipschitz continuity of linear systems is known as Hoffman’s
lemma. For a vector a = (a1, . . . , am)

T ∈ R
m, we use notation (a)+ componentwise, i.e.,

(a)+ := ([a1]+, . . . , [am]+)T, where [ai]+ := max{0, ai}.

Theorem 7.11 (Hoffman). Consider the multifunction M(b) := {x ∈ R
n : Ax ≤ b} ,where

A is a given m × n matrix. Then there exists a positive constant κ , depending on A, such
that for any x ∈ R

n and any b ∈ dom M,

dist(x,M(b)) ≤ κ‖(Ax − b)+‖. (7.42)

Proof. Suppose that b ∈ dom M, i.e., the system Ax ≤ b has a feasible solution. Note that
for any a ∈ R

n we have that ‖a‖ = sup‖z‖∗≤1 z
Ta, where ‖ · ‖∗ is the dual of the norm ‖ · ‖.

Then we have

dist(x,M(b)) = inf
x ′∈M(b)

‖x − x ′‖ = inf
Ax ′≤b sup

‖z‖∗≤1
zT(x − x ′) = sup

‖z‖∗≤1
inf
Ax ′≤b z

T(x − x ′),

where the interchange of the min and max operators can be justified, for example, by applying
Theorem 7.10 (see Remark 27 on page 344). By making change of variables y = x − x ′
and using linear programming duality we obtain

inf
Ax ′≤b z

T(x − x ′) = inf
Ay≥Ax−b z

Ty = sup
λ≥0, ATλ=z

λT(Ax − b).

It follows that

dist(x,M(b)) = sup
λ≥0, ‖ATλ‖∗≤1

λT(Ax − b). (7.43)

Since any two norms on R
n are equivalent, we can assume without loss of generality that

‖ · ‖ is the �1 norm, and hence its dual is the �∞ norm. For such choice of a polyhedral
norm, we have that the set S := {λ : λ ≥ 0, ‖ATλ‖∗ ≤ 1} is polyhedral. We obtain that the
right-hand side of (7.43) is given by a maximization of a linear function over the polyhedral
set S and has a finite optimal value (since the left-hand side of (7.43) is finite), and hence
has an optimal solution λ̄. It follows that

dist(x,M(b)) = λ̄T(Ax − b) ≤ λ̄T(Ax − b)+ ≤ ‖λ̄‖∗‖(Ax − b)+‖.
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It remains to note that the polyhedral set S depends only on A, and can be represented
as the direct sum S = S0 + C of a bounded polyhedral set S0 and a polyhedral cone C,
and that optimal solution λ̄ can be taken to be an extreme point of the polyhedral set S0.
Consequently, (7.42) follows with κ := maxλ∈S0 ‖λ‖∗.

The term ‖(Ax − b)+‖, in the right-hand side of (7.42), measures the infeasibility of
the point x.

Consider now the following linear programming problem:

Min
x∈Rn

cTx s.t. Ax ≤ b. (7.44)

A slight variation of the proof of Hoffman’s lemma leads to the following result.

Theorem 7.12. Let S(b) be the set of optimal solutions of problem (7.44). Then there
exists a positive constant γ , depending only on A, such that for any b, b′ ∈ dom S and any
x ∈ S(b),

dist(x,S(b′)) ≤ γ ‖b − b′‖. (7.45)

Proof. Problem (7.44) can be written in the following equivalent form:

Min
t∈R

t s.t. Ax ≤ b, cTx − t ≤ 0. (7.46)

Denote by M(b) the set of feasible points of problem (7.46), i.e.,

M(b) := {(x, t) : Ax ≤ b, cTx − t ≤ 0
}
.

Let b, b′ ∈ dom S and consider a point (x, t) ∈ M(b). Proceeding as in the proof of
Theorem 7.11 we can write

dist
(
(x, t),M(b′)

) = sup
‖(z,a)‖∗≤1

inf
Ax ′≤b′, cTx ′≤t ′

zT(x − x ′)+ a(t − t ′).

By changing variables y = x − x ′ and s = t − t ′ and using linear programming duality, we
have

inf
Ax ′≤b′, cTx ′≤t ′

zT(x − x ′)+ a(t − t ′) = sup
λ≥0, ATλ+ac=z

λT(Ax − b′)+ a(cTx − t)

for a ≥ 0, and for a < 0 the above minimum is−∞. By using �1 norm ‖ · ‖, and hence �∞
norm ‖ · ‖∗, we obtain that

dist
(
(x, t),M(b′)

) = λ̄T(Ax − b′)+ ā(cTx − t),
where (λ̄, ā) is an optimal solution of the problem

Max
λ≥0,a≥0

λT(Ax − b′)+ a(cTx − t) s.t. ‖ATλ+ ac‖∗ ≤ 1, a ≤ 1. (7.47)

By normalizing cwe can assume without loss of generality that ‖c‖∗ ≤ 1. Then by replacing
the constraint ‖ATλ+ac‖∗ ≤ 1 with the constraint ‖ATλ‖∗ ≤ 2 we increase the feasible set
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of problem (7.47) and hence increase its optimal value. Let (λ̂, â) be an optimal solution of
the obtained problem. Note that λ̂ can be taken to be an extreme point of the polyhedral set
S := {λ : ‖ATλ‖∗ ≤ 2}. The polyhedral set S depends only on A and has a finite number
of extreme points. Therefore ‖λ̂‖∗ can be bounded by a constant γ which depends only on
A. Since (x, t) ∈M(b), and hence Ax − b ≤ 0 and cTx − t ≤ 0, we have

λ̂T(Ax − b′) = λ̂T(Ax − b)+ λ̂T(b − b′) ≤ λ̂T(b − b′) ≤ ‖λ̂‖∗‖b − b′‖
and â(cTx − t) ≤ 0, and hence

dist
(
(x, t),M(b′)

) ≤ ‖λ̂‖∗‖b − b′‖ ≤ γ ‖b − b′‖. (7.48)

The above inequality implies (7.45).

7.1.4 Optimality Conditions

Consider the optimization problem

Min
x∈X f (x), (7.49)

where X ⊂ R
n and f : Rn→ R is an extended real valued function.

First Order Optimality Conditions

Convex Case. Suppose that the function f : Rn → R is convex. It follows immediately
from the definition of the subdifferential that if f (x̄) is finite for some point x̄ ∈ R

n, then
f (x) ≥ f (x̄) for all x ∈ R

n iff

0 ∈ ∂f (x̄). (7.50)

That is, condition (7.50) is necessary and sufficient for the point x̄ to be a (global) minimizer
of f (x) over x ∈ R

n.
Suppose, further, that the setX ⊂ R

n is convex and closed and the function f : Rn→
R is proper and convex, and consider a point x̄ ∈ X ∩ domf . It follows that the function
f̄ (x) := f (x) + IX(x) is convex, and of course the point x̄ is an optimal solution of the
problem (7.49) iff x̄ is a (global) minimizer of f̄ (x). Suppose that

ri(X) ∩ ri(domf ) �= ∅. (7.51)

Then by the Moreau–Rockafellar theorem we have that ∂f̄ (x̄) = ∂f (x̄)+∂IX(x̄). Recalling
that ∂IX(x̄) = NX(x̄), we obtain that x̄ is an optimal solution of problem (7.49) iff

0 ∈ ∂f (x̄)+NX(x̄), (7.52)

provided that the regularity condition (7.51) holds. Note that (7.51) holds, in particular, if
x̄ ∈ int(domf ).

Nonconvex Case. Assume that the function f : R
n → R is real valued continuously

differentiable and the set X is closed (not necessarily convex).
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Definition 7.13. The contingent (Bouligand) cone toX at x ∈ X, denoted TX(x), is formed
by vectors h ∈ R

n such that there exist sequences hk → h and tk ↓ 0 such that x+tkhk ∈ X.

Note that TX(x) is nonempty only if x ∈ X. If the setX is convex, then the contingent
cone TX(x) coincides with the corresponding tangent cone. We have the following simple
necessary condition for a point x̄ ∈ X to be a locally optimal solution of problem (7.49).

Proposition 7.14. Let x̄ ∈ X be a locally optimal solution of problem (7.49). Then

hT∇f (x̄) ≥ 0, ∀h ∈ TX(x̄). (7.53)

Proof. Consider h ∈ TX(x̄) and let hk → h and tk ↓ 0 be sequences such that xk :=
x̄ + tkhk ∈ X. Since x̄ ∈ X is a local minimizer of f (x) over x ∈ X, we have that
f (xk)− f (x̄) ≥ 0. We also have that

f (xk)− f (x̄) = tkhT∇f (x̄)+ o(tk),
and hence (7.53) follows.

Condition (7.53) means that ∇f (x̄) ∈ −[TX(x̄)]∗. If the set X is convex, then the
polar [TX(x̄)]∗ of the tangent cone TX(x̄) coincides with the normal cone NX(x̄). Therefore,
if f (·) is convex and differentiable and X is convex, then optimality conditions (7.52) and
(7.53) are equivalent.

Suppose now that the set X is given in the form

X := {x ∈ R
n : G(x) ∈ K}, (7.54)

where G(·) = (g1(·), . . . , gm(·)) : Rn → R
m is a continuously differentiable mapping and

K ⊂ R
m is a closed convex cone. In particular, if K := {0q} × R

m−q
− , where 0q ∈ R

q is
the null vector and R

m−q
− = {y ∈ R

m−q : y ≤ 0
}
, then formulation (7.54) becomes

X = {x ∈ R
n : gi(x) = 0, i = 1, . . . , q, gi(x) ≤ 0, i = q + 1, . . . , m

}
. (7.55)

Under some regularity conditions (called constraint qualifications), we have the fol-
lowing formula for the contingent cone TX(x̄) at a feasible point x̄ ∈ X:

TX(x̄) =
{
h ∈ R

n : [∇G(x̄)]h ∈ TK(G(x̄))
}
, (7.56)

where ∇G(x̄) = [∇g1(x̄), . . . ,∇gm(x̄)]T is the correspondingm× n Jacobian matrix. The
following condition is called the Robinson constraint qualification:

[∇G(x̄)]Rn + TK(G(x̄)) = R
m. (7.57)

If the coneK has a nonempty interior, Robinson constraint qualification is equivalent to the
following condition:

∃h : G(x̄)+ [∇G(x̄)]h ∈ int(K). (7.58)

In case X is given in the form (7.55), Robinson constraint qualification is equivalent to the
Mangasarian–Fromovitz constraint qualification:

∇gi(x̄), i = 1, . . . , q, are linearly independent,
∃h : hT∇gi(x̄) = 0, i = 1, . . . , q,

hT∇gi(x̄) < 0, i ∈ I(x̄),
(7.59)
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where I(x̄) := {i ∈ {q + 1, . . . , m} : gi(x̄) = 0
}

denotes the set of active at x̄ inequality
constraints.

Consider the Lagrangian

L(x, λ) := f (x)+
m∑
i=1

λigi(x)

associated with problem (7.49) and the constraint mapping G(x). Under a constraint qual-
ification ensuring validity of formula (7.56), the first order necessary optimality condition
(7.53) can be written in the following dual form: there exists a vector λ ∈ R

m of Lagrange
multipliers such that

∇xL(x̄, λ) = 0, G(x̄) ∈ K, λ ∈ K∗, λTG(x̄) = 0. (7.60)

Denote by �(x̄) the set of Lagrange multipliers vectors λ satisfying (7.60).

Theorem 7.15. Let x̄ be a locally optimal solution of problem (7.49). Then the set �(x̄)
Lagrange multipliers is nonempty and bounded iff Robinson constraint qualification holds.

In particular, if �(x̄) is a singleton (i.e., there exists unique Lagrange multiplier
vector), then Robinson constraint qualification holds. If the set X is defined by a finite
number of constraints in the form (7.55), then optimality conditions (7.60) are often referred
to as the Karush–Kuhn–Tucker (KKT) necessary optimality conditions.

Second Order Optimality Conditions

We assume in this section that the function f (x) is real valued twice continuously differen-
tiable and we denote by ∇2f (x) the Hessian matrix of second order partial derivatives of
f at x. Let x̄ be a locally optimal solution of problem (7.49). Consider the set (cone)

C(x̄) := {h ∈ TX(x̄) : hT∇f (x̄) = 0
}
. (7.61)

The coneC(x̄) represents those feasible directions along which the first order approximation
of f (x) at x̄ is zero and is called the critical cone. The set

T 2
X (x, h) :=

{
z ∈ R

n : dist
(
x + th+ 1

2 t
2z,X

) = o(t2), t ≥ 0
}

(7.62)

is called the (inner) second order tangent set to X at the point x ∈ X in the direction h.
That is, the set T 2

X (x, h) is formed by vectors z such that x+ th+ 1
2 t

2z+ r(t) ∈ X for some
r(t) = o(t2), t ≥ 0. Note that this implies that x + th+ o(t) ∈ X, and hence T 2

X (x, h) can
be nonempty only if h ∈ TX(x).

Proposition 7.16. Let x̄ be a locally optimal solution of problem (7.49). Then57

hT∇2f (x̄)h− s
(−∇f (x̄),T 2

X (x̄, h)
) ≥ 0, ∀h ∈ C(x̄). (7.63)

57Recall that s(v, A) = supz∈A zTv denotes the support function of set A.
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Proof. For some h ∈ C(x̄) and z ∈ T 2
X (x̄, h) consider the (parabolic) curve x(t) :=

x̄ + th+ 1
2 t

2z. By the definition of the second order tangent set, we have that there exists
r(t) = o(t2) such that x(t) + r(t) ∈ X, t ≥ 0. It follows by local optimality of x̄ that
f (x(t)+ r(t))− f (x̄) ≥ 0 for all t ≥ 0 small enough. Since r(t) = o(t2), by the second
order Taylor expansion we have

f (x(t)+ r(t))− f (x̄) = thT∇f (x̄)+ 1
2 t

2
[
zT∇f (x̄)+ hT∇2f (x̄)h

]+ o(t2).
Since h ∈ C(x̄), the first term in the right-hand side of the above equation vanishes. It
follows that

zT∇f (x̄)+ hT∇2f (x̄)h ≥ 0, ∀h ∈ C(x̄), ∀z ∈ T 2
X (x̄, h). (7.64)

Condition (7.64) can be written in the form

inf
z∈T 2

X (x̄,h)

{
zT∇f (x̄)+ hT∇2f (x̄)h

} ≥ 0, ∀h ∈ C(x̄). (7.65)

Since

inf
z∈T 2

X (x̄,h)
zT∇f (x̄) = − sup

z∈T 2
X (x̄,h)

zT(−∇f (x̄)) = −s
(−∇f (x̄),T 2

X (x̄, h)
)
,

the second order necessary conditions (7.64) can be written in the form (7.63).

If the set X is polyhedral, then for x̄ ∈ X and h ∈ TX(x̄) the second order tangent set
T 2
X (x̄, h) is equal to the sum of TX(x̄) and the linear space generated by vector h. Since for
h ∈ C(x̄) we have that hT∇f (x̄) = 0 and because of the first order optimality conditions
(7.53), it follows that if the set X is polyhedral, then the term s

(−∇f (x̄),T 2
X (x̄, h)

)
in

(7.63) vanishes. In general, this term is nonpositive and corresponds to a curvature of the
set X at x̄.

If the setX is given in the form (7.54) with the mappingG(x) being twice continuously
differentiable, then the second order optimality conditions (7.63) can be written in the
following dual form.

Theorem 7.17. Let x̄ be a locally optimal solution of problem (7.49). Suppose that the
Robinson constraint qualification (7.57) is fulfilled. Then the following second order nec-
essary conditions hold:

sup
λ∈�(x̄)

{
hT∇2

xxL(x̄, λ)h− s (λ,T(h))
} ≥ 0, ∀h ∈ C(x̄), (7.66)

where T(h) := T 2
K

(
G(x̄), [∇G(x̄)]h).

Note that if the cone K is polyhedral, then the curvature term s (λ,T(h)) in (7.66)
vanishes. In general, s (λ,T(h)) ≤ 0 and the second order necessary conditions (7.66) are
stronger than the “standard” second order conditions:

sup
λ∈�(x̄)

hT∇2
xxL(x̄, λ)h ≥ 0, ∀h ∈ C(x̄). (7.67)
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Second Order Sufficient Conditions. Consider condition

hT∇2f (x̄)h− s
(−∇f (x̄),T 2

X (x̄, h)
)
> 0, ∀h ∈ C(x̄), h �= 0. (7.68)

This condition is obtained from the second order necessary condition (7.63) by replacing
the “≥” 0 sign with the strict inequality sign “>” 0. Necessity of second order conditions
(7.63) was derived by verifying optimality of x̄ along parabolic curves. There is no reason
a priori that verification of (local) optimality along parabolic curves is sufficient to ensure
local optimality of x̄. Therefore, in order to verify sufficiency of condition (7.68) we need
an additional condition.

Definition 7.18. It is said that the setX is second order regular at x̄ ∈ X if for any sequence
xk ∈ X of the form xk = x̄ + tkh+ 1

2 t
2
k rk , where tk ↓ 0 and tkrk → 0, it follows that

lim
k→∞ dist

(
rk,T

2
X (x̄, h)

) = 0. (7.69)

Note that in the above definition the term 1
2 t

2
k rk = o(tk), and hence such a sequence

xk ∈ X can exist only if h ∈ TX(x̄). It turns out that second order regularity can be verified
in many interesting cases. In particular, any polyhedral set is second order regular, the cone
of positive semidefinite symmetric matrices is second order regular, etc. We refer to [22,
section 3.3] for a discussion of this concept.

Recall that it is said that the quadratic growth condition holds at x̄ ∈ X if there exist
constant c > 0 and a neighborhood N of x̄ such that

f (x) ≥ f (x̄)+ c‖x − x̄‖2, ∀x ∈ X ∩N. (7.70)

Of course, the quadratic growth condition implies that x̄ is a locally optimal solution of
problem (7.49).

Proposition 7.19. Let x̄ ∈ X be a feasible point of problem (7.49) satisfying first order
necessary conditions (7.53). Suppose that X is second order regular at x̄. Then the second
order conditions (7.68) are necessary and sufficient for the quadratic growth at x̄ to hold.

Proof. Suppose that conditions (7.68) hold. In order to verify the quadratic growth condition
we argue by a contradiction, so suppose that it does not hold. Then there exists a sequence
xk ∈ X \ {x̄} converging to x̄ and a sequence ck ↓ 0 such that

f (xk)− f (x̄) ≤ ck‖xk − x̄‖2. (7.71)

Denote tk := ‖xk− x̄‖ and hk := t−1
k (xk− x̄). By passing to a subsequence if necessary we

can assume that hk converges to a vector h. Clearly h �= 0 and by the definition of TX(x̄) it
follows that h ∈ TX(x̄). Moreover, by (7.71) we have

ckt
2
k ≥ f (xk)− f (x̄) = tkhT∇f (x̄)+ o(tk),

and hence hT∇f (x̄) ≤ 0. Because of the first order necessary conditions it follows that
hT∇f (x̄) = 0, and hence h ∈ C(x̄).
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Denote rk := 2t−1
k (hk − h). We have that xk = x̄ + tkh+ 1

2 t
2
k rk ∈ X and tkrk → 0.

Consequently it follows by the second order regularity that there exists a sequence zk ∈
T 2
X (x̄, h) such that rk−zk → 0. Since hT∇f (x̄) = 0, by the second order Taylor expansion

we have

f (xk) = f (x̄ + tkh+ 1
2 t

2
k rk) = f (x̄)+ 1

2 t
2
k

[
zT
k∇f (x̄)+ hT∇2f (x̄)h

]+ o(t2k ).
Moreover, since zk ∈ T 2

X (x̄, h) we have that

zT
k∇f (x̄)+ hT∇2f (x̄)h ≥ c,

where c is equal to the left-hand side of (7.68), which by the assumption is positive. It
follows that

f (xk) ≥ f (x̄)+ 1
2c‖xk − x̄‖2 + o(‖xk − x̄‖2),

a contradiction with (7.71).
Conversely, suppose that the quadratic growth condition holds at x̄. It follows that

the function φ(x) := f (x)− 1
2c‖x − x̄‖2 also attains its local minimum over X at x̄. Note

that ∇φ(x̄) = ∇f (x̄) and hT∇2φ(x̄)h = hT∇2f (x̄)h − c‖h‖2. Therefore, by the second
order necessary conditions (7.63), applied to the function φ, it follows that the left-hand
side of (7.68) is greater than or equal to c‖h‖2. This completes the proof.

If the set X is given in the form (7.54), then similar to Theorem 7.17 it is possible to
formulate second order sufficient conditions (7.68) in the following dual form.

Theorem 7.20. Let x̄ ∈ X be a feasible point of problem (7.49) satisfying first order
necessary conditions (7.60). Suppose that the Robinson constraint qualification (7.57) is
fulfilled and the set (cone)K is second order regular atG(x̄). Then the following conditions
are necessary and sufficient for the quadratic growth at x̄ to hold:

sup
λ∈�(x̄)

{
hT∇2

xxL(x̄, λ)h− s (λ,T(h))
}
> 0, ∀h ∈ C(x̄), h �= 0, (7.72)

where T(h) := T 2
K

(
G(x̄), [∇G(x̄)]h).

Note again that if the cone K is polyhedral, then K is second order regular and the
curvature term s (λ,T(h)) in (7.72) vanishes.

7.1.5 Perturbation Analysis

Differentiability Properties of Max-Functions

We often have to deal with optimal value functions, say, max-functions of the form

φ(x) := sup
θ∈"

g(x, θ), (7.73)

where g : Rn×"→ R. In applications the set" usually is a subset of a finite dimensional
vector space. At this point, however, this is not important and we can assume that " is an
abstract topological space. Denote

"̄(x) := arg max
θ∈" g(x, θ).
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The following result about directional differentiability of the max-function is often
called the Danskin theorem.

Theorem 7.21 (Danskin). Let " be a nonempty, compact topological space and g :
R
n × " → R be such that g(·, θ) is differentiable for every θ ∈ " and ∇xg(x, θ) is

continuous on R
n × ". Then the corresponding max-function φ(x) is locally Lipschitz

continuous, directionally differentiable, and

φ′(x, h) = sup
θ∈"̄(x)

hT∇xg(x, θ). (7.74)

In particular, if for some x ∈ R
n the set "̄(x) = {θ̄} is a singleton, then the max-function

is differentiable at x and

∇φ(x) = ∇xg(x, θ̄). (7.75)

In the convex case we have the following result giving a description of subdifferentials
of max-functions.

Theorem 7.22 (Levin–Valadier). Let " be a nonempty compact topological space and
g : Rn ×"→ R be a real valued function. Suppose that (i) for every θ ∈ " the function
gθ (·) = g(·, θ) is convex on R

n and (ii) for every x ∈ R
n the function g(x, ·) is upper

semicontinuous on ". Then the max-function φ(x) is convex real valued and

∂φ(x) = cl
{
conv

(∪θ∈"̄(x)∂gθ (x))} . (7.76)

Let us make the following observations regarding the above theorem. Since " is
compact and by the assumption (ii), we have that the set "̄(x) is nonempty and compact.
Since the function φ(·) is convex real valued, it is subdifferentiable at every x ∈ R

n and its
subdifferential ∂φ(x) is a convex, closed bounded subset of R

n. It follows then from (7.76)
that the set A := ∪θ∈"̄(x)∂gθ (x) is bounded. Suppose further that

(iii) For every x ∈ R
n the function g(x, ·) is continuous on ".

Then the set A is closed and hence is compact. Indeed, consider a sequence zk ∈ A. Then,
by the definition of the set A, zk ∈ ∂gθk (x) for some sequence θk ∈ "̄(x). Since "̄(x) is
compact and A is bounded, by passing to a subsequence if necessary, we can assume that
θk converges to a point θ̄ ∈ "̄(x) and zk converges to a point z̄ ∈ R

n. By the definition of
subgradients zk we have that for any x ′ ∈ R

n the following inequality holds

gθk (x
′)− gθk (x) ≥ zT

k (x
′ − x).

By passing to the limit in the above inequality as k → ∞, we obtain that z̄ ∈ ∂gθ̄ (x). It
follows that z̄ ∈ A, and hence A is closed. Now since, the convex hull of a compact subset
of R

n is also compact, and hence is closed, we obtain that if assumption (ii) in the above
theorem is strengthened to assumption (iii), then the set inside the parentheses in (7.76) is
closed, and hence formula (7.76) takes the form

∂φ(x) = conv
(∪θ∈"̄(x)∂gθ (x)) . (7.77)
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Second Order Perturbation Analysis

Consider the following parameterization of problem (7.49):

Min
x∈X f (x)+ tηt (x), (7.78)

depending on parameter t ∈ R+. We assume that the setX ⊂ R
n is nonempty and compact

and consider a convex compact setU ⊂ R
n such thatX ⊂ int(U). It follows, of course, that

the set U has a nonempty interior. Consider the space W 1,∞(U) of Lipschitz continuous
functions ψ : U → R equipped with the norm

‖ψ‖1,U := sup
x∈U
|ψ(x)| + sup

x∈U ′
‖∇ψ(x)‖ (7.79)

with U ′ ⊂ int(U) being the set of points where ψ(·) is differentiable. Recall that by the
Rademacher theorem, a function ψ(·) ∈ W 1,∞(U) is differentiable at almost every point
of U . We assume that the functions f (·) and ηt (·), t ∈ R+, are Lipschitz continuous on
U , i.e., f, ηt ∈ W 1,∞(U). We also assume that ηt converges (in the norm topology) to a
function δ ∈ W 1,∞(U), that is, ‖ηt − δ‖1,U → 0 as t ↓ 0.

Denote by v(t) the optimal value and by x̃(t) an optimal solution of (7.78), i.e.,

v(t) := inf
x∈X
{
f (x)+ tηt (x)

}
and x̃(t) ∈ arg min

x∈X
{
f (x)+ tηt (x)

}
.

We will be interested in second order differentiability properties of v(t) and first order
differentiability properties of x̃(t) at t = 0. We assume that f (x) has unique minimizer
x̄ over x ∈ X, i.e., the set of optimal solutions of the unperturbed problem (7.49) is the
singleton {x̄}. Moreover, we assume that δ(·) is differentiable at x̄ and f (x) is twice
continuously differentiable at x̄. Since X is compact and the objective function of problem
(7.78) is continuous, it has an optimal solution for any t .

The following result is taken from [22, section 4.10.3].

Theorem 7.23. Let x̄ be unique optimal solution of problem (7.49). Suppose that: (i) the
set X is compact and second order regular at x̄, (ii) ηt converges (in the norm topology)
to δ ∈ W 1,∞(U) as t ↓ 0, (iii) δ(x) is differentiable at x̄ and f (x) is twice continuously
differentiable at x̄, and (iv) the quadratic growth condition (7.70) holds. Then

v(t) = v(0)+ tηt (x̄)+ 1
2 t

2
Vf (δ)+ o(t2), t ≥ 0, (7.80)

where Vf (δ) is the optimal value of the auxiliary problem

Min
h∈C(x̄)

{
2hT∇δ(x̄)+ hT∇2f (x̄)h− s

(− ∇f (x̄),T 2
X (x̄, h)

)}
. (7.81)

Moreover, if (7.81) has unique optimal solution h̄, then

x̃(t) = x̄ + t h̄+ o(t), t ≥ 0. (7.82)

Proof. Since the minimizer x̄ is unique and the set X is compact, it is not difficult to show
that, under the specified assumptions, x̃(t) tends to x̄ as t ↓ 0. Moreover, we have that
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‖x̃(t) − x̄‖ = O(t), t > 0. Indeed, by the quadratic growth condition, for t > 0 small
enough and some c > 0 it follows that

v(t) = f (x̃(t))+ tηt (x̃(t)) ≥ f (x̄)+ c‖x̃(t)− x̄‖2 + tηt (x̃(t)).
Since x̄ ∈ X we also have that v(t) ≤ f (x̄)+ tηt (x̄). Consequently,

t |ηt (x̃(t))− ηt (x̄)| ≥ c‖x̃(t)− x̄‖2.

Moreover, |ηt (x̃(t))− ηt (x̄)| = O(‖x̃(t)− x̄‖), and hence ‖x̃(t)− x̄‖ = O(t).
Let h ∈ C(x̄) and w ∈ T 2

X (x̄, h). By the definition of the second order tangent set
it follows that there is a path x(t) ∈ X of the form x(t) = x̄ + th + 1

2 t
2w + o(t2). Since

x(t) ∈ X we have that v(t) ≤ f (x(t)) + tηt (x(t)). Moreover, by using the second order
Taylor expansion of f (x) at x = x̄ we have

f (x(t)) = f (x̄)+ thT∇f (x̄)+ 1
2 t

2wT∇f (x̄)+ 1
2h

T∇2f (x̄)h+ o(t2),

and since h ∈ C(x̄) we have that hT∇f (x̄) = 0. Also since ‖ηt − δ‖1,∞ → 0, we have by
the mean value theorem that

ηt (x(t))− δ(x(t)) = ηt (x̄)− δ(x̄)+ o(t)
and since δ(x) is differentiable at x̄ that

δ(x(t)) = δ(x̄)+ thT∇δ(x̄)+ o(t).
Putting this all together and noting that f (x̄) = v(0), we obtain that

f (x(t))+ tηt (x(t)) = v(0)+ tηt (x̄)+ t2hT∇δ(x̄)+ 1
2 t

2hT∇2f (x̄)h+ 1
2 t

2wT∇f (x̄)+o(t2).
Consequently,

lim sup
t↓

v(t)− v(0)− tηt (x̄)
1
2 t

2
≤ 2hT∇δ(x̄)+ hT∇2f (x̄)h+ wT∇f (x̄). (7.83)

Since the above inequality (7.83) holds for any w ∈ T 2
X (x̄, h), by taking minimum (with

respect to w) in the right-hand side of (7.83) we obtain for any h ∈ C(x̄),

lim sup
t↓0

v(t)− v(0)− tηt (x̄)
1
2 t

2
≤ 2hT∇δ(x̄)+ hT∇2f (x̄)h− s

(− ∇f (x̄),T 2
X (x̄, h)

)
.

In order to show the converse estimate, we argue as follows. Consider a sequence
tk ↓ 0 and xk := x̃(tk). Since ‖x̃(t)− x̄‖ = O(t), we have that (xk − x̄)/tk is bounded, and
hence by passing to a subsequence if necessary we can assume that (xk − x̄)/tk converges
to a vector h. Since xk ∈ X, it follows that h ∈ TX(x̄). Moreover,

v(tk) = f (xk)+ tkηtk (xk) = f (x̄)+ tkhT∇f (x̄)+ tkδ(x̄)+ o(tk),
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and by the Danskin theorem v′(0) = δ(x̄). It follows that hT∇f (x̄) = 0, and hence
h ∈ C(x̄). Consider rk := 2(xk − x̄ − tkh)/t2k , i.e., rk are such that xk = x̄ + tkh+ 1

2 t
2
k rk .

Note that tkrk → 0 and xk ∈ X and hence, by the second order regularity of X, there exists
wk ∈ T 2

X (x̄, h) such that ‖rk − wk‖ → 0. Finally,

v(tk) = f (xk)+ tkηtk (xk)
= f (x̄)+ tkηtk (x̄)+ t2k hT∇δ(x̄)+ 1

2 t
2
k h

T∇2f (x̄)h+ 1
2 t

2
k w

T
k∇f (x̄)+ o(t2k )≥ v(0)+ tkηtk (x̄)+ t2k hT∇δ(x̄)+ 1

2 t
2
k h

T∇2f (x̄)h

+ 1
2 t

2
k infw∈T 2

X (x̄,h)
wT∇f (x̄)+ o(t2k ).

It follows that

lim inf
t↓0

v(t)− v(0)− tηt (x̄)
1
2 t

2
≥ 2hT∇δ(x̄)+ hT∇2f (x̄)h− s

(− ∇f (x̄),T 2
X (x̄, h)

)
.

This completes the proof of (7.80).
Also by the above analysis we have that any accumulation point of (x̃(t) − x̄)/t , as

t ↓ 0, is an optimal solution of problem (7.81). Since (x̃(t)− x̄)/t is bounded, the assertion
(7.82) follows by compactness arguments.

As in the case of second order optimality conditions, we have here that if the set X is
polyhedral, then the curvature term s

(− ∇f (x̄),T 2
X (x̄, h)

)
in (7.81) vanishes.

Suppose now that the set X is given in the form (7.54) with the mapping G(x) being
twice continuously differentiable. Suppose further that the Robinson constraint qualification
(7.57), for the unperturbed problem, holds. Then the optimal value of problem (7.81) can
be written in the following dual form:

Vf (δ) = inf
h∈C(x̄)

sup
λ∈�(x̄)

{
2hT∇δ(x̄)+ hT∇2

xxL(x̄, λ)h− s
(
λ,T(h)

)}
, (7.84)

where T(h) := T 2
K

(
G(x̄), [∇G(x̄)]h). Note again that if the set K is polyhedral, then the

curvature term s
(
λ,T(h)

)
in (7.84) vanishes.

Minimax Problems

In this section we consider the minimax problem

Min
x∈X

{
φ(x) := sup

y∈Y
f (x, y)

}
(7.85)

and its dual

Max
y∈Y

{
ι(y) := inf

x∈X f (x, y)
}
. (7.86)

We assume that the sets X ⊂ R
n and Y ⊂ R

m are convex and compact, and the function
f : X × Y → R is continuous,58 i.e., f ∈ C(X, Y ). Moreover, assume that f (x, y) is

58Recall that C(X, Y ) denotes the space of continuous functions ψ : X × Y → R equipped with the
sup-norm ‖ψ‖ = sup(x,y)∈X×Y |ψ(x, y)|.
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convex in x ∈ X and concave in y ∈ Y . Under these conditions there is no duality gap
between problems (7.85) and (7.86), i.e., the optimal values of these problems are equal to
each other. Moreover, the max-function φ(x) is continuous on X and problem (7.85) has a
nonempty set of optimal solutions, denoted X∗, the min-function ι(y) is continuous on Y ,
and problem (7.86) has a nonempty set of optimal solutions, denoted Y ∗, andX∗×Y ∗ forms
the set of saddle points of the minimax problems (7.85) and (7.86).

Consider the following perturbation of the minimax problem (7.85):

Min
x∈X sup

y∈Y

{
f (x, y)+ tηt (x, y)

}
, (7.87)

where ηt ∈ C(X, Y ), t ≥ 0. Denote by v(t) the optimal value of the parameterized problem
(7.87). Clearly v(0) is the optimal value of the unperturbed problem (7.85). We assume
that ηt converges uniformly (i.e., in the sup-norm) as t ↓ 0 to a function γ ∈ C(X, Y ),
that is

lim
t↓0

sup
x∈X,y∈Y

∣∣ηt (x, y)− γ (x, y)∣∣ = 0.

Theorem 7.24. Suppose that (i) the sets X ⊂ R
n and Y ⊂ R

m are convex and compact,
(ii) for all t ≥ 0 the function ζt := f + tηt is continuous on X × Y , convex in x ∈ X and
concave in y ∈ Y , and (iii) ηt converges uniformly as t ↓ 0 to a function γ ∈ C(X, Y ).
Then

lim
t↓0

v(t)− v(0)
t

= inf
x∈X∗ sup

y∈Y ∗
γ (x, y). (7.88)

Proof. Consider a sequence tk ↓ 0. Denote ηk := ηtk and ζk := ζtk = f + tkηk . By
the assumption (ii) we have that functions ζk(x, y) are continuous and convex-concave on
X × Y . Also by the definition

v(tk) = inf
x∈X sup

y∈Y
ζk(x, y).

For a point x∗ ∈ X∗ we can write

v(0) = sup
y∈Y

f (x∗, y) and v(tk) ≤ sup
y∈Y

ζk(x
∗, y).

Since the set Y is compact and function ζk(x∗, ·) is continuous, we have that the set
arg maxy∈Y ζk(x∗, y) is nonempty. Let yk ∈ arg maxy∈Y ζk(x∗, y). We have that

arg max
y∈Y f (x

∗, y) = Y ∗

and, since ζk tends (uniformly) to f , we have that yk tends in distance to Y ∗ (i.e., the distance
from yk to Y ∗ tends to zero as k →∞). By passing to a subsequence if necessary we can
assume that yk converges to a point y∗ ∈ Y as k → ∞. It follows that y∗ ∈ Y ∗, and of
course we have that

sup
y∈Y

f (x∗, y) ≥ f (x∗, yk).
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Also since ηk tends uniformly to γ , it follows that ηk(x∗, yk)→ γ (x∗, y∗). Consequently

v(tk)− v(0) ≤ ζk(x∗, yk)− f (x∗, yk) = tkηk(x∗, yk) = tkγ (x∗, y∗)+ o(tk).
We obtain that for any x∗ ∈ X∗ there exists y∗ ∈ Y ∗ such that

lim sup
k→∞

v(tk)− v(0)
tk

≤ γ (x∗, y∗).

It follows that

lim sup
k→∞

v(tk)− v(0)
tk

≤ inf
x∈X∗ sup

y∈Y ∗
γ (x, y). (7.89)

In order to prove the converse inequality we proceed as follows. Consider a sequence
xk ∈ arg minx∈X θk(x), where θk(x) := supy∈Y ζk(x, y). We have that θk : X → R

are continuous functions converging uniformly in x ∈ X to the max-function φ(x) =
supy∈Y f (x, y). Consequently xk converges in distance to the set arg minx∈X φ(x), which
is equal to X∗. By passing to a subsequence if necessary we can assume that xk converges
to a point x∗ ∈ X∗. For any y ∈ Y ∗ we have v(0) ≤ f (xk, y). Since ζk(x, y) is convex–
concave, it has a nonempty set of saddle points X∗k × Y ∗k . We have that xk ∈ X∗k , and hence
v(tk) ≥ ζk(xk, y) for any y ∈ Y . It follows that for any y ∈ Y ∗,

v(tk)− v(0) ≥ ζk(xk, y)− f (xk, y) = tkγk(x∗, y)+ o(tk)
holds, and hence

lim inf
k→∞

v(tk)− v(0)
tk

≥ γ (x∗, y).

Since y was an arbitrary element of Y ∗, we obtain that

lim inf
k→∞

v(tk)− v(0)
tk

≥ sup
y∈Y ∗

γ (x∗, y),

and hence

lim inf
k→∞

v(tk)− v(0)
tk

≥ inf
x∈X∗ sup

y∈Y ∗
γ (x, y). (7.90)

The assertion of the theorem follows from (7.89) and (7.90).

7.1.6 Epiconvergence

Consider a sequence fk : R
n → R, k = 1, . . . , of extended real valued functions. It is

said that the functions fk epiconverge to a function f : Rn → R, written fk
e→ f , if the

epigraphs of the functions fk converge, in a certain set-valued sense, to the epigraph of f .
It is also possible to define the epiconvergence in the following equivalent way.
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Definition 7.25. It is said that fk epiconverge to f if for any point x ∈ R
n the following

two conditions hold: (i) for any sequence xk converging to x one has

lim inf
k→∞ fk(xk) ≥ f (x); (7.91)

(ii) there exists a sequence xk converging to x such that59

lim sup
k→∞

fk(xk) ≤ f (x). (7.92)

Epiconvergence fk
e→ f implies that the function f is lower semicontinuous.

For ε ≥ 0 we say that a point x̄ ∈ R
n is an ε-minimizer60 of f if f (x̄) ≤ inf f (x)+ε.

(We write here inf f (x) for inf x∈Rn f (x).) Clearly, for ε = 0 the set of ε-minimizers of f
coincides with the set arg min f (of minimizers of f ).

Proposition 7.26. Suppose that fk
e→ f . Then

lim sup
k→∞

[inf fk(x)] ≤ inf f (x). (7.93)

Suppose, further, that (i) for some εk ↓ 0 there exists an εk-minimizer xk of fk(·) such that
the sequence xk converges to a point x̄. Then x̄ ∈ arg min f and

lim
k→∞

[inf fk(x)] = inf f (x). (7.94)

Proof. Consider a point x̄ ∈ R
n and let xk be a sequence converging to x̄ such that the

inequality (7.92) holds. Clearly fk(xk) ≥ inf fk(x) for all k. Together with (7.92) this
implies that

f (x̄) ≥ lim sup
k→∞

fk(xk) ≥ lim sup
k→∞

[inf fk(x)] .

Since the above holds for any x̄, the inequality (7.93) follows.
Now let xk be a sequence of εk-minimizers of fk converging to a point x̄. We have

then that fk(xk) ≤ inf fk(x)+ εk , and hence by (7.93) we obtain

lim inf
k→∞

[inf fk(x)] = lim inf
k→∞

[inf fk(x)+ εk] ≥ lim inf
k→∞ fk(xk) ≥ f (x̄) ≥ inf f (x).

Together with (7.93) this implies (7.94) and f (x̄) = inf f (x). This completes the
proof.

Assumption (i) in the above proposition can be ensured by various boundedness con-
ditions. Proof of the following theorem can be found in [181, Theorem 7.17].

Theorem 7.27. Let fk : Rn→ R be a sequence of convex functions and f : Rn→ R be a
convex lower semicontinuous function such that domf has a nonempty interior. Then the
following are equivalent: (i) fk

e→ f , (ii) there exists a dense subset D of R
n such that

59Note that here some (all) points xk can be equal to x.
60For the sake of convenience, we allow in this section for a minimizer, or ε-minimizer, x̄ to be such that

f (x̄) is not finite, i.e., can be equal to +∞ or −∞.
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fk(x)→ f (x) for all x ∈ D, and (iii) fk(·) converges uniformly to f (·) on every compact
set C that does not contain a boundary point of domf .

7.2 Probability

7.2.1 Probability Spaces and Random Variables

Let� be an abstract set. It is said that a set F of subsets of� is a sigma algebra (also called
sigma field) if (i) it is closed under standard set theoretic operations (i.e., if A,B ∈ F , then
A∩B ∈ F , A∪B ∈ F and A \B ∈ F ), (ii) the set� belongs to F , and (iii) if61 Ai ∈ F ,
i ∈ N, then ∪i∈NAi ∈ F . The set� equipped with a sigma algebra F is called a sample or
measurable space and denoted (�,F ). A setA ⊂ � is said to be F -measurable ifA ∈ F .
It is said that the sigma algebra F is generated by its subset G if any F -measurable set can
be obtained from sets belonging to G by set theoretic operations and by taking the union
of a countable family of sets from G. That is, F is generated by G if F is the smallest
sigma algebra containing G. If we have two sigma algebras F1 and F2 defined on the same
set �, then it is said that F1 is a subalgebra of F2 if F1 ⊂ F2. The smallest possible sigma
algebra on � consists of two elements � and the empty set ∅. Such sigma algebra is called
trivial. An F -measurable set A is said to be elementary if any F -measurable subset of A
is either the empty set or the set A. If the sigma algebra F is finite, then it is generated by
a family Ai ⊂ �, i = 1, . . . , n, of disjoint elementary sets and has 2n elements. The sigma
algebra generated by the set of open (or closed) subsets of a finite dimensional space R

m is
called its Borel sigma algebra. An element of this sigma algebra is called a Borel set. For
a considered set � ⊂ R

m we denote by B the sigma algebra of all Borel subsets of �.
A function P : F → R+ is called a (sigma-additive) measure on (�,F ) if for every

collection Ai ∈ F , i ∈ N, such that Ai ∩ Aj = ∅ for all i �= j , we have

P
( ∪i∈N Ai

) =∑i∈N
P(Ai). (7.95)

In this definition it is assumed that for every A ∈ F , and in particular for A = �, P(A)
is finite. Sometimes such measures are called finite. An important example of a measure
which is not finite is the Lebesgue measure on R

m. Unless stated otherwise, we assume that
a considered measure is finite. A measureP is said to be a probability measure ifP(�) = 1.
A sample space (�,F ) equipped with a probability measure P is called a probability space
and denoted (�,F , P ). Recall that F is said to be P -complete if A ⊂ B, B ∈ F , and
P(B) = 0, implies thatA ∈ F , and hence P(A) = 0. Since it is always possible to enlarge
the sigma algebra and extend the measure in such a way as to get complete space, we can
assume without loss of generality that considered probability measures are complete. It is
said that an event A ∈ F happens P -almost surely (a.s.) or almost everywhere (a.e.) if
P(A) = 1, or equivalently P(� \ A) = 0. We also sometimes say that such an event
happens with probability one (w.p. 1).

Let P an Q be two measures on a measurable space (�,F ). It is said that Q is
absolutely continuous with respect to P if A ∈ F and P(A) = 0 implies that Q(A) = 0.
If the measureQ is finite, this is equivalent to condition: for every ε > 0 there exists δ > 0
such that if P(A) < δ, then Q(A) < ε.

61By N we denote the set of positive integers.
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Theorem 7.28 (Radon–Nikodym). If P and Q are measures on (�,F ), then Q is ab-
solutely continuous with respect to P iff there exists a function f : � → R+ such that
Q(A) = ∫

A
f dP for every A ∈ F .

The function f in the representationQ(A) = ∫
A
f dP is called density of measureQ

with respect to measure P . If the measure Q is a probability measure, then f is called the
probability density function (pdf). The Radon–Nikodym theorem says that measure Q has
a density with respect to P iff Q is absolutely continuous with respect to P . We write this
as f = dQ/dP or dQ = f dP .

A mapping V : � → R
m is said to be measurable if for any Borel set A ∈ B, its

inverse image V −1(A) := {ω ∈ � : V (ω) ∈ A} is F -measurable.62 A measurable mapping
V (ω) from probability space (�,F , P ) into R

m is called a random vector. Note that the
mapping V generates the probability measure63 (also called the probability distribution)
P(A) := P(V −1(A)) on (Rm,B). The smallest closed set � ⊂ R

m such that P(�) = 1 is
called the support of measure P . We can view the space (�,B) equipped with probability
measure P as a probability space (�,B, P ). This probability space provides all relevant
probabilistic information about the considered random vector. In that case, we write Pr(A)
for the probability of the event A ∈ B. We often denote by ξ data vector of a considered
problem. Sometimes we view ξ as a random vector ξ : � → R

m supported on a set
� ⊂ R

m and sometimes as an element ξ ∈ �, i.e., as a particular realization of the random
data vector. Usually, the meaning of such notation will be clear from the context and will
not cause any confusion. If in doubt, in order to emphasize that we view ξ as a random
vector, we sometimes write ξ = ξ(ω).

A measurable mapping (function) Z : � → R is called a random variable. Its
probability distribution is completely defined by the cumulative distribution function (cdf)
HZ(z) := Pr{Z ≤ z}. Note that since the Borel sigma algebra of R is generated by the
family of half line intervals (−∞, a], in order to verify measurability of Z(ω) it suffices to
verify measurability of sets {ω ∈ � : Z(ω) ≤ z} for all z ∈ R. We denote random vectors
(variables) by capital letters, like V,Z, etc., or ξ(ω), and often suppress their explicit
dependence on ω ∈ �. The coordinate functions V1(ω), . . . , Vm(ω) of the m-dimensional
random vector V (ω) are called its components. While considering a random vector V ,
we often talk about its probability distribution as the joint distribution of its components
(random variables) V1, . . . , Vm.

Since we often deal with random variables which are given as optimal values of
optimization problems, we need to consider random variables Z(ω) which can also take
values +∞ or −∞, i.e., functions Z : � → R, where R denotes the set of extended real
numbers. Such functions Z : � → R are referred to as extended real valued functions.
Operations between real numbers and symbols ±∞ are clear except for such operations
as adding +∞ and −∞, which should be avoided. Measurability of an extended real
valued function Z(ω) is defined in the standard way, i.e., Z(ω) is measurable if the set
{ω ∈ � : Z(ω) ≤ z} is F -measurable for any z ∈ R. A measurable extended real valued
function is called an (extended) random variable. Note that here limz→+∞ FZ(z) is equal
to the probability of the event {ω ∈ � : Z(ω) < +∞} and can be less than 1 if the event
{ω ∈ � : Z(ω) = +∞} has a positive probability.

62In fact it suffices to verify F -measurability of V −1(A) for any family of sets generating the Borel sigma
algebra of R

m.
63With some abuse of notation we also denote here by P the probability distribution induced by the

probability measure P on (�,F ).
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The expected value or expectation of an (extended) random variable Z : � → R is
defined by the integral

EP [Z] :=
∫
�

Z(ω)dP (ω). (7.96)

When there is no ambiguity as to what probability measure is considered, we omit the
subscript P and simply write E[Z]. For a nonnegative valued measurable function Z(ω)
such that the event ϒ := {ω ∈ � : Z(ω) = +∞} has zero probability, the above integral is
defined in the usual way and can take value +∞. If probability of the event ϒ is positive,
then, by definition, E[Z] = +∞. For a general (not necessarily nonnegative valued)
random variable we would like to define64

E[Z] := E[Z+]−E[(−Z)+]. In order to do that
we have to ensure that we do not add +∞ and −∞. We say that the expected value E[Z]
of an (extended real valued) random variable Z(ω) is well defined if it does not happen that
both E[Z+] and E[(−Z)+] are +∞, in which case E[Z] = E[Z+] − E[(−Z)+]. That is,
in order to verify that the expected value of Z(ω) is well defined, one has to check that
Z(ω) is measurable and either E[Z+] < +∞ or E[(−Z)+] < +∞. Note that if Z(ω) and
Z′(ω) are two (extended) random variables such that their expectations are well defined and
Z(ω) = Z′(ω) for all ω ∈ � except possibly on a set of measure zero, then E[Z] = E[Z′].
It is said that Z(ω) is P -integrable if the expected value E[Z] is well defined and finite.
The expected value of a random vector is defined componentwise.

If the random variable Z(ω) can take only a countable (finite) number of different
values, say z1, z2, . . . , then it is said that Z(ω) has a discrete distribution (discrete distribu-
tion with a finite support). In such cases all relevant probabilistic information is contained
in the probabilities pi := Pr{Z = zi}. In that case E[Z] =∑i pizi .

Let fn(ω) be a sequence of real valued measurable functions on a probability space
(�,F , P ). By fn ↑ f a.e. we mean that for almost every ω ∈ � the sequence fn(ω) is
monotonically nondecreasing and hence converges to a limit denoted f (ω), where f (ω)
can be equal to+∞. We have the following classical results about convergence of integrals.

Theorem 7.29 (Monotone Convergence Theorem). Suppose that fn ↑ f a.e. and there
exists a P -integrable function g(ω) such that fn(·) ≥ g(·). Then

∫
�
f dP is well defined

and
∫
�
fndP ↑

∫
�
f dP .

Theorem 7.30 (Fatou’s Lemma). Suppose that there exists a P -integrable function g(ω)
such that fn(·) ≥ g(·). Then

lim inf
n→∞

∫
�

fn dP ≥
∫
�

lim inf
n→∞ fn dP. (7.97)

Theorem 7.31 (Lebesgue Dominated Convergence Theorem). Suppose that there exists
a P -integrable function g(ω) such that |fn| ≤ g a.e., and that fn(ω) converges to f (ω) for
almost every ω ∈ �. Then

∫
�
f dP is well defined and

∫
�
fndP →

∫
�
f dP .

We also have the following useful result. Unless stated otherwise we always assume
that considered measures are finite and nonnegative, i.e.,µ(A) is a finite nonnegative number
for every A ∈ F .

64Recall that Z+ := max{0, Z}.
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Theorem 7.32 (Richter–Rogosinski). Let (�,F ) be a measurable space, f1, . . . , fm
be measurable on (�,F ) real valued functions, and µ be a measure on (�,F ) such
that f1, . . . , fm are µ-integrable. Suppose that every finite subset of � is F -measurable.
Then there exists a measure η on (�,F ) with a finite support of at most m points such
that
∫
�
fidµ =

∫
�
fidη for all i = 1, . . . , m.

Proof. The proof proceeds by induction on m. It can be easily shown that the asser-
tion holds for m = 1. Consider the set S ⊂ R

m generated by vectors of the form(∫
f1dµ

′, . . . ,
∫
fmdµ

′) with µ′ being a measure on � with a finite support. It is not
difficult to show that it suffices to take measures µ′ with support of at most m points in
the definition of the set S (we leave this as an exercise). We have to show that vector
a := (∫ f1dµ, . . . ,

∫
fmdµ

)
belongs to S. Note that the set S is a convex cone. Suppose

that a �∈ S. Then, by the separation theorem, there exists c ∈ R
m \ {0} such that cTa ≤ cTx,

for all x ∈ S. Since S is a cone, it follows that cTa ≤ 0. This implies that for f :=∑n
i=1 cifi

we have that
∫
f dµ ≤ 0 and

∫
f dµ ≤ ∫ f dµ′ for any measure µ′ with a finite support.

In particular, by taking measures of the form65 µ′ = α#(ω), with α > 0 and ω ∈ �, we
obtain from the second inequality that

∫
f dµ ≤ af (ω). This implies that f (ω) ≥ 0 for all

ω ∈ �, since otherwise if f (ω) < 0 we can make af (ω) arbitrary small by taking a large
enough. Together with the first inequality this implies that

∫
f dµ = 0.

Consider the set �′ := {ω ∈ � : f (ω) = 0}. Note that the function f is measurable
and hence�′ ∈ F . Since

∫
f dµ = 0 and f (·) is nonnegative valued, it follows that�′ is a

support of µ, i.e., µ(�′) = µ(�). If µ(�) = 0, then the assertion clearly holds. Therefore,
suppose that µ(�) > 0. Then µ(�′) > 0, and hence �′ is nonempty. Moreover, the
functions fi , i = 1, . . . , m, are linearly dependent on �′. Consequently, by the induction
assumption there exists a measure µ′ with a finite support on �′ such that

∫
fidµ

∗ =∫
fidµ

′ for all i = 1, . . . , m, where µ∗ is the restriction of the measure µ to the set �′.
Moreover, since µ is supported on�′ we have that

∫
fidµ

∗ = ∫ fidµ, and hence the proof
is complete.

Let us remark that if the measure µ is a probability measure, i.e., µ(�) = 1, then
by adding the constraint

∫
�
dη = 1, we obtain in the above theorem that there exists a

probability measure η on (�,F ) with a finite support of at most m + 1 points such that∫
�
fidµ =

∫
�
fidη for all i = 1, . . . , m.

Also let us recall two famous inequalities. The Chebyshev inequality66 says that if
Z : �→ R+ is a nonnegative valued random variable, then

Pr
(
Z ≥ α) ≤ α−1

E [Z] , ∀α > 0. (7.98)

Proof of (7.98) is rather simple. We have

Pr
(
Z ≥ α) = E

[
1[α,+∞)(Z)

] ≤ E
[
α−1Z

] = α−1
E [Z] .

The Jensen inequality says that if V : � → R
m is a random vector, ν := E [V ] and

f : Rm→ R is a convex function, then

E [f (V )] ≥ f (ν), (7.99)
65We denote by #(ω) measure of mass one at the point ω and refer to such measures as Dirac measures.
66Sometimes (7.98) is called the Markov inequality, while the Chebyshev inequality is referred to as the

inequality (7.98) applied to the function (Z − E[Z])2.
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provided the above expectations are finite. Indeed, for a subgradient g ∈ ∂f (ν)we have that

f (V ) ≥ f (ν)+ gT(V − ν). (7.100)

By taking expectation of the both sides of (7.100) we obtain (7.99).

Finally, let us mention the following simple inequality. LetY1, Y2 : �→ R be random
variables and a1, a2 be numbers. Then the intersection of the events {ω : Y1(ω) < a1} and
{ω : Y2(ω) < a2} is included in the event {ω : Y1(ω)+Y2(ω) < a1+a2}, or equivalently the
event {ω : Y1(ω)+Y2(ω) ≥ a1+a2} is included in the union of the events {ω : Y1(ω) ≥ a1}
and {ω : Y2(ω) ≥ a2}. It follows that

Pr{Y1 + Y2 ≥ a1 + a2} ≤ Pr{Y1 ≥ a1} + Pr{Y2 ≥ a2}. (7.101)

7.2.2 Conditional Probability and Conditional Expectation

For two events A and B the conditional probability of A given B is

P(A|B) = P(A ∩ B)
P (B)

, (7.102)

provided that P(B) �= 0. Now let X and Y be discrete random variables with joint mass
function p(x, y) := P(X = x, Y = y). Of course, since X and Y are discrete, p(x, y)
is nonzero only for a finite or countable number of values of x and y. The marginal mass
functions of X and Y are p

X
(x) := P(X = x) = ∑y p(x, y) and p

Y
(y) := P(Y = y) =∑

x p(x, y), respectively. It is natural to define conditional mass function of X given that
Y = y as

p
X|Y (x|y) := P(X = x|Y = y) =

P(X = x, Y = y)
P (Y = y) = p(x, y)

p
Y
(y)

(7.103)

for all values of y such that p
Y
(y) > 0. We have that X is independent of Y iff p(x, y) =

p
X
(x)p

Y
(y) holds for all x and y, which is equivalent to that p

X|Y (x|y) = p
X
(x) for all y

such that p
Y
(y) > 0.

IfX and Y have continuous distribution with a joint pdf f (x, y), then the conditional
pdf of X, given that Y = y, is defined in a way similar to (7.103) for all values of y such
that f

Y
(y) > 0 as

f
X|Y (x|y) :=

f (x, y)

f
Y
(y)

. (7.104)

Here f
Y
(y) := ∫ +∞−∞ f (x, y)dx is the marginal pdf of Y . In the continuous case the condi-

tional expectation ofX, given thatY = y, is defined for all values of y such thatf
Y
(y) > 0 as

E[X|Y = y] :=
∫ +∞
−∞

xf
X|Y (x|y)dx. (7.105)

In the discrete case it is defined in a similar way.
Note that E[X|Y = y] is a function of y, say h(y) := E[X|Y = y]. Let us denote

by E[X|Y ] that function of random variable Y , i.e., E[X|Y ] := h(Y ). We have then the
following important formula:

E[X] = E
[
E[X|Y ]]. (7.106)



SPbook
2009/8/20
page 364

�

�

�

�

�

�

�

�

364 Chapter 7. Background Material

In the continuous case, for example, we have

E[X] =
∫ +∞
−∞

∫ +∞
−∞

xf (x, y)dxdy =
∫ +∞
−∞

∫ +∞
−∞

xf
X|Y (x|y)dxfY (y)dy,

and hence

E[X] =
∫ +∞
−∞

E[X|Y = y]f
Y
(y)dy. (7.107)

The above definitions can be extended to the case where X and Y are two random vectors
in a straightforward way.

It is also useful to define conditional expectation in the following abstract form. Let
X be a nonnegative valued integrable random variable on a probability space (�,F , P ),
and let G be a subalgebra of F . Define a measure on G by ν(G) := ∫

G
XdP for any

G ∈ G. This measure is finite because X is integrable and is absolutely continuous with
respect to P . Hence by the Radon–Nikodym theorem there is a G-measurable function
h(ω) such that ν(G) = ∫

G
hdP . This function h(ω), viewed as a random variable, has

the following properties: (i) h(ω) is G-measurable and integrable, and (ii) it satisfies the
equation

∫
G
hdP = ∫

G
XdP for any G ∈ G. By definition we say that a random variable,

denoted E[X|G], is said to be the conditional expected value of X given G, if it satisfies the
following two properties:

(i) E[X|G] is G-measurable and integrable, and

(ii) E[X|G] satisfies the functional equation∫
G

E[X|G]dP =
∫
G

XdP, ∀G ∈ G. (7.108)

The above construction shows existence of such random variable for nonnegative X. If X
is not necessarily nonnegative, apply the same construction to the positive and negative part
of X.

Many random variables will satisfy properties (i) and (ii). Any one of them is called a
version of the conditional expected value. We sometimes write it as E[X|G](ω) or E[X|G]ω
to emphasize that this a random variable. Any two versions of E[X|G] are equal to each
other with probability one. Note that, in particular, for G = � it follows from (ii) that

E[X] =
∫
�

E[X|G]dP = E
[
E[X|G]]. (7.109)

Note also that if the sigma algebra G is trivial, i.e., G = {∅, �}, then E[X|G] is constant
equal to E[X].

Conditional probability P(A|G) of event A ∈ F can be defined as P(A|G) =
E[1A|G]. In that case the corresponding properties (i) and (ii) take the form

(i′) P(A|G) is G-measurable and integrable, and

(ii′) P(A|G) satisfies the functional equation∫
G

P (A|G)dP = P(A ∩G), ∀G ∈ G. (7.110)
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7.2.3 Measurable Multifunctions and Random Functions

Let G be a mapping from � into the set of subsets of R
n, i.e., G assigns to each ω ∈ � a

subset (possibly empty) G(ω) of R
n. We refer to G as a multifunction and write G : � ⇒ R

n.
It is said that G is closed valued if G(ω) is a closed subset of R

n for every ω ∈ �. A closed
valued multifunction G is said to be measurable if for every closed set A ⊂ R

n one has
that the inverse image G−1(A) := {ω ∈ � : G(ω) ∩ A �= ∅} is F -measurable. Note that
measurability of G implies that the domain

dom G := {ω ∈ � : G(ω) �= ∅} = G−1(Rn)

of G is an F -measurable subset of �.

Proposition 7.33. A closed valued multifunction G : � ⇒ R
n is measurable iff the (extended

real valued) function d(ω) := dist(x,G(ω)) is measurable for any x ∈ R
n.

Proof. Recall that by the definition dist(x,G(ω)) = +∞ if G(ω) = ∅. Note also that
dist(x,G(ω)) = ‖x−y‖ for some y ∈ G(ω), because of closedness of set G(ω). Therefore,
for any t ≥ 0 and x ∈ R

n we have that

{ω ∈ � : dist(x,G(ω)) ≤ t} = G−1(x + tB),
whereB := {x ∈ R

n : ‖x‖ ≤ 1}. It remains to note that it suffices to verify the measurability
of G−1(A) for closed sets of the form A = x + tB, (t, x) ∈ R+ × R

n.

Remark 28. Suppose now that � is a Borel subset of R
m equipped with its Borel sigma

algebra. Suppose, further, that the multifunction G : � ⇒ R
n is closed. That is, if ωk → ω,

xk ∈ G(ωk) and xk → x, then x ∈ G(ω). Of course, any closed multifunction is closed
valued. It follows that for any (t, x) ∈ R+ × R

n the level set {ω ∈ � : dist(x,G(ω)) ≤ t}
is closed, and hence the function d(ω) := dist(x,G(ω)) is measurable. Consequently we
obtain that any closed multifunction G : � ⇒ R

n is measurable.

It is said that a mapping G : dom G→ R
n is a selection of G if G(ω) ∈ G(ω) for all

ω ∈ dom G. If, in addition, the mapping G is measurable, it is said that G is a measurable
selection of G.

Theorem 7.34 (Measurable Selection Theorem). A closed valued multifunction G :
� ⇒ R

n is measurable iff its domain is an F -measurable subset of � and there exists a
countable family {Gi}i∈N, of measurable selections of G, such that for every ω ∈ �, the set
{Gi(ω) : i ∈ N} is dense in G(ω).

In particular, we have by the above theorem that if G : � ⇒ R
n is a closed valued

measurable multifunction, then there exists at least one measurable selection of G. In [181,
Theorem 14.5] the result of the above theorem is called Castaing representation.

Consider a function F : R
n × � → R. We say that F is a random function if for

every fixed x ∈ R
n, the function F(x, ·) is F -measurable. For a random function F(x, ω)

we can define the corresponding expected value function

f (x) := E[F(x, ω)] =
∫
�

F(x, ω)dP (ω).
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We say that f (x) is well defined if the expectation E[F(x, ω)] is well defined for every
x ∈ R

n. Also for every ω ∈ � we can view F(·, ω) as an extended real valued function.

Definition 7.35. It is said that the function F(x, ω) is random lower semicontinuous if the
associated epigraphical multifunction ω !→ epiF(·, ω) is closed valued and measurable.

In some publications, random lower semicontinuous functions are called normal in-
tegrands. It follows from the above definitions that if F(x, ω) is random lower semicon-
tinuous, then the multifunction ω !→ domF(·, ω) is measurable, and F(x, ·) is measurable
for every fixed x ∈ R

n. Close valuedness of the epigraphical multifunction means that
for every ω ∈ �, the epigraph epiF(·, ω) is a closed subset of R

n+1, i.e., F(·, ω) is lower
semicontinuous. Note, however, that the lower semicontinuity in x and measurability in ω
does not imply measurability of the corresponding epigraphical multifunction and random
lower semicontinuity of F(x, ω). A large class of random lower semicontinuous is given
by the so-called Carathéodory functions, i.e., real valued functions F : Rn ×�→ R such
that F(x, ·) is F -measurable for every x ∈ R

n and F(·, ω) continuous for a.e. ω ∈ �.

Theorem 7.36. Suppose that the sigma algebra F is P -complete. Then an extended real
valued function F : R

n × � → R is random lower semicontinuous iff the following two
properties hold: (i) for every ω ∈ �, the function F(·, ω) is lower semicontinuous, and
(ii) the function F(·, ·) is measurable with respect to the sigma algebra of R

n×� given by
the product of the sigma algebras B and F .

With a random function F(x, ω) we associate its optimal value function ϑ(ω) :=
inf x∈Rn F (x, ω) and the optimal solution multifunction X∗(ω) := arg minx∈Rn F (x, ω).

Theorem 7.37. Let F : Rn × �→ R be a random lower semicontinuous function. Then
the optimal value function ϑ(ω) and the optimal solution multifunction X∗(ω) are both
measurable.

Since we assume that the considered sigma algebras are complete, it follows from
condition (ii) of Theorem 7.36 that the optimal value function is measurable. We assume
in the remainder of this chapter, sometimes without explicitly saying this, that the function
F(x, ω) is measurable in the sense of the above condition (ii), and hence considered max-
and min-functions are measurable. In case the set� is a subset of a finite dimensional vector
space equipped with its Borel sigma algebra, the optimal value functions are Lebesgue, rather
than Borel, measurable (see, e.g., [181, p. 649] for a discussion of a delicate difference
between Borel and Lebesgue measurability).

Note that it follows from lower semicontinuity of F(·, ω) that the optimal solution
multifunction X∗(ω) is closed valued. Note also that if F(x, ω) is random lower semicon-
tinuous and G : � ⇒ R

n is a closed valued measurable multifunction, then the function

F̄ (x, ω) :=
{
F(x, ω) if x ∈ G(ω),
+∞ if x �∈ G(ω)

is also random lower semicontinuous. Consequently, the corresponding optimal valueω !→
inf x∈G(ω) F (x, ω) and the optimal solution multifunction ω !→ arg minx∈G(ω) F (x, ω) are
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both measurable, and hence by the measurable selection theorem, there exists a measurable
selection x̄(ω) ∈ arg minx∈G(ω) F (x, ω).

Theorem 7.38. Let F : Rn+m ×�→ R be a random lower semicontinuous function and

ϑ(x, ω) := inf
y∈Rm

F (x, y, ω) (7.111)

be the associated optimal value function. Suppose that there exists a bounded set S ⊂ R
m

such that domF(x, ·, ω) ⊂ S for all (x, ω) ∈ R
n × �. Then the optimal value function

ϑ(x, ω) is random lower semicontinuous.

Let us observe that the above framework of random lower semicontinuous functions
is aimed at minimization problems. Of course, the problem of maximization of E[F(x, ω)]
is equivalent to minimization of E[−F(x, ω)]. Therefore, for maximization problems one
would need the comparable concept of random upper semicontinuous functions.

Consider a multifunction G : � ⇒ R
n. Denote

‖G(ω)‖ := sup{‖G(ω)‖ : G(ω) ∈ G(ω)},
and by conv G(ω) the convex hull of set G(ω). If the set � = {ω1, . . . , ωK} is finite and
equipped with respective probabilities pk , k = 1, . . . , K , then it is natural to define the
integral ∫

�

G(ω)dP (ω) :=
K∑
k=1

pkG(ωk), (7.112)

where the sum of two sets A,B ⊂ R
n and multiplication by a scalar γ ∈ R are defined in

the natural way, A+B := {a+ b : a ∈ A, b ∈ B} and γA := {γ a : a ∈ A}. For a general
measure P on a sample space (�,F ), the corresponding integral is defined as follows.

Definition 7.39. The integral
∫
�

G(ω)dP (ω) is defined as the set of all points of the form∫
�
G(ω)dP (ω), whereG(ω) is a P -integrable selection of G(ω), i.e.,G(ω) ∈ G(ω) for a.e.

ω ∈ �, G(ω) is measurable and
∫
�
‖G(ω)‖dP (ω) is finite.

If the multifunction G(ω) is convex valued, i.e., the set G(ω) is convex for a.e. ω ∈ �,
then

∫
�

GdP is a convex set. It turns out that
∫
�

GdP is always convex (even if G(ω) is not
convex valued) if the measure P does not have atoms, i.e., is nonatomic.67 The following
theorem often is due to Aumann (1965).

Theorem 7.40 (Aumann). Suppose that the measureP is nonatomic and let G : � ⇒ R
n be

a multifunction. Then the set
∫
�

GdP is convex. Suppose, further, that G(ω) is closed valued
and measurable and there exists a P -integrable function g(ω) such that ‖G(ω)‖ ≤ g(ω)

for a.e. ω ∈ �. Then ∫
�

G(ω)dP (ω) =
∫
�

(
conv G(ω)

)
dP (ω). (7.113)

The above theorem is a consequence of a theorem due to Lyapunov (1940).
67It is said that measure P , and the space (�,F , P ), is nonatomic if any set A ∈ F , such that P(A) > 0,

contains a subset B ∈ F such that P(A) > P(B) > 0.
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Theorem 7.41 (Lyapunov). Let µ1, . . . , µn be a finite collection of nonatomic measures
on a measurable space (�,F ). Then the set {(µ1(S), . . . , µn(S)) : S ∈ F } is a closed and
convex subset of R

n.

7.2.4 Expectation Functions

Consider a random function F : Rn × � → R and the corresponding expected value (or
simply expectation) function f (x) = E[F(x, ω)]. Recall that by assuming that F(x, ω) is
a random function we assume that F(x, ·) is measurable for every x ∈ R

n. We have that the
function f (x) is well defined on a setX ⊂ R

n if for every x ∈ X either E[F(x, ω)+] < +∞
or E[(−F(x, ω))+] < +∞. The expectation function inherits various properties of the
functions F(·, ω), ω ∈ �. As shown in the next theorem, the lower semicontinuity of the
expected value function follows from the lower semicontinuity of F(·, ω).

Theorem 7.42. Suppose that for P -almost every ω ∈ � the function F(·, ω) is lower semi-
continuous at a point x0 and there exists P -integrable function Z(ω) such that F(x, ω) ≥
Z(ω) for P -almost all ω ∈ � and all x in a neighborhood of x0. Then for all x in a neigh-
borhood of x0 the expected value function f (x) := E[F(x, ω)] is well defined and lower
semicontinuous at x0.

Proof. It follows from the assumption thatF(x, ω) is bounded from below by aP -integrable
function that f (·) is well defined in a neighborhood of x0. Moreover, by Fatou’s lemma
we have

lim inf
x→x0

∫
�

F(x, ω) dP (ω) ≥
∫
�

lim inf
x→x0

F(x, ω) dP (ω). (7.114)

Together with lower semicontinuity of F(·, ω) this implies lower semicontinuity of f
at x0.

With stronger assumptions, we can show that the expectation function is continuous.

Theorem 7.43. Suppose that for P -almost every ω ∈ � the function F(·, ω) is continuous
at x0 and there exists P -integrable functionZ(ω) such that |F(x, ω)| ≤ Z(ω) for P -almost
every ω ∈ � and all x in a neighborhood of x0. Then for all x in a neighborhood of x0, the
expected value function f (x) is well defined and continuous at x0.

Proof. It follows from the assumption that |F(x, ω)| is dominated by aP -integrable function
that f (x) is well defined and finite valued for all x in a neighborhood of x0. Moreover,
by the Lebesgue dominated convergence theorem we can take the limit inside the integral,
which together with the continuity assumption implies

lim
x→x0

∫
�

F(x, ω)dP (ω) =
∫
�

lim
x→x0

F(x, ω)dP (ω) =
∫
�

F(x0, ω)dP (ω). (7.115)

This shows the continuity of f (x) at x0.

Consider, for example, the characteristic function F(x, ω) := 1(−∞,x](ξ(ω)), with
x ∈ R and ξ = ξ(ω) being a real valued random variable. We have then that f (x) =
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Pr(ξ ≤ x), i.e., that f (·) is the cumulative distribution function of ξ . It follows that in this
example the expected value function is continuous at a point x0 iff the probability of the
event {ξ = x0} is zero. Note that x = ξ(ω) is the only point at which the function F(·, ω)
is discontinuous.

We say that random function F(x, ω) is convex if the function F(·, ω) is convex for
a.e. ω ∈ �. Convexity of F(·, ω) implies convexity of the expectation function f (x).
Indeed, if F(x, ω) is convex and the measure P is discrete, then f (x) is a weighted sum,
with positive coefficients, of convex functions and hence is convex. For general measures,
convexity of the expectation function follows by passing to the limit. Recall that if f (x)
is convex, then it is continuous on the interior of its domain. In particular, if f (x) is real
valued for all x ∈ R

n, then it is continuous on R
n.

We discuss now differentiability properties of the expected value function f (x). We
sometimes write Fω(·) for the function F(·, ω) and denote by F ′ω(x0, h) the directional
derivative of Fω(·) at the point x0 in the direction h. Definitions and basic properties of
directional derivatives are given in section 7.1.1. Consider the following conditions:

(A1) The expectation f (x0) is well defined and finite valued at a given point x0 ∈ R
n.

(A2) There exists a positive valued random variable C(ω) such that E[C(ω)] < +∞,
and for all x1, x2 in a neighborhood of x0 and almost every ω ∈ � the following
inequality holds:

|F(x1, ω)− F(x2, ω)| ≤ C(ω)‖x1 − x2‖. (7.116)

(A3) For almost every ω the function Fω(·) is directionally differentiable at x0.

(A4) For almost every ω the function Fω(·) is differentiable at x0.

Theorem 7.44. We have the following: (a) If conditions (A1) and (A2) hold, then the ex-
pected value function f (x) is Lipschitz continuous in a neighborhood of x0. (b) If conditions
(A1)–(A3) hold, then the expected value function f (x) is directionally differentiable at x0,
and

f ′(x0, h) = E
[
F ′ω(x0, h)

]
, ∀h. (7.117)

(c) If conditions (A1), (A2), and (A4) hold, then f (x) is differentiable at x0 and

∇f (x0) = E [∇xF (x0, ω)] . (7.118)

Proof. It follows from (7.116) that for any x1, x2 in a neighborhood of x0,

|f (x1)− f (x2)| ≤
∫
�

|F(x1, ω)− F(x2, ω)| dP (ω) ≤ c‖x1 − x2‖,

where c := E[C(ω)]. Together with assumption (A1) this implies that f (x) is well defined,
finite valued, and Lipschitz continuous in a neighborhood of x0.

Suppose now that assumptions (A1)–(A3) hold. For t �= 0 consider the ratio

Rt(ω) := t−1
[
F(x0 + th, ω)− F(x0, ω)

]
.
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By assumption (A2) we have that |Rt(ω)| ≤ C(ω)‖h‖ and by assumption (A3) that

lim
t↓0
Rt(ω) = F ′ω(x0, h) w.p. 1.

Therefore, it follows by the Lebesgue dominated convergence theorem that

lim
t↓0

∫
�

Rt(ω) dP (ω) =
∫
�

lim
t↓0
Rt(ω) dP (ω).

Together with assumption (A3) this implies formula (7.117). This proves assertion (b).
Finally, if F ′ω(x0, h) is linear in h for almost every ω, i.e., the function Fω(·) is

differentiable at x0 w.p. 1, then (7.117) implies that f ′(x0, h) is linear in h, and hence
(7.118) follows. Note that since f (x) is locally Lipschitz continuous, we only need to
verify linearity of f ′(x0, ·) in order to establish (Fréchet) differentiability of f (x) at x0 (see
theorem 7.2). This completes proof of (c).

The above analysis shows that two basic conditions for interchangeability of the ex-
pectation and differentiation operators, i.e., for the validity of formula (7.118), are the above
conditions (A2) and (A4). The following lemma shows that if, in addition to assumptions
(A1)–(A3), the directional derivative F ′ω(x0, h) is convex in h w.p. 1, then f (x) is differen-
tiable at x0 iff F(·, ω) is differentiable at x0 w.p. 1.

Lemma 7.45. Letψ : Rn×�→ R be a random function such that for almost every ω ∈ �
the functionψ(·, ω) is convex and positively homogeneous, and the expected value function
φ(h) := E[ψ(h, ω)] is well defined and finite valued. Then the expected value function
φ(·) is linear iff the function ψ(·, ω) is linear w.p. 1.

Proof. We have here that the expected value function φ(·) is convex and positively homo-
geneous. Moreover, it immediately follows from the linearity properties of the expectation
operator that if the function ψ(·, ω) is linear w.p. 1, then φ(·) is also linear.

Conversely, let e1, . . . , en be a basis of the space R
n. Since φ(·) is convex and

positively homogeneous, it follows that φ(ei) + φ(−ei) ≥ φ(0) = 0, i = 1, . . . , n.
Furthermore, since φ(·) is finite valued, it is the support function of a convex compact set.
This convex set is a singleton iff

φ(ei)+ φ(−ei) = 0, i = 1, . . . , n. (7.119)

Therefore, φ(·) is linear iff condition (7.119) holds. Consider the sets

Ai :=
{
ω ∈ � : ψ(ei, ω)+ ψ(−ei, ω) > 0

}
.

Thus the set of ω ∈ � such that ψ(·, ω) is not linear coincides with the set ∪ni=1Ai . If
P
(∪ni=1Ai

)
> 0, then at least one of the sets Ai has a positive measure. Let, for example,

P(A1) be positive. Then φ(e1)+φ(−e1) > 0, and hence φ(·) is not linear. This completes
the proof.

Regularity conditions which are required for formula (7.117) to hold are simplified
further if the random function F(x, ω) is convex. In that case, by using the monotone
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convergence theorem instead of the Lebesgue dominated convergence theorem, it is possible
to prove the following result.

Theorem 7.46. Suppose that the random function F(x, ω) is convex and the expected value
function f (x) is well defined and finite valued in a neighborhood of a point x0. Then f (x)
is convex and directionally differentiable at x0 and formula (7.117) holds. Moreover, f (x)
is differentiable at x0 iff Fω(x) is differentiable at x0 w.p. 1, in which case formula (7.118)
holds.

Proof. The convexity of f (x) follows from convexity of Fω(·). Since f (x) is convex
and finite valued near x0 it follows that f (x) is directionally differentiable at x0 with finite
directional derivative f ′(x0, h) for every h ∈ R

n. Consider a direction h ∈ R
n. Since f (x)

is finite valued near x0, we have that f (x0) and, for some t0 > 0, f (x0 + t0h) are finite. It
follows from the convexity of Fω(·) that the ratio

Rt(ω) := t−1
[
F(x0 + th, ω)− F(x0, ω)

]
is monotonically decreasing to F ′ω(x0, h) as t ↓ 0. Also we have that

E
∣∣Rt0(ω)∣∣ ≤ t−1

0

(
E |F(x0 + t0h, ω)| + E |F(x0, ω)|

)
< +∞.

Then it follows by the monotone convergence theorem that

lim
t↓0

E[Rt(ω)] = E

[
lim
t↓0
Rt(ω)

]
= E

[
F ′ω(x0, h)

]
. (7.120)

Since E[Rt(ω)] = t−1[f (x0 + th) − f (x0)], we have that the left-hand side of (7.120) is
equal to f ′(x0, h), and hence formula (7.117) follows.

The last assertion follows then from Lemma 7.45.

Remark 29. It is possible to give a version of the above result for a particular direction
h ∈ R

n. That is, suppose that: (i) the expected value function f (x) is well defined in a
neighborhood of a point x0, (ii) f (x0) is finite, (iii) for almost every ω ∈ � the function
Fω(·) := F(·, ω) is convex, (iv) E[F(x0 + t0h, ω)] < +∞ for some t0 > 0. Then
f ′(x0, h) < +∞ and formula (7.117) holds. Note also that if assumptions (i)–(iii) are
satisfied and E[F(x0 + th, ω)] = +∞ for any t > 0, then clearly f ′(x0, h) = +∞.

Often the expectation operator smoothes the integrand F(x, ω). Consider, for exam-
ple, F(x, ω) := |x − ξ(ω)| with x ∈ R and ξ(ω) being a real valued random variable.
Suppose that f (x) = E[F(x, ω)] is finite valued. We have here that F(·, ω) is convex
and F(·, ω) is differentiable everywhere except x = ξ(ω). The corresponding derivative is
given by ∂F (x, ω)/∂x = 1 if x > ξ(ω) and ∂F (x, ω)/∂x = −1 if x < ξ(ω). Therefore,
f (x) is differentiable at x0 iff the event {ξ(ω) = x0} has zero probability, in which case

df (x0)/dx = E [∂F (x0, ω)/∂x] = Pr(ξ < x0)− Pr(ξ > x0). (7.121)

If the event {ξ(ω) = x0} has positive probability, then the directional derivatives f ′(x0, h)

exist but are not linear in h, that is,

f ′(x0,−1)+ f ′(x0, 1) = 2 Pr(ξ = x0) > 0. (7.122)
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We can also investigate differentiability properties of the expectation function by
studying the subdifferentiability of the integrand. Suppose for the moment that the set �
is finite, say, � := {ω1, . . . , ωK} with P {ω = ωk} = pk > 0, and that the functions
F(·, ω), ω ∈ �, are proper. Then f (x) = ∑K

k=1 pkF (x, ωk) and dom f = ⋂K
k=1 dom Fk ,

where Fk(·) := F(·, ωk). The Moreau–Rockafellar theorem (Theorem 7.4) allows us to
express the subdifferenial of f (x) as the sum of subdifferentials of pkF (x, ωk). That is,
suppose that: (i) the set � = {ω1, . . . , ωK} is finite, (ii) for every ωk ∈ � the function
Fk(·) := F(·, ωk) is proper and convex, and (iii) the sets ri(dom Fk), k = 1, . . . , K , have a
common point. Then for any x0 ∈ dom f ,

∂f (x0) =
K∑
k=1

pk∂F (x0, ωk). (7.123)

Note that the above regularity assumption (iii) holds, in particular, if the interior of dom f

is nonempty.
The subdifferentials at the right-hand side of (7.123) are taken with respect to x. Note

that ∂F (x0, ωk), and hence ∂f (x0), in (7.123) can be unbounded or empty. Suppose that all
probabilities pk are positive. It follows then from (7.123) that ∂f (x0) is a singleton iff all
subdifferentials ∂F (x0, ωk), k = 1, . . . , K , are singletons. That is, f (·) is differentiable at
a point x0 ∈ dom f iff all F(·, ωk) are differentiable at x0.

Remark 30. In the case of a finite set � we didn’t have to worry about the measurability
of the multifunction ω !→ ∂F (x, ω). Consider now a general case where the measurable
space does not need to be finite. Suppose that the function F(x, ω) is random lower semi-
continuous and for a.e. ω ∈ � the function F(·, ω) is convex and proper. Then for any
x ∈ R

n, the multifunction ω !→ ∂F (x, ω) is measurable. Indeed, consider the conjugate

F ∗(z, ω) := sup
x∈Rn

{
zTx − F(x, ω)}

of the function F(·, ω). It is possible to show that the function F ∗(z, ω) is also random
lower semicontinuous. Moreover, by the Fenchel–Moreau theorem, F ∗∗ = F and by
convex analysis (see (7.24))

∂F (x, ω) = arg max
z∈Rn

{
zTx − F ∗(z, ω)}.

Then it follows by Theorem 7.37 that the multifunction ω !→ ∂F (x, ω) is measurable.

In general we have the following extension of formula (7.123).

Theorem 7.47. Suppose that (i) the function F(x, ω) is random lower semicontinuous, (ii)
for a.e. ω ∈ � the function F(·, ω) is convex, (iii) the expectation function f is proper, and
(iv) the domain of f has a nonempty interior. Then for any x0 ∈ dom f ,

∂f (x0) =
∫
�

∂F(x0, ω) dP (ω)+Ndom f (x0). (7.124)

Proof. Consider a point z ∈ ∫
�
∂F(x0, ω) dP (ω). By the definition of that integral we

have then that there exists a P -integrable selection G(ω) ∈ ∂F (x0, ω) such that z =
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∫
�
G(ω) dP (ω). Consequently, for a.e. ω ∈ � the following holds:

F(x, ω)− F(x0, ω) ≥ G(ω)T(x − x0) ∀x ∈ R
n.

By taking the integral of the both sides of the above inequality we obtain that z is a subgra-
dient of f at x0. This shows that∫

�

∂F(x0, ω) dP (ω) ⊂ ∂f (x0). (7.125)

In particular, it follows from (7.125) that if ∂f (x0) is empty, then the set at the right-hand
side of (7.124) is also empty. If ∂f (x0) is nonempty, i.e., f is subdifferentiable at x0, then
Ndom f (x0) forms the recession cone of ∂f (x0). In any case, it follows from (7.125) that∫

�

∂F(x0, ω) dP (ω)+Ndom f (x0) ⊂ ∂f (x0). (7.126)

Note that inclusion (7.126) holds irrespective of assumption (iv).
Proving the converse of inclusion (7.126) is a more delicate problem. Let us outline

main steps of such a proof based on the interchangeability property of the directional deriva-
tive and integral operators. We can assume that both sets at the left- and right-hand sides of
(7.125) are nonempty. Since the subdifferentials ∂F (x0, ω) are convex, it is quite easy to
show that the set

∫
�
∂F(x0, ω) dP (ω) is convex. With some additional effort it is possible

to show that this set is closed. Let us denote by s1(·) and s2(·) the support functions of the
sets at the left- and right-hand sides of (7.126), respectively. By virtue of inclusion (7.125),
Ndom f (x0) forms the recession cone of the set at the left-hand side of (7.126) as well. Since
the tangent cone Tdom f (x0) is the polar of Ndom f (x0), it follows that s1(h) = s2(h) = +∞
for any h �∈ Tdom f (x0). Suppose now that (7.124) does not hold, i.e., inclusion (7.126) is
strict. Then s1(h) < s2(h) for some h ∈ Tdom f (x0). Moreover, by assumption (iv), the tan-
gent cone Tdom f (x0) has a nonempty interior and there exists h̄ in the interior of Tdom f (x0)

such that s1(h̄) < s2(h̄). For such h̄ the directional derivative f ′(x0, h) is finite for all h in
a neighborhood of h̄, f ′(x0, h̄) = s2(h̄) and (see Remark 29 on page 371)

f ′(x0, h̄) =
∫
�

F ′ω(x0, h̄) dP (ω).

Also,F ′ω(x0, h) is finite for a.e. ω and for allh in a neighborhood of h̄, and henceF ′ω(x0, h̄) =
h̄TG(ω) for some G(ω) ∈ ∂F (x0, ω). Moreover, since the multifunction ω !→ ∂F (x0, ω)

is measurable, we can choose a measurable G(ω) here. Consequently,∫
�

F ′ω(x0, h̄) dP (ω) = h̄T
∫
�

G(ω) dP (ω).

Since
∫
�
G(ω) dP (ω) is a point of the set at the left-hand side of (7.125), we obtain that

s1(h̄) ≥ f ′(x0, h̄) = s2(h̄), a contradiction.

In particular, if x0 is an interior point of the domain of f , then under the assumptions
of the above theorem we have that

∂f (x0) =
∫
�

∂F(x0, ω) dP (ω). (7.127)
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Also, it follows from formula (7.124) that f (·) is differentiable at x0 iff x0 is an interior point
of the domain of f and ∂F (x0, ω) is a singleton for a.e. ω ∈ �, i.e., F(·, ω) is differentiable
at x0 w.p. 1.

7.2.5 Uniform Laws of Large Numbers

Consider a sequence ξ i = ξ i(ω), i ∈ N, of d-dimensional random vectors defined on
a probability space (�,F , P ). As it was discussed in section 7.2.1, we can view ξ i as
random vectors supported on a (closed) set � ⊂ R

d equipped with its Borel sigma algebra
B. We say that ξ i , i ∈ N, are identically distributed if each ξ i has the same probability
distribution on (�,B). If, moreover, ξ i , i ∈ N, are independent, we say that they are
independent identically distributed (iid). Consider a measurable function F : �→ R and
the sequenceF(ξ i), i ∈ N, of random variables. If ξ i are identically distributed, thenF(ξ i),
i ∈ N, are also identically distributed and hence their expectations E[F(ξ i)] are constant,
i.e., E[F(ξ i)] = E[F(ξ 1)] for all i ∈ N. The Law of Large Numbers (LLN) says that if ξ i

are identically distributed and the expectation E[F(ξ 1)] is well defined, then, under some
regularity conditions,68

N−1
N∑
i=1

F(ξ i)→ E
[
F(ξ 1)

]
w.p. 1 as N →∞. (7.128)

In particular, the classical LLN states that the convergence (7.128) holds if the sequence ξ i

is iid.
Consider now a random functionF : X×�→ R, whereX is a nonempty subset of R

n

and ξ = ξ(ω) is a random vector supported on the set �. Suppose that the corresponding
expected value function f (x) := E[F(x, ξ)] is well defined and finite valued for every
x ∈ X. Let ξ i = ξ i(ω), i ∈ N, be an iid sequence of random vectors having the same
distribution as the random vector ξ , and let

f̂N (x) := N−1
N∑
i=1

F(x, ξ i) (7.129)

be the so-called sample average functions. Note that the sample average function f̂N (x)
depends on the random sequence ξ 1, . . . , ξN and hence is a random function. Since we
assumed that all ξ i = ξ i(ω) are defined on the same probability space, we can view f̂N (x) =
f̂N (x, ω) as a sequence of functions of x ∈ X and ω ∈ �.

We have that for every fixed x ∈ X the LLN holds, i.e.,

f̂N (x)→ f (x) w.p. 1 as N →∞. (7.130)

This means that for a.e. ω ∈ �, the sequence f̂N (x, ω) converges to f (x). That is, for any
ε > 0 and a.e. ω ∈ � there exists N∗ = N∗(ε, ω, x) such that

∣∣f̂N (x) − f (x)∣∣ < ε for
any N ≥ N∗. It should be emphasized that N∗ depends on ε and ω, and also on x ∈ X.

68Sometimes (7.128) is referred to as the strong LLN to distinguish it from the weak LLN where the
convergence is ensured in probability instead of w.p. 1. Unless stated otherwise, we deal with the strong
LLN.
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We may refer to (7.130) as a pointwise LLN. In some applications we will need a stronger
form of LLN where the number N∗ can be chosen independent of x ∈ X. That is, we say
that f̂N (x) converges to f (x) w.p. 1 uniformly on X if

sup
x∈X

∣∣∣f̂N (x)− f (x)∣∣∣→ 0 w.p. 1 as N →∞ (7.131)

and refer to this as the uniform LLN. Note that maximum of a countable number of measur-
able functions is measurable. Since the maximum (supremum) in (7.131) can be taken over
a countable and dense subset of X, this supremum is a measurable function on (�,F ).

We have the following basic result. It is said that F(x, ξ), x ∈ X, is dominated by an
integrable function if there exists a nonnegative valued measurable function g(ξ) such that
E[g(ξ)] < +∞ and for every x ∈ X the inequality |F(x, ξ)| ≤ g(ξ) holds w.p. 1.

Theorem 7.48. Let X be a nonempty compact subset of R
n and suppose that: (i) for any

x ∈ X the function F(·, ξ) is continuous at x for almost every ξ ∈ �, (ii) F(x, ξ), x ∈ X,
is dominated by an integrable function, and (iii) the sample is iid. Then the expected value
function f (x) is finite valued and continuous on X, and f̂N (x) converges to f (x) w.p. 1
uniformly on X.

Proof. It follows from assumption (ii) that |f (x)| ≤ E[g(ξ)], and consequently |f (x)| <
+∞ for all x ∈ X. Consider a point x ∈ X and let xk be a sequence of points in X
converging to x. By the Lebesgue dominated convergence theorem, assumption (ii) implies
that

lim
k→∞E [F(xk, ξ)] = E

[
lim
k→∞F(xk, ξ)

]
.

Since, by (i), F(xk, ξ)→ F(x, ξ) w.p. 1, it follows that f (xk)→ f (x), and hence f (x) is
continuous.

Choose now a point x̄ ∈ X and a sequence γk of positive numbers converging to zero,
and define Vk := {x ∈ X : ‖x − x̄‖ ≤ γk} and

δk(ξ) := sup
x∈Vk

∣∣F(x, ξ)− F(x̄, ξ)∣∣. (7.132)

Because of the standing assumption of measurability of F(x, ξ), we have that δk(ξ) is
Lebesgue measurable (see the discussion after Theorem 7.37). By assumption (i) we have
that for a.e. ξ ∈ �, δk(ξ) tends to zero as k →∞. Moreover, by assumption (ii) we have
that δk(ξ), k ∈ N, are dominated by an integrable function, and hence by the Lebesgue
dominated convergence theorem we have that

lim
k→∞E [δk(ξ)] = E

[
lim
k→∞ δk(ξ)

]
= 0. (7.133)

We also have that

∣∣f̂N (x)− f̂N (x̄)∣∣ ≤ 1

N

N∑
i=1

∣∣F(x, ξ i)− F(x̄, ξ i)∣∣,
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and hence

sup
x∈Vk

∣∣f̂N (x)− f̂N (x̄)∣∣ ≤ 1

N

N∑
i=1

δk(ξ
i). (7.134)

Since the sequence ξ i is iid, it follows by the LLN that the right-hand side of (7.134)
converges w.p. 1 to E[δk(ξ)] as N → ∞. Together with (7.133) this implies that for any
given ε > 0 there exists a neighborhood W of x̄ such that w.p. 1 for sufficiently large N ,

sup
x∈W∩X

∣∣f̂N (x)− f̂N (x̄)∣∣ < ε.

Since X is compact, there exists a finite number of points x1, . . . , xm ∈ X and corre-
sponding neighborhoods W1, . . . ,Wm covering X such that w.p. 1 for N large enough, the
following holds:

sup
x∈Wj∩X

∣∣f̂N (x)− f̂N (xj )∣∣ < ε, j = 1, . . . , m. (7.135)

Furthermore, since f (x) is continuous on X, these neighborhoods can be chosen in such a
way that

sup
x∈Wj∩X

∣∣f (x)− f (xj )∣∣ < ε, j = 1, . . . , m. (7.136)

Again by the LLN we have that f̂N (x) converges pointwise to f (x) w.p. 1. Therefore,∣∣f̂N (xj )− f (xj )∣∣ < ε, j = 1, . . . , m, (7.137)

w.p. 1 for N large enough. It follows from (7.135)–(7.137) that w.p. 1 for N large enough

sup
x∈X

∣∣f̂N (x)− f (x)∣∣ < 3ε. (7.138)

Since ε > 0 was arbitrary, we obtain that (7.131) follows and the proof is complete.

Remark 31. It could be noted that assumption (i) in the above theorem means that F(·, ξ)
is continuous at any given point x ∈ X w.p. 1. This does not mean, however, that F(·, ξ)
is continuous on X w.p. 1. Take, for example, F(x, ξ) := 1R+(x − ξ), x, ξ ∈ R, i.e.,
F(x, ξ) = 1 if x ≥ ξ and F(x, ξ) = 0 otherwise. We have here that F(·, ξ) is always
discontinuous at x = ξ , and that the expectation E[F(x, ξ)] is equal to the probability
Pr(ξ ≤ x), i.e., f (x) = E[F(x, ξ)] is the cumulative distribution function (cdf) of ξ .
Assumption (i) means here that for any given x, probability of the event “x = ξ” is zero,
i.e., that the cdf of ξ is continuous at x. In this example, the sample average function f̂N (·)
is just the empirical cdf of the considered random sample. The fact that the empirical cdf
converges to its true counterpart uniformly on R w.p. 1 is known as the Glivenko–Cantelli
theorem. In fact, the Glivenko–Cantelli theorem states that the uniform convergence holds
even if the corresponding cdf is discontinuous.

The analysis simplifies further if for a.e. ξ ∈ � the function F(·, ξ) is convex, i.e.,
the random function F(x, ξ) is convex. We can view f̂N (x) = f̂N (x, ω) as a sequence of
random functions defined on a common probability space (�,F , P ). Recall definition 7.25
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of epiconvergence of extended real valued functions. We say that functions f̂N epiconverge
to f w.p. 1, written f̂N

e→ f w.p. 1, if for a.e. ω ∈ � the functions f̂N (·, ω) epiconverge
to f (·). In the following theorem we assume that function F(x, ξ) : Rn × � → R is an
extended real valued function, i.e., can take values ±∞.

Theorem 7.49. Suppose that for almost every ξ ∈ � the function F(·, ξ) is an extended
real valued convex function, the expected value function f (·) is lower semicontinuous and
its domain, domf , has a nonempty interior, and the pointwise LLN holds. Then f̂N

e→ f

w.p. 1.

Proof. It follows from the assumed convexity of F(·, ξ) that the function f (·) is convex
and that w.p. 1 the functions f̂N (·) are convex. Let us choose a countable and dense
subset D of R

n. By the pointwise LLN we have that for any x ∈ D, f̂N (x) converges
to f (x) w.p. 1 as N → ∞. This means that there exists a set ϒx ⊂ � of P -measure
zero such that for any ω ∈ � \ ϒx , f̂N (x, ω) tends to f (x) as N → ∞. Consider the set
ϒ := ∪x∈Dϒx . Since the set D is countable and P(ϒx) = 0 for every x ∈ D, we have that
P(ϒ) = 0. We also have that for any ω ∈ � \ϒ , f̂N (x, ω) converges to f (x), asN →∞,
pointwise onD. It follows then by Theorem 7.27 that f̂N (·, ω) e→ f (·) for any ω ∈ � \ϒ .
That is, f̂N (·) e→ f (·) w.p. 1.

We also have the following result. It can be proved in a way similar to the proof of
the above theorem by using Theorem 7.27.

Theorem 7.50. Suppose that the random function F(x, ξ) is convex and letX be a compact
subset of R

n. Suppose that the expectation function f (x) is finite valued on a neighborhood
of X and that the pointwise LLN holds for every x in a neighborhood of X. Then f̂N (x)
converges to f (x) w.p. 1 uniformly on X.

It is worthwhile to note that in some cases the pointwise LLN can be verified by ad
hoc methods, and hence the above epi-convergence and uniform LLN for convex random
functions can be applied, without the assumption of independence.

For iid random samples we have the following version of epi-convergence LLN. The
following theorem is due to Artstein and Wets [7, Theorem 2.3]. Recall that we always
assume measurability of F(x, ξ) (see the discussion after Theorem 7.37).

Theorem 7.51. Suppose that: (a) the function F(x, ξ) is random lower semicontinuous, (b)
for every x̄ ∈ R

n there exists a neighborhood V of x̄ and P -integrable function h : �→ R

such that F(x, ξ) ≥ h(ξ) for all x ∈ V and a.e. ξ ∈ �, and (c) the sample is iid. Then
f̂N

e→ f w.p. 1.

Uniform LLN for Derivatives

Let us discuss now uniform LLN for derivatives of the sample average function. By The-
orem 7.44 we have that, under the corresponding assumptions (A1), (A2), and (A4), the
expectation function is differentiable at the point x0 and the derivatives can be taken in-
side the expectation, i.e., formula (7.118) holds. Now if we assume that the expectation
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function is well defined and finite valued, ∇xF (·, ξ) is continuous onX for a.e. ξ ∈ �, and
‖∇xF (x, ξ)‖, x ∈ X, is dominated by an integrable function, then the assumptions (A1),
(A2), and (A4) hold and by Theorem 7.48 we obtain that f (x) is continuously differentiable
onX and∇f̂N (x) converges to∇f (x)w.p. 1 uniformly onX. However, in many interesting
applications the function F(·, ξ) is not everywhere differentiable for any ξ ∈ �, and yet the
expectation function is smooth. Such simple example of F(x, ξ) := |x − ξ | was discussed
after Remark 29 on page 371.

Theorem 7.52. Let U ⊂ R
n be an open set, X a nonempty compact subset of U , and

F : U × � → R a random function. Suppose that: (i) {F(x, ξ)}x∈X is dominated by an
integrable function, (ii) there exists an integrable function C(ξ) such that∣∣F(x ′, ξ)− F(x, ξ)∣∣ ≤ C(ξ)‖x ′ − x‖ a.e. ξ ∈ �, ∀x, x ′ ∈ U, (7.139)

and (iii) for every x ∈ X the function F(·, ξ) is continuously differentiable at x w.p. 1.
Then the following hold: (a) the expectation function f (x) is finite valued and continuously
differentiable on X, (b) for all x ∈ X the corresponding derivatives can be taken inside the
integral, i.e.,

∇f (x) = E [∇xF (x, ξ)] , (7.140)

and (c) Clarke generalized gradient ∂◦f̂N (x) converges to ∇f (x) w.p. 1 uniformly on X,
i.e.,

lim
N→∞ sup

x∈X
D

(
∂◦f̂N (x), {∇f (x)}

)
= 0 w.p. 1. (7.141)

Proof. Assumptions (i) and (ii) imply that the expectation function f (x) is finite valued
for all x ∈ U . Note that assumption (ii) is basically the same as assumption (A2) and, of
course, assumption (iii) implies assumption (A4) of Theorem 7.44. Consequently, it follows
by Theorem 7.44 that f (·) is differentiable at every point x ∈ X and the interchangeability
formula (7.140) holds. Moreover, it follows from (7.139) that ‖∇xF (x, ξ)‖ ≤ C(ξ) for a.e.
ξ and all x ∈ U where ∇xF (x, ξ) is defined. Hence by assumption (iii) and the Lebesgue
dominated convergence theorem, we have that for any sequence xk in U converging to a
point x ∈ X it follows that

lim
k→∞∇f (xk) = E

[
lim
k→∞∇xF (xk, ξ)

]
= E [∇xF (x, ξ)] = ∇f (x).

We obtain that f (·) is continuously differentiable on X.
The assertion (c) can be proved by following the same steps as in the proof of Theorem

7.48. That is, consider a point x̄ ∈ X, a sequence Vk of shrinking neighborhoods of x̄ and

δk(ξ) := sup
x∈V ∗k (ξ)

‖∇xF (x, ξ)− ∇xF (x̄, ξ)‖.

Here V ∗k (ξ) denotes the set of points of Vk where F(·, ξ) is differentiable. By assumption
(iii) we have that δk(ξ)→ 0 for a.e. ξ . Also,

δk(ξ) ≤ ‖∇xF (x̄, ξ)‖ + sup
x∈V ∗k (ξ)

‖∇xF (x, ξ)‖ ≤ 2C(ξ),
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and hence δk(ξ), k ∈ N, are dominated by the integrable function 2C(ξ). Consequently,

lim
k→∞E [δk(ξ)] = E

[
lim
k→∞ δk(ξ)

]
= 0,

and the remainder of the proof can be completed in the same way as the proof of Theorem 7.48
using compactness arguments.

7.2.6 Law of Large Numbers for Random Sets and Subdifferentials

Consider a measurable multifunction A : � ⇒ R
n. Assume that A is compact valued,

i.e., A(ω) is a nonempty compact subset of R
n for every ω ∈ �. Let us denote by Cn the

space of nonempty compact subsets of R
n. Equipped with the Hausdorff distance between

two sets A,B ∈ Cn, the space Cn becomes a metric space. We equip Cn with the sigma
algebra B of its Borel subsets (generated by the family of closed subsets of Cn). This makes
(Cn,B) a sample (measurable) space. Of course, we can view the multifunction A as a
mapping from� into Cn. We have that the multifunction A : � ⇒ R

n is measurable iff the
corresponding mapping A : �→ Cn is measurable.

We sayAi : �→ Cn, i ∈ N, is an iid sequence of realizations of A if eachAi = Ai(ω)
has the same probability distribution on (Cn,B) as A(ω), and Ai , i ∈ N, are independent.
We have the following (strong) LLN for an iid sequence of random sets.

Theorem 7.53 (Artstein–Vitale). Let Ai , i ∈ N, be an iid sequence of realizations of a
measurable mapping A : �→ Cn such that E

[‖A(ω)‖] <∞. Then

N−1(A1 + · · · + AN)→ E [conv(A)] w.p. 1 as N →∞, (7.142)

where the convergence is understood in the sense of the Hausdorff metric.

In order to understand the above result, let us make the following observations. There
is a one-to-one correspondence between convex sets A ∈ Cn and finite valued convex
positively homogeneous functions on R

n, defined by A !→ s
A
, where s

A
(h) := supz∈A zTh

is the support function of A. Note that for any two convex sets A,B ∈ Cn we have that
s
A+B (·) = s

A
(·) + s

B
(·), and A ⊂ B iff s

A
(·) ≤ s

B
(·). Consequently, for convex sets

A1, A2 ∈ Cn and Br := {x : ‖x‖ ≤ r}, r ≥ 0, we have

D(A1, A2) = inf
{
r ≥ 0 : A1 ⊂ A2 + Br

}
(7.143)

and

inf
{
r ≥ 0 : A1 ⊂ A2 + Br

} = inf
{
r ≥ 0 : s

A1
(·) ≤ s

A2
(·)+ s

Br
(·)}. (7.144)

Moreover, s
Br
(h) = sup‖z‖≤r zTh = r‖h‖∗, where ‖ · ‖∗ is the dual of the norm ‖ · ‖. We

obtain that
H(A1, A2) = sup

‖h‖∗≤1

∣∣s
A1
(h)− s

A2
(h)
∣∣. (7.145)

It follows that if the multifunction A(ω) is compact and convex valued, then the convergence
assertion (7.142) is equivalent to

sup
‖h‖∗≤1

∣∣∣∣∣N−1
N∑
i=1

s
Ai
(h)− E

[
sA(h)

]∣∣∣∣∣→ 0 w.p. 1 as N →∞. (7.146)
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Therefore, for compact and convex valued multifunction A(ω), Theorem 7.53 is a direct
consequence of Theorem 7.50. For general compact valued multifunctions, the averaging
operation (in the left-hand side of (7.142)) makes a “convexifation” of the limiting set.

Consider now a random lower semicontinuous convex function F : R
n × � → R

and the corresponding sample average function f̂N (x) based on an iid sequence ξ i = ξ i(ω),
i ∈ N (see (7.129)). Recall that for any x ∈ R

n, the multifunction ξ !→ ∂F (x, ξ) is
measurable (see Remark 30 on page 372). In a sense the following result can be viewed as
a particular case of Theorem 7.53 for compact convex valued multifunctions.

Theorem 7.54. Let F : Rn ×�→ R be a random lower semicontinuous convex function
and f̂N (x) be the corresponding sample average functions based on an iid sequence ξ i . Sup-
pose that the expectation function f (x) is well defined and finite valued in a neighborhood
of a point x̄ ∈ R

n. Then

H
(
∂f̂N(x̄), ∂f (x̄)

)→ 0 w.p. 1 as N →∞. (7.147)

Proof. By Theorem 7.46 we have that f (x) is directionally differentiable at x̄ and

f ′(x̄, h) = E
[
F ′ξ (x̄, h)

]
. (7.148)

Note that since f (·) is finite valued near x̄, the directional derivative f ′(x̄, ·) is finite valued
as well. We also have that

f̂ ′N(x̄, h) = N−1
N∑
i=1

F ′ξ i (x̄, h). (7.149)

Therefore, by the LLN it follows that f̂ ′N(x̄, ·) converges to f ′(x̄, ·) pointwise w.p. 1 as
N → ∞. Consequently, by Theorem 7.50 we obtain that f̂ ′N(x̄, ·) converges to f ′(x̄, ·)
w.p. 1 uniformly on the set {h : ‖h‖∗ ≤ 1}. Since f̂ ′N(x̄, ·) is the support function of the
set ∂f̂N(x̄), it follows by (7.145) that ∂f̂N(x̄) converges (in the Hausdorff metric) w.p. 1 to
E
[
∂F (x̄, ξ)

]
. It remains to note that by Theorem 7.47 we have E

[
∂F (x̄, ξ)

] = ∂f (x̄).
The problem in trying to extend the pointwise convergence (7.147) to a uniform type

of convergence is that the multifunction x !→ ∂f (x) is not continuous even if f (x) is convex
real valued.69

Let us consider now the ε-subdifferential, ε ≥ 0, of a convex real valued function
f : Rn→ R, defined as

∂εf (x̄) :=
{
z ∈ R

n : f (x)− f (x̄) ≥ zT(x − x̄)− ε, ∀x ∈ R
n
}
. (7.150)

Clearly for ε = 0, the ε-subdifferential coincides with the usual subdifferential (at the
respective point). It is possible to show that for ε > 0 the multifunction x !→ ∂εf (x) is
continuous (in the Hausdorff metric) on R

n.

69This multifunction is upper semicontinuous in the sense that if the function f (·) is convex and continuous
at x̄, then limx→x̄ D

(
∂f (x), ∂f (x̄)

) = 0.
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Theorem 7.55. Letgk : Rn→ R, k ∈ N, be a sequence of convex real valued (deterministic)
functions. Suppose that for every x ∈ R

n the sequence gk(x), k ∈ N, converges to a finite
limit g(x), i.e., functions gk(·) converge pointwise to the function g(·). Then the function
g(x) is convex, and for any ε > 0 the ε-subdifferentials ∂εgk(·) converge uniformly to ∂εg(·)
on any nonempty compact set X ⊂ R

n, i.e.,

lim
k→∞ sup

x∈X
H
(
∂εgk(x), ∂εg(x)

) = 0. (7.151)

Proof. Convexity of g(·) means that

g(tx1 + (1− t)x2) ≤ tg(x1)+ (1− t)g(x2), ∀x1, x2 ∈ R
n, ∀t ∈ [0, 1].

This follows from convexity of functions gk(·) by passing to the limit.
By continuity and compactness arguments we have that in order to prove (7.151) it

suffices to show that if xk is a sequence of points converging to a point x̄, then the Hausdorff
distance H

(
∂εgk(xk), ∂εg(x̄)

)
tends to zero as k→∞. Consider the ε-directional derivative

of g at x:

g′ε(x, h) := inf
t>0

g(x + th)− g(x)+ ε
t

. (7.152)

It is known that g′ε(x, ·) is the support function of the set ∂εg(x). Therefore, since conver-
gence of a sequence of nonempty convex compact sets in the Hausdorff metric is equivalent
to the pointwise convergence of the corresponding support functions, it suffices to show
that for any given h ∈ R

n,

lim
k→∞ g

′
kε(xk, h) = g′ε(x̄, h).

Let us fix t > 0. Then

lim sup
k→∞

g′kε(xk, h) ≤ lim sup
k→∞

gk(xk + th)− gk(xk)+ ε
t

= g(x̄ + th)− g(x̄)+ ε
t

.

Since t > 0 was arbitrary, this implies that

lim sup
k→∞

g′kε(xk, h) ≤ g′ε(x̄, h).

Now let us suppose for a moment that the minimum of t−1 [g(x̄ + th)− g(x̄)+ ε],
over t > 0, is attained on a bounded set Tε ⊂ R+. It follows then by convexity that for
k large enough, t−1 [gk(xk + th)− gk(xk)+ ε] attains its minimum over t > 0, say, at a
point tk , and dist(tk, Tε)→ 0. Note that inf Tε > 0. Consequently,

lim inf
k→∞ g′kε(xk, h) = lim inf

k→∞
gk(xk + tkh)− gk(xk)+ ε

tk
≥ g′ε(x̄, h).

In the general case, the proof can be completed by adding the term α‖x − x̄‖2, α > 0, to
the functions gk(x) and g(x) and passing to the limit α ↓ 0.

The above result is deterministic. It can be easily translated into the stochastic frame-
work as follows.
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Theorem 7.56. Suppose that the random function F(x, ξ) is convex and for every x ∈ R
n

the expectation f (x) is well defined and finite and the sample average f̂N (x) converges
to f (x) w.p. 1. Then for any ε > 0 the ε-subdifferentials ∂εf̂N (x) converge uniformly to
∂εf (x) w.p. 1 on any nonempty compact set X ⊂ R

n, i.e.,

sup
x∈X

H
(
∂εf̂N (x), ∂εf (x)

)→ 0 w.p. 1 as N →∞. (7.153)

Proof. In a way similar to the proof of Theorem 7.50 it can be shown that for a.e. ω ∈ �,
f̂N (x) converges pointwise to f (x) on a countable and dense subset of R

n. By the convexity
arguments it follows that w.p. 1, f̂N (x) converges pointwise to f (x) on R

n (see Theorem
7.27), and hence the proof can be completed by applying Theorem 7.55.

Note that the assumption that the expectation function f (·) is finite valued on R
n im-

plies that F(·, ξ) is finite valued for a.e. ξ , and since F(·, ξ) is convex it follows that F(·, ξ)
is continuous. Consequently, it follows that F(x, ξ) is a Carathéodory function and hence is
random lower semicontinuous. Note also that the equality ∂εf̂N (x) = N−1∑N

i=1 ∂εF (x, ξ
i)

holds for ε = 0 (by the Moreau–Rockafellar theorem) but does not hold for ε > 0 andN > 1.

7.2.7 Delta Method

In this section we discuss the so-called Delta method approach to asymptotic analysis of
stochastic problems. Let Zk , k ∈ N, be a sequence of random variables converging in

distribution to a random variable Z, denoted Zk
D→ Z.

Remark 32. It can be noted that convergence in distribution does not imply convergence of
the expected values E[Zk] to E[Z], as k→∞, even if all these expected values are finite.
This implication holds under the additional condition that Zk are uniformly integrable,
that is,

lim
c→∞ sup

k∈N

E [Zk(c)] = 0, (7.154)

where Zk(c) := |Zk| if |Zk| ≥ c, and Zk(c) := 0 otherwise. A simple sufficient condition

ensuring uniform integrability, and hence the implication that Zk
D→ Z implies E[Zk] →

E[Z], is the following: there exists ε > 0 such that supk∈N
E
[|Zk|1+ε] < ∞. Indeed, for

c > 0 we have
E [Zk(c)] ≤ c−εE

[
Zk(c)

1+ε] ≤ c−εE[|Zk|1+ε],
from which the assertion follows.

Remark 33 (Stochastic Order Notation). The notation Op(·) and op(·) stands for a
probabilistic analogue of the usual order notation O(·) and o(·), respectively. That is,
let Xk and Zk be sequences of random variables. It is written that Zk = Op(Xk) if for any
ε > 0 there exists c > 0 such that Pr (|Zk/Xk| > c) ≤ ε for all k ∈ N. It is written that
Zk = op(Xk) if for any ε > 0 it holds that limk→∞ Pr (|Zk/Xk| > ε) = 0. Usually this
is used with the sequence Xk being deterministic. In particular, the notation Zk = Op(1)
asserts that the sequence Zk is bounded in probability, and Zk = op(1) means that the
sequence Zk converges in probability to zero.
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First Order Delta Method

In order to investigate asymptotic properties of sample estimators, it will be convenient to
use the Delta method, which we discuss now. Let YN ∈ R

d be a sequence of random vectors,
converging in probability to a vector µ ∈ R

d . Suppose that there exists a sequence τN of
positive numbers, tending to infinity, such that τN(YN − µ) converges in distribution to a

random vector Y , i.e., τN(YN − µ) D→ Y . Let G : Rd → R
m be a vector valued function,

differentiable at µ. That is,

G(y)−G(µ) = J (y − µ)+ r(y), (7.155)

where J := ∇G(µ) is the m × d Jacobian matrix of G at µ, and the remainder r(y) is of
order o(‖y − µ‖), i.e., r(y)/‖y − µ‖ → 0 as y → µ. It follows from (7.155) that

τN [G(YN)−G(µ)] = J [τN(YN − µ)]+ τNr(YN). (7.156)

Since τN(YN−µ) converges in distribution, it is bounded in probability, and hence ‖YN−µ‖
is of stochastic order Op(τ

−1
N ). It follows that

r(YN) = o(‖YN − µ‖) = op(τ−1
N ),

and hence τNr(YN) converges in probability to zero. Consequently we obtain by (7.156)
that

τN [G(YN)−G(µ)] D→ JY. (7.157)

This formula is routinely employed in multivariate analysis and is known as the (finite
dimensional) Delta theorem. In particular, suppose that N1/2(YN − µ) converges in distri-
bution to a (multivariate) normal distribution with zero mean vector and covariance matrix

Σ , written N1/2(YN −µ) D→ N (0,Σ). Often, this can be ensured by an application of the
central limit theorem. Then it follows by (7.157) that

N1/2 [G(YN)−G(µ)] D→ N (0, JΣJ T). (7.158)

We need to extend this method in several directions. The random functions f̂N (·)
can be viewed as random elements in an appropriate functional space. This motivates us
to extend formula (7.157) to a Banach space setting. Let B1 and B2 be two Banach spaces,
and let G : B1 → B2 be a mapping. Suppose that G is directionally differentiable at a
considered point µ ∈ B1, i.e., the limit

G′µ(d) := lim
t↓0

G(µ+ td)−G(µ)
t

(7.159)

exists for all d ∈ B1. If, in addition, the directional derivative G′µ : B1 → B2 is linear and
continuous, then it is said that G is Gâteaux differentiable at µ. Note that, in any case, the
directional derivativeG′µ(·) is positively homogeneous, that is,G′µ(αd) = αG′µ(d) for any
α ≥ 0 and d ∈ B1.

It follows from (7.159) that

G(µ+ d)−G(µ) = G′µ(d)+ r(d)
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with the remainder r(d) being “small” along any fixed direction d, i.e., r(td)/t → 0 as t ↓ 0.
This property is not sufficient, however, to neglect the remainder term in the corresponding
asymptotic expansion and we need a stronger notion of directional differentiability. It is
said that G is directionally differentiable at µ in the sense of Hadamard if the directional
derivative G′µ(d) exists for all d ∈ B1 and, moreover,

G′µ(d) = lim
t↓0
d′→d

G(µ+ td ′)−G(µ)
t

. (7.160)

Proposition 7.57. Let B1 and B2 be Banach spaces, G : B1 → B2, and µ ∈ B1. Then the
following hold: (i) IfG(·) is Hadamard directionally differentiable atµ, then the directional
derivative G′µ(·) is continuous. (ii) If G(·) is Lipschitz continuous in a neighborhood of µ
and directionally differentiable atµ, thenG(·) is Hadamard directionally differentiable atµ.

The above properties can a be proved in a way similar to the proof of Theorem 7.2.
We also have the following chain rule.

Proposition 7.58 (Chain Rule). Let B1, B2, and B3 be Banach spaces and G : B1 → B2

and F : B2 → B3 be mappings. Suppose that G is directionally differentiable at a point
µ ∈ B1 and F is Hadamard directionally differentiable at η := G(µ). Then the composite
mapping F ◦G : B1 → B3 is directionally differentiable at µ and

(F ◦G)′(µ, d) = F ′(η,G′(µ, d)), ∀d ∈ B1. (7.161)

Proof. Since G is directionally differentiable at µ, we have for t ≥ 0 and d ∈ B1 that

G(µ+ td) = G(µ)+ tG′(µ, d)+ o(t).
Since F is Hadamard directionally differentiable at η := G(µ), it follows that

F(G(µ+ td)) = F(G(µ)+ tG′(µ, d)+ o(t)) = F(η)+ tF ′(η,G′(µ, d))+ o(t).
This implies that F ◦G is directionally differentiable at µ and formula (7.161) holds.

Now let B1 and B2 be equipped with their Borel σ -algebras B1 and B2, respectively.
An F -measurable mapping from a probability space (�,F , P ) into B1 is called a random
element of B1. Consider a sequence XN of random elements of B1. It is said that XN
converges in distribution (weakly) to a random element Y of B1, and denoted XN

D→ Y ,
if the expected values E [f (XN)] converge to E [f (Y )], as N →∞, for any bounded and
continuous function f : B1 → R. Let us formulate now the first version of the Delta
theorem. Recall that a Banach space is said to be separable if it has a countable dense
subset.

Theorem 7.59 (Delta Theorem). Let B1 and B2 be Banach spaces, equipped with their
Borel σ -algebras, YN be a sequence of random elements ofB1,G : B1 → B2 be a mapping,
and τN be a sequence of positive numbers tending to infinity as N → ∞. Suppose that
the space B1 is separable, the mapping G is Hadamard directionally differentiable at a
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point µ ∈ B1, and the sequence XN := τN(YN − µ) converges in distribution to a random
element Y of B1. Then

τN [G(YN)−G(µ)] D→ G′µ(Y ) (7.162)

and

τN [G(YN)−G(µ)] = G′µ(XN)+ op(1). (7.163)

Note that because of the Hadamard directional differentiability of G, the mapping
G′µ : B1 → B2 is continuous, and hence is measurable with respect to the Borel σ -algebras
of B1 and B2. The above infinite dimensional version of the Delta theorem can be proved
easily by using the following Skorohod–Dudley almost sure representation theorem.

Theorem 7.60 (Representation Theorem). Suppose that a sequence of random elements
XN , of a separable Banach spaceB, converges in distribution to a random element Y . Then

there exists a sequence X′N , Y ′, defined on a single probability space, such that X′N
D∼ XN

for all N , Y ′
D∼ Y , and X′N → Y ′ w.p. 1.

Here Y ′
D∼ Y means that the probability measures induced by Y ′ and Y coincide.

Proof of Theorem 7.59. Consider the sequence XN := τN(YN − µ) of random elements
of B1. By the representation theorem, there exists a sequence X′N , Y ′, defined on a single

probability space, such that X′N
D∼ XN , Y ′

D∼ Y , and X′N → Y ′ w.p. 1. Consequently

for Y ′N := µ + τ−1
N X′N , we have Y ′N

D∼ YN . It follows then from Hadamard directional
differentiability of G that

τN
[
G(Y ′N)−G(µ)

]→ G′µ(Y
′) w.p. 1. (7.164)

Since convergence w.p. 1 implies convergence in distribution and the terms in (7.164) have
the same distributions as the corresponding terms in (7.162), the asymptotic result (7.162)
follows.

Now since G′µ(·) is continuous and X′N → Y ′ w.p. 1, we have that

G′µ(X
′
N)→ G′µ(Y

′) w.p. 1. (7.165)

Together with (7.164) this implies that the difference between G′µ(X′N) and the left-hand
side of (7.164) tends w.p. 1, and hence in probability, to zero. We obtain that

τN
[
G(Y ′N)−G(µ)

] = G′µ [τN(Y ′N − µ)]+ op(1),
which implies (7.163).

Let us now formulate the second version of the Delta theorem, where the mapping
G is restricted to a subset K of the space B1. We say that G is Hadamard directionally
differentiable at a pointµ tangentially to the setK if for any sequence dN of the form dN :=
(yN −µ)/tN , where yN ∈ K and tN ↓ 0, and such that dN → d, the following limit exists:

G′µ(d) = lim
N→∞

G(µ+ tNdN)−G(µ)
tN

. (7.166)
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Equivalently, condition (7.166) can be written in the form

G′µ(d) = lim
t↓0

d′→
K
d

G(µ+ td ′)−G(µ)
t

, (7.167)

where the notation d ′ →
K
d means that d ′ → d and µ+ td ′ ∈ K .

Since yN ∈ K , and hence µ + tNdN ∈ K , the mapping G needs only to be defined
on the set K . Recall that the contingent (Bouligand) cone to K at µ, denoted TK(µ), is
formed by vectors d ∈ B such that there exist sequences dN → d and tN ↓ 0 such that
µ+ tNdN ∈ K . Note that TK(µ) is nonempty only if µ belongs to the topological closure
of the set K . If the set K is convex, then the contingent cone TK(µ) coincides with the
corresponding tangent cone. By the above definitions we have that G′µ(·) is defined on the
set TK(µ). The following “tangential” version of the Delta theorem can be easily proved in
a way similar to the proof of Theorem 7.59.

Theorem 7.61 (Delta Theorem). Let B1 and B2 be Banach spaces, K be a subset of B1,
G : K → B2 be a mapping, and YN be a sequence of random elements of B1. Suppose that
(i) the spaceB1 is separable, (ii) the mappingG is Hadamard directionally differentiable at
a point µ tangentially to the set K , (iii) for some sequence τN of positive numbers tending
to infinity, the sequence XN := τN(YN −µ) converges in distribution to a random element
Y , and (iv) YN ∈ K w.p. 1 for all N large enough. Then

τN [G(YN)−G(µ)] D→ G′µ(Y ). (7.168)

Moreover, if the set K is convex, then (7.163) holds.

Note that it follows from assumptions (iii) and (iv) that the distribution of Y is concen-
trated on the contingent cone TK(µ), and hence the distribution of G′µ(Y ) is well defined.

Second Order Delta Theorem

Our third variant of the Delta theorem deals with a second order expansion of the mappingG.
That is, suppose that G is directionally differentiable at µ and define

G′′µ(d) := lim
t↓0
d′→d

G(µ+ td ′)−G(µ)− tG′µ(d ′)
1
2 t

2
. (7.169)

If the mapping G is twice continuously differentiable, then this second order directional
derivativeG′′µ(d) coincides with the second order term in the Taylor expansion ofG(µ+ d).
The above definition ofG′′µ(d)makes sense for directionally differentiable mappings. How-
ever, in interesting applications, where it is possible to calculate G′′µ(d), the mapping G is
actually (Gâteaux) differentiable. We say that G is second order Hadamard directionally
differentiable atµ if the second order directional derivativeG′′µ(d), defined in (7.169), exists
for all d ∈ B1. We say that G is second order Hadamard directionally differentiable at µ
tangentially to a set K ⊂ B1 if for all d ∈ TK(µ) the limit

G′′µ(d) = lim
t↓0

d′→
K
d

G(µ+ td ′)−G(µ)− tG′µ(d ′)
1
2 t

2
(7.170)

exists.
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Note that if G is first and second order Hadamard directionally differentiable at µ
tangentially to K , then G′µ(·) and G′′µ(·) are continuous on TK(µ), and that G′′µ(αd) =
α2G′′µ(d) for any α ≥ 0 and d ∈ TK(µ).

Theorem 7.62 (Second Order Delta Theorem). Let B1 and B2 be Banach spaces, K be
a convex subset of B1, YN be a sequence of random elements of B1, G : K → B2 be a
mapping, and τN be a sequence of positive numbers tending to infinity asN →∞. Suppose
that (i) the space B1 is separable, (ii) G is first and second order Hadamard directionally
differentiable atµ tangentially to the setK , (iii) the sequenceXN := τN(YN−µ) converges
in distribution to a random element Y of B1, and (iv) YN ∈ K w.p. 1 for N large enough.
Then

τ 2
N

[
G(YN)−G(µ)−G′µ(YN − µ)

] D→ 1

2
G′′µ(Y ) (7.171)

and

G(YN) = G(µ)+G′µ(YN − µ)+
1

2
G′′µ(YN − µ)+ op(τ−2

N ). (7.172)

Proof. Let X′N , Y ′, and Y ′N be elements as in the proof of Theorem 7.59. Recall that their
existence is guaranteed by the representation theorem. Then by the definition of G′′µ we
have

τ 2
N

[
G(Y ′N)−G(µ)− τ−1

N G′µ(X
′
N)
]→ 1

2
G′′µ(Y

′) w.p. 1.

Note that G′µ(·) is defined on TK(µ) and, since K is convex, X′N = τN(Y ′N − µ) ∈ TK(µ).
Therefore, the expression in the left-hand side of the above limit is well defined. Since
convergence w.p. 1 implies convergence in distribution, formula (7.171) follows. Since
G′′µ(·) is continuous on TK(µ), and, by convexity of K , Y ′N − µ ∈ TK(µ) w.p. 1, we have
that τ 2

NG
′′
µ(Y

′
N − µ)→ G′′µ(Y ′) w.p. 1. Since convergence w.p. 1 implies convergence in

probability, formula (7.172) then follows.

7.2.8 Exponential Bounds of the Large Deviations Theory

Consider an iid sequence Y1, . . . , YN of replications of a real valued random variable Y , and
let ZN := N−1∑N

i=1 Yi be the corresponding sample average. Then for any real numbers
a and t > 0 we have that Pr(ZN ≥ a) = Pr(etZN ≥ eta), and hence, by Chebyshev’s
inequality,

Pr(ZN ≥ a) ≤ e−taE
[
etZN
] = e−ta[M(t/N)]N,

where M(t) := E
[
etY
]

is the moment-generating function of Y . Suppose that Y has finite
mean µ := E[Y ] and let a ≥ µ. By taking the logarithm of both sides of the above
inequality, changing variables t ′ = t/N and minimizing over t ′ > 0, we obtain

1

N
ln
[
Pr(ZN ≥ a)

] ≤ −I (a), (7.173)
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where

I (z) := sup
t∈R

{tz−�(t)} (7.174)

is the conjugate of the logarithmic moment-generating function �(t) := lnM(t). In the
LD theory, I (z) is called the (large deviations) rate function, and the inequality (7.173)
corresponds to the upper bound of Cramér’s LD theorem.

Note that the moment-generating function M(·) is convex and positive valued,
M(0) = 1, and its domain domM is a subinterval of R containing zero. It follows by
Theorem 7.44 that M(·) is infinitely differentiable at every interior point of its domain.
Moreover, if a := inf (domM) is finite, then M(·) is right-side continuous at a, and sim-
ilarly for the b := sup(domM). It follows that M(·), and hence �(·), are proper lower
semicontinuous functions. The logarithmic moment-generating function �(·) is also con-
vex. Indeed, dom� = domM and at an interior point t of dom�,

�′′(t) = E
[
Y 2etY

]
E
[
etY
]− E

[
YetY

]2
M(t)2

. (7.175)

Moreover, the matrix
[
Y 2etY Y etY

Y etY etY

]
is positive semidefinite, and hence its expectation is also

a positive semidefinite matrix. Consequently, the determinant of the later matrix is nonneg-
ative, i.e.,

E
[
Y 2etY

]
E
[
etY
]− E

[
YetY

]2 ≥ 0.

We obtain that �′′(·) is nonnegative at every point of the interior of dom�, and hence �(·)
is convex.

Note that the constraint t > 0 is removed in the above definition of the rate function
I (·). This is because of the following. Consider the function ψ(t) := ta − �(t). The
function �(t) is convex, and hence ψ(t) is concave. Suppose that the moment-generating
function M(·) is finite valued at some t̄ > 0. Then M(t) is finite for all t ∈ [0, t̄ ] and
right-side differentiable at t = 0. Moreover, the right-side derivative ofM(t) at t = 0 is µ,
and hence the right-side derivative of ψ(t) at t = 0 is positive if a > µ. Consequently, in
that case ψ(t) > ψ(0) for all t > 0 small enough, and hence I (a) > 0 and the supremum
in (7.174) is not changed if the constraint t > 0 is removed. If a = µ, then the supremum in
(7.174) is attained at t = 0 and hence I (a) = 0. In that case the inequality (7.173) trivially
holds. Now if M(t) = +∞ for all t > 0, then I (a) = 0 for any a ≥ µ and the inequality
(7.173) trivially holds.

For a ≤ µ the upper bound (7.173) takes the form

1

N
ln
[
Pr(ZN ≤ a)

] ≤ −I (a), (7.176)

which of course can be written as

Pr(ZN ≤ a) ≤ e−I (a)N . (7.177)

The rate function I (z) is convex and has the following properties. Suppose that the
random variable Y has finite mean µ := E[Y ]. Then �′(0) = µ and hence the maximum
in the right-hand side of (7.174) is attained at t∗ = 0. It follows that I (µ) = 0 and

I ′(µ) = t∗µ−�′(t∗) = −�(0) = 0,
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and hence I (z) attains its minimum at z = µ. Suppose, further, that the moment-generating
function M(t) is finite valued for all t in a neighborhood of t = 0. Then �(t) is infinitely
differentiable at t = 0, and �′(0) = µ and �′′(0) = σ 2, where σ 2 := Var[Y ]. It follows
by the above discussion that in that case I (a) > 0 for any a �= µ. We also have then that
I ′(µ) = 0 and I ′′(µ) = σ−2, and hence by Taylor’s expansion,

I (a) = (a − µ)2
2σ 2

+ o(|a − µ|2). (7.178)

If Y has normal distribution N(µ, σ 2), then its logarithmic moment-generating function is
�(t) = µt + σ 2t2/2. In that case

I (a) = (a − µ)2
2σ 2

. (7.179)

The constant I (a) in (7.173) gives, in a sense, the best possible exponential rate at
which the probability Pr(ZN ≥ a) converges to zero. This follows from the lower bound

lim inf
N→∞

1

N
ln
[
Pr(ZN ≥ a)

] ≥ −I (a) (7.180)

of Cramér’s LD theorem, which holds for a ≥ µ.
Other closely related, exponential-type inequalities can be derived for bounded ran-

dom variables.

Proposition 7.63. Let Y be a random variable such that a ≤ Y ≤ b for some a, b ∈ R and
E[Y ] = 0. Then

E[etY ] ≤ et2(b−a)2/8, ∀t ≥ 0. (7.181)

Proof. If Y is identically zero, then (7.181) obviously holds. Therefore we can assume that
Y is not identically zero. Since E[Y ] = 0, it follows that a < 0 and b > 0.

Any Y ∈ [a, b] can be represented as convex combination Y = τa+ (1− τ)b, where
τ = (b − Y )/(b − a). Since ey is a convex function, it follows that

eY ≤ b − Y
b − a e

a + Y − a
b − a e

b. (7.182)

Taking expectation from both sides of (7.182) and using E[Y ] = 0, we obtain

E
[
eY
] ≤ b

b − a e
a − a

b − a e
b. (7.183)

The right-hand side of (7.182) can be written as eg(u), where u := b − a, g(x) := −αx +
ln(1− α + αex) and α := −a/(b − a). Note that α > 0 and 1− α > 0.

Let us observe that g(0) = g′(0) = 0 and

g′′(x) = α(1− α)
(1− α)2e−x + α2ex + 2α(1− α) . (7.184)
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Moreover, (1− α)2e−x + α2ex ≥ 2α(1− α), and hence g′′(x) ≤ 1/4 for any x. By Taylor
expansion of g(·) at zero, we have g(u) = u2g′′(ũ)/2 for some ũ ∈ (0, u). It follows that
g(u) ≤ u2/8 = (b − a)2/8, and hence

E[eY ] ≤ e(b−a)2/8. (7.185)

Finally, (7.181) follows from (7.185) by rescaling Y to tY for t ≥ 0.

In particular, if |Y | ≤ b and E[Y ] = 0, then | − Y | ≤ b and E[−Y ] = 0 as well, and
hence by (7.181) we have

E[etY ] ≤ et2b2/2, ∀t ∈ R. (7.186)

Let Y be a (real valued) random variable supported on a bounded interval [a, b] ⊂ R,
and µ := E [Y ]. Then it follows from (7.181) that the rate function of Y − µ satisfies

I (z) ≥ sup
t∈R

{
tz− t2(b − a)2/8} = 2z2/(b − a)2.

Together with (7.177) this implies the following. Let Y1, . . . , YN be an iid sequence of
realizations of Y and ZN be the corresponding average. Then for τ > 0 it holds that

Pr (ZN ≥ µ+ τ) ≤ e−2τ 2N/(b−a)2 . (7.187)

The bound (7.187) is often referred to as the Hoeffding inequality.
In particular, let W ∼ B(p, n) be a random variable having Binomial distribution,

i.e., Pr(W = k) = ( n
k

)
pk(1 − p)n−k , k = 0, . . . , n. Recall that W can be represented as

W = Y1+· · ·+Yn, where Y1, . . . , Yn is an iid sequence of Bernoulli random variables with
Pr(Yi = 1) = p and Pr(Yi = 0) = 1− p. It follows from Hoeffding’s inequality that for a
nonnegative integer k ≤ np,

Pr (W ≤ k) ≤ exp

{
−2(np − k)2

n

}
. (7.188)

For small p it is possible to improve the above estimate as follows. For Y ∼ Bernoulli(p)
we have

E[etY ] = pet + 1− p = 1− p(1− et ).
By using the inequality e−x ≥ 1− x with x := p(1− et ), we obtain

E[etY ] ≤ exp[p(et − 1)],
and hence for z > 0,

I (z) := sup
t∈R

{
tz− ln E[etY ]} ≥ sup

t∈R

{
tz− p(et − 1)

} = z ln
z

p
− z+ p.

Moreover, since ln(1+ x) ≥ x − x2/2 for x ≥ 0, we obtain

I (z) ≥ (z− p)2
2p

for z ≥ p.
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By (7.173) it follows that

Pr
(
n−1W ≥ z) ≤ exp

{−n(z− p)2/(2p)} for z ≥ p. (7.189)

Alternatively, this can be written as

Pr (W ≤ k) ≤ exp

{
− (np − k)

2

2pn

}
(7.190)

for a nonnegative integer k ≤ np. The above inequality (7.190) is often called the Chernoff
inequality. For small p it can be significantly better than the Hoeffding inequality (7.188).

The above, one-dimensional LD results can be extended to multivariate and even
infinite dimensional settings, and also to non iid random sequences. In particular, suppose
that Y is a d-dimensional random vector and let µ := E[Y ] be its mean vector. We can
associate with Y its moment-generating functionM(t), of t ∈ R

d , and the rate function I (z)
defined in the same way as in (7.174) with the supremum taken over t ∈ R

d and tz denoting
the standard scalar product of vectors t, z ∈ R

d . Consider a (Borel) measurable setA ⊂ R
d .

Then, under certain regularity conditions, the following large deviations principle holds:

− inf z∈int(A) I (z) ≤ lim infN→∞N−1 ln [Pr(ZN ∈ A)]
≤ lim supN→∞N−1 ln [Pr(ZN ∈ A)]
≤ − inf z∈cl(A) I (z),

(7.191)

where int(A) and cl(A) denote the interior and topological closure, respectively, of the
set A. In the above one-dimensional setting, the LD principle (7.191) was derived for sets
A := [a,+∞).

We have that if µ ∈ int(A) and the moment-generating functionM(t) is finite valued
for all t in a neighborhood of 0 ∈ R

d , then inf z∈Rd\(intA) I (z) is positive. Moreover, if the
sequence is iid, then

lim sup
N→∞

N−1 ln [Pr(ZN �∈ A)] < 0, (7.192)

i.e., the probability Pr(ZN ∈ A) = 1 − Pr(ZN �∈ A) approaches one exponentially fast as
N tends to infinity.

Finally, let us derive the following useful result.

Proposition 7.64. Let ξ 1, ξ 2, . . . be a sequence of iid random variables (vectors), σt > 0,
t = 1, . . . , be a sequence of deterministic numbers, and φt = φt(ξ[t]) be (measurable)
functions of ξ[t] = (ξ 1, . . . , ξ t ) such that

E
[
φt |ξ[t−1]

] = 0 and E
[
exp{φ2

t /σ
2
t }|ξ[t−1]

] ≤ exp{1} w.p. 1. (7.193)

Then for any " ≥ 0,

Pr
{∑N

t=1 φt ≥ "
√∑N

t=1 σ
2
t

}
≤ exp{−"2/3}. (7.194)
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Proof. Let us set φ̃t := φt/σt . By condition (7.193) we have that E
[
φ̃t |ξ[t−1]

] = 0
and E

[
exp
{
φ̃2
t

}|ξ[t−1]
] ≤ exp{1} w.p. 1. By the Jensen inequality it follows that for any

a ∈ [0, 1],

E

[
exp{aφ̃2

t }|ξ[t−1]
]
= E

[
(exp{φ̃2

t })a|ξ[t−1]
]
≤
(
E

[
exp{φ̃2

t }|ξ[t−1]
])a ≤ exp{a}.

We also have that exp{x} ≤ x + exp{9x2/16} for all x (this inequality can be verified by
direct calculations), and hence for any λ ∈ [0, 4/3],

E

[
exp{λφ̃t }|ξ[t−1]

]
≤ E

[
exp{(9λ2/16)φ̃2

t }|ξ[t−1]
]
≤ exp{9λ2/16}. (7.195)

Moreover, we have that λx ≤ 3
8λ

2 + 2
3x

2 for any λ and x, and hence

E

[
exp{λφ̃t }|ξ[t−1]

]
≤ exp{3λ2/8}E

[
exp{2φ̃2

t /3}|ξ[t−1]
]
≤ exp{2/3+ 3λ2/8}.

Combining the latter inequality with (7.195), we get

E

[
exp{λφ̃t }|ξ[t−1]

]
≤ exp{3λ2/4}, ∀λ ≥ 0.

Going back to φt , the above inequality reads

E
[
exp{γφt }|ξ[t−1]

] ≤ exp{3γ 2σ 2
t /4}, ∀γ ≥ 0. (7.196)

Now, since φτ is a deterministic function of ξ[τ ] and using (7.196), we obtain for any γ ≥ 0,

E
[
exp
{
γ
∑t

τ=1 φτ
}] = E

[
exp
{
γ
∑t−1

τ=1 φτ
}
E
(
exp{γφt }|ξ[t−1]

)]
≤ exp{3γ 2σ 2

t /4}E
[
exp{γ ∑t−1

τ=1 φτ }
]

and hence

E

[
exp
{
γ
∑N

t=1 φt

}]
≤ exp

{
3γ 2∑N

t=1 σ
2
t /4
}
. (7.197)

By Chebyshev’s inequality, we have for γ > 0 and ",

Pr
{∑N

t=1 φt ≥ "
√∑N

t=1σ
2
t

}
= Pr

{
exp
[
γ
∑N

t=1 φt

]
≥ exp

[
γ"

√∑N
t=1σ

2
t

]}
≤ exp

[
−γ"

√∑N
t=1σ

2
t

]
E

{
exp
[
γ
∑N

t=1 φt

]}
.

Together with (7.197) this implies for " ≥ 0,

Pr
{∑N

t=1φt ≥ "
√∑N

t=1σ
2
t

}
≤ inf

γ>0
exp

{
3
4γ

2∑N
t=1σ

2
t − γ"

√∑N
t=1σ

2
t

}
= exp

{−"2/3
}
.

This completes the proof.
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7.2.9 Uniform Exponential Bounds

Consider the setting of section 7.2.5 with a sequence ξ i , i ∈ N, of random realizations of an
d-dimensional random vector ξ = ξ(ω), a function F : X×�→ R, and the corresponding
sample average function f̂N (x). We assume here that the sequence ξ i , i ∈ N, is iid, the
set X ⊂ R

n is nonempty and compact, and the expectation function f (x) = E[F(x, ξ)] is
well defined and finite valued for all x ∈ X. We now discuss uniform exponential rates of
convergence of f̂N (x) to f (x). Denote by

Mx(t) := E
[
et(F (x,ξ)−f (x))

]
the moment-generating function of the random variable F(x, ξ) − f (x). Let us make the
following assumptions:

(C1) For every x ∈ X, the moment-generating function Mx(t) is finite valued for all t in a
neighborhood of zero.

(C2) There exists a (measurable) function κ : �→ R+ such that

|F(x ′, ξ)− F(x, ξ)| ≤ κ(ξ)‖x ′ − x‖ (7.198)

for all ξ ∈ � and all x ′, x ∈ X.

(C3) The moment-generating function Mκ(t) := E
[
etκ(ξ)

]
of κ(ξ) is finite valued for all t

in a neighborhood of zero.

Theorem 7.65. Suppose that conditions (C1)–(C3) hold and the set X is compact. Then
for any ε > 0 there exist positive constants C and β = β(ε), independent of N , such that

Pr
{

supx∈X
∣∣f̂N (x)− f (x)∣∣ ≥ ε} ≤ Ce−Nβ. (7.199)

Proof. By the upper bound (7.173) of Cramér’s LD theorem, we have that for any x ∈ X
and ε > 0 it holds that

Pr
{
f̂N (x)− f (x) ≥ ε

} ≤ exp{−NIx(ε)}, (7.200)

where
Ix(z) := sup

t∈R

{
zt − lnMx(t)

}
(7.201)

is the LD rate function of random variable F(x, ξ)− f (x). Similarly,

Pr
{
f̂N (x)− f (x) ≤ −ε

} ≤ exp{−NIx(−ε)},
and hence

Pr
{∣∣f̂N (x)− f (x)∣∣ ≥ ε} ≤ exp {−NIx(ε)} + exp {−NIx(−ε)} . (7.202)

By assumption (C1) we have that both Ix(ε) and Ix(−ε) are positive for every x ∈ X.
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For a ν > 0, let x̄1, . . . , x̄K ∈ X be such that for every x ∈ X there exists x̄i ,
i ∈ {1, . . . , K}, such that ‖x − x̄i‖ ≤ ν, i.e., {x̄1, . . . , x̄K} is a ν-net in X. We can choose
this net in such a way that

K ≤ [%D/ν]n , (7.203)

where
D := supx ′,x∈X ‖x ′ − x‖

is the diameter of X and % is a constant depending on the chosen norm ‖ · ‖. By (7.198) we
have that

|f (x ′)− f (x)| ≤ L‖x ′ − x‖, (7.204)

where L := E[κ(ξ)] is finite by assumption (C3). Moreover,∣∣f̂N (x ′)− f̂N (x)∣∣ ≤ κ̂N‖x ′ − x‖, (7.205)

where κ̂N := N−1∑N
j=1 κ(ξ

j ). Again, because of condition (C3), by Cramér’s LD theorem
we have that for any L′ > L there is a constant � > 0 such that

Pr
{
κ̂N ≥ L′

} ≤ exp{−N�}. (7.206)

Consider
Zi := f̂N (x̄i)− f (x̄i), i = 1, . . . , K.

We have that the event
{
max1≤i≤K |Zi | ≥ ε

}
is equal to the union of the events {|Zi | ≥ ε},

i = 1, . . . , K , and hence

Pr
{
max1≤i≤K |Zi | ≥ ε

} ≤∑K
i=1 Pr

(∣∣Zi∣∣ ≥ ε) .
Together with (7.202) this implies that

Pr
{

max
1≤i≤K

∣∣f̂N (x̄i)− f (x̄i)∣∣ ≥ ε} ≤ 2
K∑
i=1

exp
{−N [Ix̄i (ε) ∧ Ix̄i (−ε)]}. (7.207)

For an x ∈ X let i(x) ∈ arg min1≤i≤K ‖x − x̄i‖. By construction of the ν-net we have that
‖x − x̄i(x)‖ ≤ ν for every x ∈ X. Then∣∣f̂N (x)− f (x)∣∣ ≤ ∣∣f̂N (x)− f̂N (x̄i(x))∣∣+ ∣∣f̂N (x̄i(x))− f (x̄i(x))∣∣+ ∣∣f (x̄i(x))− f (x)∣∣

≤ κ̂Nν +
∣∣f̂N (x̄i(x))− f (x̄i(x))∣∣+ Lν.

Let us take now a ν-net with such ν that Lν = ε/4, i.e., ν := ε/(4L). Then

Pr
{

sup
x∈X

∣∣f̂N (x)− f (x)∣∣ ≥ ε} ≤ Pr
{
κ̂Nν + max

1≤i≤K
∣∣f̂N (x̄i)− f (x̄i)∣∣ ≥ 3ε/4

}
.

Moreover, we have that

Pr
{
κ̂Nν ≥ ε/2

} ≤ exp{−N�},
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where � is a positive constant specified in (7.206) for L′ := 2L. Consequently

Pr
{

supx∈X
∣∣f̂N (x)− f (x)∣∣ ≥ ε}

≤ exp{−N�} + Pr
{

max1≤i≤K
∣∣f̂N (x̄i)− f (x̄i)∣∣ ≥ ε/4}

≤ exp{−N�} + 2
∑K

i=1 exp
{−N [Ix̄i (ε/4) ∧ Ix̄i (−ε/4)]} .

(7.208)

Since the above choice of the ν-net does not depend on the sample (although it depends
on ε), and both Ix̄i (ε/4) and Ix̄i (−ε/4) are positive, i = 1, . . . , K , we obtain that (7.208)
implies (7.199), and hence completes the proof.

In the convex case the (Lipschitz continuity) condition (C2) holds, in a sense, auto-
matically. That is, we have the following result.

Theorem 7.66. Let U ⊂ R
n be a convex open set. Suppose that (i) for a.e. ξ ∈ � the

function F(·, ξ) : U → R is convex, and (ii) for every x ∈ U the moment-generating
function Mx(t) is finite valued for all t in a neighborhood of zero. Then for every compact
set X ⊂ U and ε > 0 there exist positive constants C and β = β(ε), independent of N ,
such that

Pr
{

supx∈X
∣∣f̂N (x)− f (x)∣∣ ≥ ε} ≤ Ce−Nβ. (7.209)

Proof. We have here that the expectation function f (x) is convex and finite valued for all
x ∈ U . Let X be a (nonempty) compact subset of U . For γ ≥ 0 consider the set

Xγ := {x ∈ R
n : dist(x,X) ≤ γ }.

Since the setU is open, we can choose γ > 0 such thatXγ ⊂ U . The setXγ is compact and
by convexity of f (·) we have that f (·) is continuous and hence is bounded on Xγ . That is,
there is constant c > 0 such that |f (x)| ≤ c for all x ∈ Xγ . Also by convexity of f (·) we
have for any τ ∈ [0, 1] and x, y ∈ R

n such that x + y, x − y/τ ∈ U :

f (x) = f ( 1
1+τ (x + y)+ τ

1+τ (x − y/τ)
) ≤ 1

1+τ f (x + y)+ τ
1+τ f (x − y/τ).

It follows that if x, x + y, x − y/τ ∈ Xγ , then

f (x + y) ≥ (1+ τ)f (x)− τf (x − y/τ) ≥ f (x)− 2τc. (7.210)

Now we proceed similar to the proof of Theorem 7.65. Let ε > 0 and ν > 0, and let
x̄1, . . . , x̄K ∈ Xγ/2 be a ν-net for Xγ/2. As in the proof of Theorem 7.65, this ν-net will be
dependent on ε but not on the random sample ξ 1, . . . , ξN . Consider the event

AN :=
{

max
1≤i≤K

∣∣f̂N (x̄i)− f (x̄i)∣∣ ≤ ε} .
By (7.200) and (7.202) we have similar to (7.207) that Pr(AN) ≥ 1− αN , where

αN := 2
K∑
i=1

exp
{−N [Ix̄i (ε) ∧ Ix̄i (−ε)]}.
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Consider a point x ∈ X and let I ⊂ {1, . . . , K} be such an index set that x is a convex
combination of points x̄i , i ∈ I, i.e., x =∑i∈I ti x̄i , for some positive numbers ti summing
up to one. Moreover, let I be such that ‖x−x̄i‖ ≤ aν for all i ∈ I, where a > 0 is a constant
independent of x and the net. By convexity of f̂N (·) we have that f̂N (x) ≤∑i∈I ti f̂N (x̄i).
It follows that the event AN is included in the event

{
f̂N (x) ≤∑i∈I tif (x̄i)+ ε

}
. By

(7.210) we also have that

f (x) ≥ f (x̄i)− 2τc, ∀i ∈ I,

provided that aν ≤ τγ /2. Setting τ := ε/(2c), we obtain that the event AN is included

in the event Bx :=
{
f̂N (x) ≤ f (x)+ 2ε

}
, provided that70 ν ≤ O(1)ε. It follows that the

event AN is included in the event ∩x∈XBx , and hence

Pr
{

sup
x∈X

(
f̂N (x)− f (x)

)
≤ 2ε

}
= Pr {∩x∈XBx} ≥ Pr {AN } ≥ 1− αN, (7.211)

provided that ν ≤ O(1)ε.
In order to derive the converse to (7.211) estimate let us observe that by convexity of

f̂N (·) we have with probability at least 1− αN that supx∈Xγ f̂N(x) ≤ c+ ε. Also, by using

(7.210) we have with probability at least 1− αN that inf x∈Xγ f̂N(x) ≥ −(c + ε), provided
that ν ≤ O(1)ε. That is, with probability at least 1− 2αN we have that

sup
x∈Xγ

∣∣f̂N (x)∣∣ ≤ c + ε,
provided that ν ≤ O(1)ε. We can now proceed in the same way as above to show that

Pr
{

sup
x∈X

(
f (x)− f̂N (x)

)
≤ 2ε

}
≥ 1− 3αN. (7.212)

Since by condition (ii) Ix̄i (ε) and Ix̄i (−ε) are positive, this completes the proof.

Now let us strengthen condition (C1) to the following condition:

(C4) There exists constant σ > 0 such that for any x ∈ X, the following inequality holds:

Mx(t) ≤ exp
{
σ 2t2/2

}
, ∀t ∈ R. (7.213)

It follows from condition (7.213) that lnMx(t) ≤ σ 2t2/2, and hence71

Ix(z) ≥ z2

2σ 2
, ∀z ∈ R. (7.214)

Consequently, inequality (7.208) implies

Pr
{

supx∈X
∣∣f̂N (x)− f (x)∣∣ ≥ ε} ≤ exp{−N�} + 2K exp

{
− Nε2

32σ 2

}
, (7.215)

70Recall that O(1) denotes a generic constant, here O(1) = γ /(2ca).
71Recall that if random variable F(x, ξ)−f (x) has normal distribution with variance σ 2, then its moment

generating function is equal to the right-hand side of (7.213), and hence the inequalities (7.213) and (7.214)
hold as equalities.
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where � is a constant specified in (7.206) with L′ := 2L, K = [%D/ν]n, ν = ε/(4L), and
hence

K = [4%DL/ε]n . (7.216)

If we assume further that the Lipschitz constant in (7.198) does not depend on ξ , i.e.,
κ(ξ) ≡ L, then the first term in the right-hand side of (7.215) can be omitted. Therefore we
obtain the following result.

Theorem 7.67. Suppose that conditions (C2)–(C4) hold and that the set X has finite
diameter D. Then

Pr
{

sup
x∈X

∣∣f̂N (x)− f (x)∣∣ ≥ ε} ≤ exp{−N�} + 2
[

4%DL
ε

]n
exp
{
− Nε2

32σ 2

}
. (7.217)

Moreover, if κ(ξ) ≡ L in condition (C2), then condition (C3) holds automatically and the
term exp{−N�} in the right-hand side of (7.217) can be omitted.

As shown in the proof of Theorem 7.66, in the convex case estimates of the form
(7.217), with different constants, can be obtained without assuming the (Lipschitz continu-
ity) condition (C2).

Exponential Convergence of Generalized Gradients

The above results can be also applied to establishing rates of convergence of directional
derivatives and generalized gradients (subdifferentials) of f̂N (x) at a given point x̄ ∈ X.
Consider the following condition:

(C5) For a.e. ξ ∈ �, the function Fξ (·) = F(·, ξ) is directionally differentiable at a point
x̄ ∈ X.

Consider the expected value function f (x) = E[F(x, ξ)] = ∫
�
F(x, ξ)dP (ξ). Sup-

pose that f (x̄) is finite and condition (C2) holds with the respective Lipschitz constant κ(ξ)
being P -integrable, i.e., E[κ(ξ)] < +∞. Then it follows that f (x) is finite valued and
Lipschitz continuous onX with Lipschitz constant E[κ(ξ)]. Moreover, the following result
for Clarke generalized gradient of f (x) holds (cf., [38, Theorem 2.7.2]).

Theorem 7.68. Suppose that condition (C2) holds with E[κ(ξ)] < +∞, and let x̄ be an
interior point of the setX such that f (x̄) is finite. If, moreover, F(·, ξ) is Clarke-regular at
x̄ for a.e. ξ ∈ �, then f is Clarke-regular at x̄ and

∂◦f (x̄) =
∫
�

∂◦F(x̄, ξ)dP (ξ), (7.218)

where Clarke generalized gradient ∂◦F(x̄, ξ) is taken with respect to x.

The above result can be extended to an infinite dimensional setting with the setX being
a subset of a separable Banach space X. Formula (7.218) can be interpreted in the following
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way. For every γ ∈ ∂◦f (x̄), there exists a measurable selection �(ξ) ∈ ∂◦F(x̄, ξ) such
that for every v ∈ X∗, the function 〈v, �(·)〉 is integrable and

〈v, γ 〉 =
∫
�

〈v, �(ξ)〉dP (ξ).

In this way, γ can be considered as an integral of a measurable selection from ∂◦F(x̄, ·).

Theorem 7.69. Let x̄ be an interior point of the set X. Suppose that f (x̄) is finite and
conditions (C2)–(C3) and (C5) hold. Then for any ε > 0 there exist positive constants C
and β = β(ε), independent of N , such that72

Pr
{

supd∈Sn−1

∣∣f̂ ′N(x̄, d)− f ′(x̄, d)∣∣ > ε
}
≤ Ce−Nβ. (7.219)

Moreover, suppose that for a.e. ξ ∈ � the function F(·, ξ) is Clarke-regular at x̄. Then

Pr
{
H

(
∂◦f̂N (x̄), ∂◦f (x̄)

)
> ε
}
≤ Ce−Nβ. (7.220)

Furthermore, if in condition (C2) κ(ξ) ≡ L is constant, then

Pr
{
H

(
∂◦f̂N (x̄), ∂◦f (x̄)

)
> ε
}
≤ 2
[

4%L
ε

]n
exp
{
− Nε2

128L2

}
. (7.221)

Proof. Since f (x̄) is finite, conditions (C2)-(C3) and (C5) imply that f (·) is finite valued
and Lipschitz continuous in a neighborhood of x̄, f (·) is directionally differentiable at x̄,
its directional derivative f ′(x̄, ·) is Lipschitz continuous, and f ′(x̄, ·) = E [η(·, ξ)], where
η(·, ξ) := F ′ξ (x̄, ·) (see Theorem 7.44). We also have here that f̂ ′N(x̄, ·) = η̂N (·), where

η̂N (d) := 1

N

N∑
i=1

η(d, ξ i), d ∈ R
n, (7.222)

and E
[
η̂N (d)

] = f ′(x̄d) for all d ∈ R
n. Moreover, conditions (C2) and (C5) imply that

η(·, ξ) is Lipschitz continuous on R
n, with Lipschitz constant κ(ξ), and in particular that

|η(d, ξ)| ≤ κ(ξ)‖d‖ for any d ∈ R
n and ξ ∈ �. Hence together with condition (C3) this

implies that, for every d ∈ R
n, the moment-generating function of η(d, ξ) is finite valued

in a neighborhood of zero.
Consequently, the estimate (7.219) follows directly from Theorem 7.65. If Fξ (·) is

Clarke-regular for a.e. ξ ∈ �, then f̂N (·) is also Clarke-regular and

∂◦f̂N (x̄) = N−1
N∑
i=1

∂◦Fξi (x̄).

By applying (7.219) together with (7.145) for sets A1 := ∂◦f̂N (x̄) and A2 := ∂◦f (x̄), we
obtain (7.220).

Now if κ(ξ) ≡ L is constant, thenη(·, ξ) is Lipschitz continuous on R
n, with Lipschitz

constant L, and |η(d, ξ)| ≤ L for every d ∈ Sn−1 and ξ ∈ �. Consequently, for any d ∈
72By Sn−1 := {d ∈ R

n : ‖d‖ = 1} we denote the unit sphere taken with respect to a norm ‖ · ‖ on R
n.
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Sn−1 and ξ ∈ �we have that
∣∣η(d, ξ)−E[η(d, ξ)]∣∣ ≤ 2L, and hence for every d ∈ Sn−1 the

moment-generating functionMd(t)ofη(d, ξ)−E[η(d, ξ)] is boundedMd(t) ≤ exp{2t2L2},
for all t ∈ R (see (7.186)). It follows by Theorem 7.67 that

Pr
{

supd∈Sn−1

∣∣f̂ ′N(x̄, d)− f ′(x̄, d)∣∣ > ε
}
≤ 2
[

4%L
ε

]n
exp
{
− Nε2

128L2

}
, (7.223)

and hence (7.221) follows.

7.3 Elements of Functional Analysis
A linear space Z equipped with a norm ‖ · ‖ is said to be a Banach space if it is complete,
i.e., every Cauchy sequence in Z has a limit. Let Z be a Banach space. Unless stated
otherwise, all topological statements (convergence, continuity, lower continuity, etc.) will
be made with respect to the norm topology of Z.

The space of all linear continuous functionals ζ : Z→ R forms the dual of space Z
and is denoted Z∗. For ζ ∈ Z∗ and z ∈ Z we denote 〈ζ, z〉 := ζ(z) and view it as a scalar
product on Z∗ ×Z. The space Z∗, equipped with the dual norm

‖ζ‖∗ := sup
‖z‖≤1
〈ζ, z〉, (7.224)

is also a Banach space. Consider the dual Z∗∗ of the space Z∗. There is a natural embedding
of Z into Z∗∗ given by identifying z ∈ Z with linear functional 〈·, z〉 on Z∗. In that sense,
Z can be considered as a subspace of Z∗∗. It is said that Banach space Z is reflexive if Z
coincides with Z∗∗.

It follows from the definition of the dual norm that

|〈ζ, z〉| ≤ ‖ζ‖∗ ‖z‖, z ∈ Z, ζ ∈ Z∗. (7.225)

Also to every z ∈ Z corresponds set

Sz := arg max
{〈ζ, z〉 : ζ ∈ Z∗, ‖ζ‖ ≤ 1

}
. (7.226)

The set Sz is always nonempty and will be referred to as the set of contact points of z ∈ Z.
Every point of Sz will be called a contact point of z.

An important class of Banach spaces are Lp(�,F , P ) spaces, where (�,F ) is a
sample space, equipped with sigma algebra F and probability measureP , andp ∈ [1,+∞).
The space Lp(�,F , P ) consists of all F -measurable functions φ : � → R such that∫
�
|φ(ω)|p dP (ω) < +∞. More precisely, an element of Lp(�,F , P ) is a class of such

functions φ(ω) which may differ from each other on sets of P -measure zero. Equipped
with the norm

‖φ‖p :=
(∫
�
|φ(ω)|p dP (ω))1/p , (7.227)

Lp(�,F , P ) becomes a Banach space.
We also use the space L∞(�,F , P ) of functions (or rather classes of functions which

may differ on sets of P -measure zero) φ : �→ R which are F -measurable and essentially
bounded. A function φ is said to be essentially bounded if its sup-norm

‖φ‖∞ := ess sup
ω∈�
|φ(ω)| (7.228)
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is finite, where

ess sup
ω∈�
|φ(ω)| := inf

{
sup
ω∈�
|ψ(ω)| : φ(ω) = ψ(ω) a.e. ω ∈ �

}
.

In particular, suppose that the set� := {ω1, . . . , ωK} is finite, and let F be the sigma
algebra of all subsets of � and p1, . . . , pK be (positive) probabilities of the corresponding
elementary events. In that case, every element z ∈ Lp(�,F , P ) can be viewed as a finite
dimensional vector (z(ω1), . . . , z(ωK)), and Lp(�,F , P ) can be identified with the space
R
K equipped with the corresponding norm

‖z‖p :=
(∑K

k=1 pk|z(ωk)|p
)1/p

. (7.229)

We also use spaces Lp(�,F , P ;Rm), with p ∈ [1,+∞]. For p ∈ [1,+∞) this
space is formed by all F -measurable functions (mappings) ψ : � → R

m such that∫
�
‖ψ(ω)‖pdP (ω) < +∞, with the corresponding norm ‖ · ‖ on R

m being, for exam-
ple, the Euclidean norm. For p = ∞, the corresponding space consists of all essentially
bounded functions ψ : �→ R

m.
For p ∈ (1,+∞) the dual of Lp(�,F , P ) is the space Lq(�,F , P ), where q ∈

(1,+∞) is such that 1/p+ 1/q = 1, and these spaces are reflexive. This duality is derived
by Hölder inequality∫

�

|ζ(ω)z(ω)|dP (ω) ≤
(∫

�

|ζ(ω)|qdP (ω)
)1/q (∫

�

|z(ω)|pdP (ω)
)1/p

. (7.230)

For points z ∈ Lp(�,F , P ) and ζ ∈ Lq(�,F , P ), their scalar product is defined as

〈ζ, z〉 :=
∫
�

ζ(ω)z(ω)dP (ω). (7.231)

The dual of L1(�,F , P ) is the space L∞(�,F , P ), and these spaces are not reflexive.
If z(ω) is not zero for a.e. ω ∈ �, then the equality in (7.230) holds iff ζ(ω) is

proportional73 to sign(z(ω))|z(ω)|1/(q−1). It follows that for p ∈ (1,+∞), with every
nonzero z ∈ Lp(�,F , P ) is associated unique contact point, denoted ζ̃z, which can be
written in the form

ζ̃z(ω) = sign(z(ω))|z(ω)|1/(q−1)

‖z‖q/pp

. (7.232)

In particular, for p = 2 and q = 2 the contact point is ζ̃z = ‖z‖−1
2 z. Of course, if z = 0,

then S0 = {ζ ∈ Z∗ : ‖ζ‖∗ ≤ 1}.
For p = 1 and z ∈ L1(�,F , P ) the corresponding set of contact points can be

described as follows:

Sz =
ζ ∈ L∞(�,F , P ) :

ζ(ω) = 1 if z(ω) > 0,
ζ(ω) = −1 if z(ω) < 0,
ζ(ω) ∈ [−1, 1] if z(ω) = 0.

(7.233)

It follows that Sz is a singleton iff z(ω) �= 0 for a.e. ω ∈ �.

73For a ∈ R, sign(a) is equal to 1 if a > 0, to −1 if a < 0, and to 0 if a = 0.
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Together with the strong (norm) topology of Z we sometimes need to consider its
weak topology, which is the weakest topology in which all linear functionals 〈ζ, ·〉, ζ ∈ Z∗,
are continuous. The dual space Z∗ can be also equipped with its weak∗ topology, which
is the weakest topology in which all linear functionals 〈·, z〉, z ∈ Z, are continuous. If
the space Z is reflexive, then Z∗ is also reflexive and its weak∗ and weak topologies do
coincide. Note also that a convex subset of Z is closed in the strong topology iff it is closed
in the weak topology of Z.

Theorem 7.70 (Banach–Alaoglu). Let Z be Banach space. The closed unit ball {ζ ∈ Z∗ :
‖ζ‖∗ ≤ 1} is compact in the weak∗ topology of Z∗.

It follows that any bounded (in the dual norm ‖ · ‖∗) and weakly∗ closed subset of Z∗
is weakly∗ compact.

7.3.1 Conjugate Duality and Differentiability

Let Z be a Banach space, Z∗ be its dual space and f : Z→ R be an extended real valued
function. Similar to the final dimensional case we define the conjugate function of f as

f ∗(ζ ) := sup
z∈Z

{〈ζ, z〉 − f (z)}. (7.234)

The conjugate function f ∗ : Z∗ → R is always convex and lower semicontinuous. The
biconjugate function f ∗∗ : Z→ R, i.e., the conjugate of f ∗, is

f ∗∗(z) := sup
ζ∈Z∗
{〈ζ, z〉 − f ∗(ζ )}. (7.235)

The basic duality theorem still holds in the considered infinite dimensional framework.

Theorem 7.71 (Fenchel–Moreau). Let Z be a Banach space and f : Z→ R be a proper
extended real valued convex function. Then

f ∗∗ = lsc f. (7.236)

It follows from (7.236) that if f is proper and convex, then f ∗∗ = f iff f is lower
semicontinuous. A basic difference between finite and infinite dimensional frameworks is
that in the infinite dimensional case a proper convex function can be discontinuous at an
interior point of its domain. As the following result shows, for a convex proper function
continuity and lower semicontinuity properties on the interior of its domain are the same.

Proposition 7.72. Let Z be a Banach space and f : Z→ R be a convex lower semicontin-
uous function having a finite value in at least one point. Then f is proper and is continuous
on int(domf ).

In particular, it follows from the above proposition that if f : Z→ R is real valued
convex and lower semicontinuous, then f is continuous on Z.

The subdifferential of a function f : Z→ R, at a point z0 such that f (z0) is finite, is
defined in a way similar to the finite dimensional case. That is,

∂f (z0) :=
{
ζ ∈ Z∗ : f (z)− f (z0) ≥ 〈ζ, z− z0〉, ∀z ∈ Z

}
. (7.237)
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It is said that f is subdifferentiable at z0 if ∂f (z0) is nonempty. Clearly, if f is subdiffer-
entiable at some point z0 ∈ Z, then f is proper and lower semicontinuous at z0. Similar to
the finite dimensional case, we have the following.

Proposition 7.73. Let Z be a Banach space and f : Z → R be a convex function and
z ∈ Z be such that f ∗∗(z) is finite. Then

∂f ∗∗(z) = arg max
ζ∈Z∗

{〈ζ, z〉 − f ∗(ζ )} . (7.238)

Moreover, if f ∗∗(z) = f (z), then ∂f ∗∗(z) = ∂f (z).

Proposition 7.74. Let Z be a Banach space, f : Z → R be a convex function. Suppose
that f is finite valued and continuous at a point z0 ∈ Z. Then f is subdifferentiable at z0,
∂f (z0) is nonempty, convex, bounded, and weakly∗ compact subset of Z∗, f is Hadamard
directionally differentiable at z0 and

f ′(z0, h) = sup
ζ∈∂f (z0)

〈ζ, h〉. (7.239)

Note that by the definition, every element of the subdifferential ∂f (z0) (called sub-
gradient) is a continuous linear functional on Z. A linear (not necessarily continuous)
functional � : Z→ R is called an algebraic subgradient of f at z0 if

f (z0 + h)− f (z0) ≥ �(h), ∀h ∈ Z. (7.240)

Of course, if the algebraic subgradient � is also continuous, then � ∈ ∂f (z0).

Proposition 7.75. Let Z be a Banach space and f : Z→ R be a proper convex function.
Then the set of algebraic subgradients at any point z0 ∈ int(domf ) is nonempty.

Proof. Consider the directional derivative function δ(h) := f ′(z0, h). The directional
derivative is defined here in the same way as in section 7.1.1. Since f is convex we have
that

f ′(z0, h) = inf
t>0

f (z0 + th)− f (z0)

t
, (7.241)

and δ(·) is convex, positively homogeneous. Moreover, since z0 ∈ int(domf ) and hence
f (z) is finite valued for all z in a neighborhood of z0, it follows by (7.241) that δ(h) is finite
valued for all h ∈ Z. That is, δ(·) is a real valued subadditive and positively homogeneous
function. Consequently, by the Hahn–Banach theorem we have that there exists a linear
functional � : Z→ R such that δ(h) ≥ �(h) for all h ∈ Z. Since f (z0+h) ≥ f (z0)+ δ(h)
for any h ∈ Z, it follows that � is an algebraic subgradient of f at z0.

There is also the following version of the Moreau–Rockafellar theorem in the infinite
dimensional setting.

Theorem 7.76 (Moreau–Rockafellar). Let f1, f2 : Z → R be convex proper lower
semicontinuous functions, f := f1 + f2 and z̄ ∈ dom(f1) ∩ dom(f2). Then

∂f (z̄) = ∂f1(z̄)+ ∂f2(z̄), (7.242)
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provided that the following regularity condition holds:

0 ∈ int {dom(f1)− dom(f2)} . (7.243)

In particular, (7.242) holds if f1 is continuous at z̄.

Remark 34. It is possible to derive the following (first order) necessary optimality condition
from the above theorem. Let S be a convex closed subset of Z and f : Z→ R be a convex
proper lower semicontinuous function. We have that a point z0 ∈ S is a minimizer of f (z)
over z ∈ S iff z0 is a minimizer of ψ(z) := f (z) + IS(z) over z ∈ Z. The last condition
is equivalent to the condition that 0 ∈ ∂ψ(z0). Since S is convex and closed, the indicator
function IS(·) is convex lower semicontinuous, and ∂IS(z0) = NS(z0). Therefore, we have
the following.

If z0 ∈ S ∩ dom(f ) is a minimizer of f (z) over z ∈ S, then

0 ∈ ∂f (z0)+NS(z0), (7.244)

provided that 0 ∈ int {dom(f )− S} . In particular, (7.244) holds, if f is continuous at z0.

It is also possible to apply the conjugate duality theory to dual problems of the form
(7.33) and (7.35) in an infinite dimensional setting. That is, let X and Y be Banach spaces,
ψ : X× Y→ R and ϑ(y) := inf x∈X ψ(x, y).

Theorem 7.77. Let X and Y be Banach spaces. Suppose that the functionψ(x, y) is proper
convex and lower semicontinuous and that ϑ(ȳ) is finite. Then ϑ(y) is continuous at ȳ iff
for every y in a neighborhood of ȳ, ϑ(y) < +∞, i.e., ȳ ∈ int(dom ϑ).

If ϑ(y) is continuous at ȳ, then there is no duality gap between the corresponding
primal and dual problems and the set of optimal solutions of the dual problem coincides
with ∂ϑ(ȳ) and is nonempty and weakly∗ compact.

7.3.2 Lattice Structure

Let C ⊂ Z be a closed convex pointed74 cone. It defines an order relation on the space Z.
That is, z1 � z2 if z1 − z2 ∈ C. It is not difficult to verify that this order relation defines
a partial order on Z, i.e., the following conditions hold for any z, z′, z′′ ∈ Z: (i) z � z,
(ii) if z � z′ and z′ � z′′, then z � z′′ (transitivity), and (iii) if z � z′ and z′ � z, then
z = z′. This partial order relation is also compatible with the algebraic operations, i.e., the
following conditions hold: (iv) if z � z′ and t ≥ 0, then tz � tz′, and (v) if z′ � z′′ and
z ∈ Z, then z′ + z � z′′ + z.

It is said that u ∈ Z is the least upper bound (or supremum) of z, z′ ∈ Z, written
u = z ∨ z′, if u � z and u � z′ and, moreover, if u′ � z and u′ � z′ for some u′ ∈ Z,
then u′ � u. By the above property (iii) we have that if the least upper bound z ∨ z′ exists,
then it is unique. It is said that the considered partial order induces a lattice structure on Z
if the least upper bound z∨ z′ exists for any z, z′ ∈ Z. Denote z+ := z∨0, z− := (−z)∨0,
and |z| := z+ ∨ z− = z ∨ (−z). It is said that Banach space Z with lattice structure is a
Banach lattice if z, z′ ∈ Z and |z| � |z′| implies ‖z‖ ≥ ‖z′‖.

74Recall that cone C is said to be pointed if z ∈ C and −z ∈ C implies that z = 0.
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For p ∈ [1,+∞], consider Banach space Z := Lp(�,F , P ) and cone C :=
L+p (�,F , P ), where

L+p (�,F , P ) :=
{
z ∈ Lp(�,F , P ) : z(ω) ≥ 0 for a.e. ω ∈ �} . (7.245)

This cone C is closed, convex, and pointed. The corresponding partial order means that
z � z′ iff z(ω) ≥ z′(ω) for a.e. ω ∈ �. It has a lattice structure with

(z ∨ z′)(ω) = max{z(ω), z′(ω)}
and |z|(ω) = |z(ω)|. Also, the property, “if z � z′ � 0, then ‖z‖ ≥ ‖z′‖,” clearly holds. It
follows that space Lp(�,F , P ) with cone L+p (�,F , P ) forms a Banach lattice.

Theorem 7.78 (Klee–Nachbin–Namioka). Let Z be a Banach lattice and � : Z → R

be a linear functional. Suppose that � is positive, i.e., �(z) ≥ 0 for any z � 0. Then � is
continuous.

Proof. We have that linear functional � is continuous iff it is bounded on the unit ball of
Z, i.e, iff there exists positive constant c such that |�(z)| ≤ c‖z‖ for all z ∈ Z. First, let us
show that there exists c > 0 such that �(z) ≤ c‖z‖ for all z � 0. Recall that z � 0 iff z ∈ C.
We argue by a contradiction. Suppose that this is incorrect. Then there exists a sequence
zk ∈ C such that ‖zk‖ = 1 and �(zk) ≥ 2k for all k ∈ N. Consider z̄ :=∑∞k=1 2−kzk . Note
that
∑n

k=1 2−kzk forms a Cauchy sequence in Z and hence is convergent, i.e., the point z̄ is
well defined. Note also that since C is closed, it follows that

∑∞
k=m 2−kzk ∈ C, and hence

it follows by positivity of � that �
(∑∞

k=m 2−kzk
) ≥ 0 for any m ∈ N. Therefore, we have

�(z̄) = �
(∑n

k=1 2−kzk
)+ � (∑∞k=n+1 2−kzk

) ≥ � (∑n
k=1 2−kzk

)
= ∑n

k=1 2−k�(zk) ≥ n,
for any n ∈ N. This gives a contradiction.

Now for any z ∈ Z we have

|z| = z+ ∨ z− � z+ = |z+|.
It follows that for v = |z| we have that ‖v‖ ≥ ‖z+‖, and similarly ‖v‖ ≥ ‖z−‖. Since
z = z+ − z− and �(z−) ≥ 0 by positivity of �, it follows that

�(z) = �(z+)− �(z−) ≤ �(z+) ≤ c‖z+‖ ≤ c‖z‖,
and similarly

−�(z) = −�(z+)+ �(z−) ≤ �(z−) ≤ c‖z−‖ ≤ c‖z‖.
It follows that |�(z)| ≤ c‖z‖, which completes the proof.

Suppose that Banach space Z has a lattice structure. It is said that a function f : Z→
R is monotone if z � z′ implies that f (z) ≥ f (z′).

Theorem 7.79. Let Z be a Banach lattice and f : Z→ R be proper convex and monotone.
Then f (·) is continuous and subdifferentiable on the interior of its domain.
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Proof. Let z0 ∈ int(domf ). By Proposition 7.75, function f possesses an algebraic
subgradient � at z0. It follows from monotonicity of f that � is positive. Indeed, if �(h) < 0
for some h ∈ C, then it follows by (7.240) that

f (z0 − h) ≥ f (z0)− �(h) > f (z0),

which contradicts monotonicity of f . It follows by Theorem 7.78 that � is continuous, and
hence � ∈ ∂f (z0). This shows that f is subdifferentiable at every point of int(domf ). This,
in turn, implies that f is lower semicontinuous on int(domf ) and hence by Proposition
7.72 is continuous on int(domf ).

The above result can be applied to any space Z := Lp(�,F , P ), p ∈ [1,+∞],
equipped with the lattice structure induced by the cone C := L+p (�,F , P ).

Interchangeability Principle

Let (�,F , P ) be a probability space. It is said that a linear space M of F -measurable
functions (mappings) ψ : �→ R

m is decomposable if for every ψ ∈M and A ∈ F , and
every bounded and F -measurable function γ : � → R

m, the space M also contains the
function η(·) := 1�\A(·)ψ(·)+ 1A(·)γ (·). For example, spaces M := Lp(�,F , P ;Rm),
with p ∈ [1,+∞], are decomposable. Proof of the following theorem can be found in [181,
Theorem 14.60].

Theorem 7.80. Let M be a decomposable space and f : Rm×�→ R be a random lower
semicontinuous function. Then

E

[
inf
x∈Rm

f (x, ω)

]
= inf

χ∈M
E
[
Fχ
]
, (7.246)

where Fχ(ω) := f (χ(ω), ω), provided that the right-hand side of (7.246) is less than+∞.
Moreover, if the common value of both sides in (7.246) is not −∞, then

χ̄ ∈ argmin
χ∈M

E[Fχ ] iff χ̄(ω) ∈ argmin
x∈Rm

f (x, ω) for a.e. ω ∈ � and χ̄ ∈M. (7.247)

Clearly the above interchangeability principle can be applied to a maximization, rather
than minimization, procedure simply by replacing function f (x, ω) with−f (x, ω). For an
extension of this interchangeability principle to risk measures, see Proposition 6.37.

Exercises
7.1. Show that function f : Rn → R is lower semicontinuous iff its epigraph epif is a

closed subset of R
n+1.

7.2. Show that a function f : Rn → R is polyhedral iff its epigraph is a convex closed
polyhedron and f (x) is finite for at least one x.
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7.3. Give an example of a function f : R
2 → R which is Gâteaux but not Fréchet

differentiable.
7.4. Show that if g : Rn→ R

m is Hadamard directionally differentiable at x0 ∈ R
n, then

g′(x0, ·) is continuous and g is Fréchet directionally differentiable at x0. Conversely,
if g is Fréchet directionally differentiable at x0 and g′(x0, ·) is continuous, then g is
Hadamard directionally differentiable at x0.

7.5. Show that if f : Rn→ R is a convex function, finite valued at a point x0 ∈ R
n, then

formula (7.17) holds and f ′(x0, ·) is convex. If, moreover, f (·) is finite valued in a
neighborhood of x0, then f ′(x0, h) is finite valued for all h ∈ R

n.
7.6. Let s(·) be the support function of a nonempty set C ⊂ R

n. Show that the conjugate
of s(·) is the indicator function of the set cl(conv(C)).

7.7. Let C ⊂ R
n be a closed convex set and x ∈ C. Show that the normal cone NC(x)

is equal to the subdifferential of the indicator function IC(·) at x.
7.8. Show that if multifunction G : Rm ⇒ R

n is closed valued and upper semicontinuous,
then it is closed. Conversely, if G is closed and the set dom G is compact, then G is
upper semicontinuous.

7.9. Consider function F(x, ω) used in Theorem 7.44. Show that if F(·, ω) is differen-
tiable for a.e. ω, then condition (A2) of that theorem is equivalent to the following
condition: there exists a neighborhood V of x0 such that

E
[

supx∈V ‖∇xF (x, ω)‖
]
<∞. (7.248)

7.10. Show that if f (x) := E|x − ξ |, then formula (7.121) holds. Conclude that f (·) is
differentiable at x0 ∈ R iff Pr(ξ = x0) = 0.

7.11. Verify equalities (7.143) and (7.144) and hence conclude (7.145).
7.12. Show that the estimate (7.199) of Theorem 7.65 still holds if the bound (7.198) in

condition (C2) is replaced by

|F(x ′, ξ)− F(x, ξ)| ≤ κ(ξ)‖x ′ − x‖γ (7.249)

for some constant γ > 0. Show how the estimate (7.217) of Theorem 7.67 should
be corrected in that case.
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Bibliographical Remarks

Chapter 1

The news vendor problem (sometimes called the newsboy problem), portfolio selection, and
supply chain models are classical, and numerous papers have been written on each subject.
It would be far beyond the scope of this monograph to give a complete review of all relevant
literature. Our main purpose in discussing these models is to introduce such basic concepts
as a recourse action, probabilistic (chance) constraints, here-and-now and wait-and-see
solutions, the nonanticipativity principle, and dynamic programming equations. We give
below just a few basic references.

The news vendor problem is a classical model used in inventory management. Its
origin is in the paper by Edgeworth [62]. In the stochastic setting, study of the news vendor
problem started with the classical paper by Arrow, Harris, and Marchak [5]. The optimality
of the basestock policy for the multistage inventory model was first proved in Clark and
Scarf [37]. The worst-case distribution approach to the news vendor problem was initiated
by Scarf [193], where the case when only the mean and variance of the distribution of the
demand are known was analyzed. For a thorough discussion and relevant references for
single and multistage inventory models, see Zipkin [230].

Modern portfolio theory was introduced by Markowitz [125, 126]. The concept of
utility function has a long history. Its origins go back as far as the work of Daniel Bernoulli
(1738). The axiomatic approach to the expected utility theory was introduced by von
Neumann and Morgenstern [221].

For an introduction to supply chain network design, see, e.g., Nagurney [132]. The
material of section 1.5 is based on Santoso et al. [192].

For a thorough discussion of robust optimization we refer to the forthcoming book by
Ben-Tal, El Ghaoui, and Nemirovski [15].

Chapters 2 and 3

Stochastic programming with recourse originated in the works of Beale [14], Dantzig [41],
and Tintner [215].

407



SPbook
2009/8/20
page 408

�

�

�

�

�

�

�

�

408 Chapter 8. Bibliographical Remarks

Properties of the optimal value Q(x, ξ) of the second-stage linear programming
problem and of its expectation E[Q(x, ξ)] were first studied by Kall [99, 100], Walkup
and Wets [223, 224], and Wets [226, 227]. Example 2.5 is discussed in Birge and Lou-
veaux [19]. Polyhedral and convex two-stage problems, discussed in sections 2.2 and 2.3,
are natural extensions of the linear two-stage problems. Many additional examples and anal-
ysis of particular models can be found in Birge and Louveaux [19], Kall and Wallace [102],
and Wallace and Ziemba [225]. For a thorough analysis of simple recourse models, see Kall
and Mayer [101].

Duality analysis of stochastic problems, and in particular dualization of the nonantic-
ipativity constraints, was developed by Eisner and Olsen [64], Wets [228], and Rockafellar
and Wets [179, 180]. (See also Rockafellar [176] and the references therein.)

Expected value of perfect information is a classical concept in decision theory (see
Raiffa and Schlaifer [165] and Raiffa [164]). In stochastic programming this and related
concepts were analyzed by Madansky [122], Spivey [210], Avriel and Williams [11], Demp-
ster [46], and Huang, Vertinsky, and Ziemba [95].

Numerical methods for solving two- and multistage stochastic programming problems
are extensively discussed in Birge and Louveaux [19], Ruszczyński [186], and Kall and
Mayer [101], where the reader can also find detailed references to original contributions.

There is also an extensive literature on constructing scenario trees for multistage mod-
els, encompassing various techniques using probability metrics, pseudorandom sequences,
lower and upper bounding trees, and moment matching. The reader is referred to Kall and
Mayer [101], Heitsch and and Römisch [82], Hochreiter and Pflug [91], Casey and Sen [31],
Pennanen [145], Dupačova, Growe-Kuska, and Römisch [59], and the references therein.

An extensive stochastic programming bibliography can be found at the website
http://mally.eco.rug.nl/spbib.html, maintained by Maarten van der Vlerk.

Chapter 4

Models involving probabilistic (chance) constraints were introduced by Charnes, Cooper,
and Symonds [32], Miller and Wagner [129], and Prékopa [154]. Problems with integrated
chance constraints are considered in [81]. Models with stochastic dominance constraints
were introduced and analyzed by Dentcheva and Ruszczyński in [52, 54, 55]. The notion of
stochastic ordering or stochastic dominance of first order has been introduced in statistics
in Mann and Whitney [124] and Lehmann [116] and further applied and developed in
economics (see Quirk and Saposnik [163], Fishburn [67], and Hadar and Russell [80].)

An essential contribution to the theory and solutions of problems with chance con-
straints was the theory of α-concave measures and functions. In Prékopa [155, 156] the
concept of logarithmic concave measures was introduced and studied. This notion was gen-
eralized toα-concave measures and functions in Borell [23, 24], Brascamp and Lieb [26], and
Rinott [168] and further analyzed in Tamm [214] and Norkin [141]. Approximations of the
probability function by Steklov–Sobolev transformation was suggested by Norkin in [139].
Differentiability properties of probability functions were studied in Uryasev [216, 217],
Kibzun and Tretyakov [104], Kibzun and Uryasev [105], and Raik [166]. The first defini-
tion of α-concave discrete multivariate distributions was introduced in Barndorff-Nielsen
[13]. The generalized definition of α-concave functions on a set, which we have adopted
here, was introduced in Dentcheva, Prekopa, and Ruszczyński [49]. It facilitates the de-
velopment of optimality and duality theory of probabilistic optimization. Its consequences
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for probabilistic optimization were explored in Dentcheva, Prékopa, and Ruszczyński [50].
The notion of p-efficient points was first introduced in Prékopa [157]. A similar concept
was used in Sen [195]. The concept was studied and applied in the context of discrete distri-
butions and linear problems in the papers of Dentcheva, Prékopa, and Ruszczyński [49, 50]
and Prékopa, Vízvári, Badics [160] and in the context of general distributions in Dentcheva,
Lai, and Ruszczyński [48]. Optimization problems with probabilistic set-covering con-
straint were investigated in Beraldi and Ruszczyński [16, 17], where efficient enumeration
procedures of p-efficient points of 0–1 variable are employed. There is a wealth of research
on estimating probabilities of events. We refer to Boros and Prékopa [25], Bukszár [27],
Bukszár and Prékopa [28], Dentcheva, Prékopa, and Ruszczynski [50], Prékopa [158], and
Szántai [212], where probability bounds are used in the context of chance constraints.

Statistical approximations of probabilistically constrained problems were analyzed
in Sainetti [191], Kankova [103], Deák [43], and Gröwe [77]. Stability of models with
probabilistic constraints was addressed in Dentcheva [47], Henrion [84, 83], and Henrion
and Römisch [183, 85]. Nonlinear probabilistic problems were investigated in Dentcheva,
Lai, and Ruszczyński [48], where optimality conditions are established.

Many applied models in engineering, where reliability is frequently a central issue
(e.g., in telecommunication, transportation, hydrological network design and operation, en-
gineering structure design, electronic manufacturing problems), include optimization under
probabilistic constraints. We do not list these applied works here. In finance, the con-
cept of Value-at-Risk enjoys great popularity (see, e.g., Dowd [57], Pflug [148], and Pflug
and Römisch [149]). The concept of stochastic dominance plays a fundamental role in
economics and statistics. We refer to Mosler and Scarsini [131], Shaked and Shanthiku-
mar [196], and Szekli [213] for more information and a general overview on stochastic
orders.

Chapter 5

The concept of SAA estimators is closely related to the maximum likelihood (ML) method
and M-estimators developed in statistics literature. However, the motivation and scope
of applications are quite different. In statistics, the involved constraints typically are of a
simple nature and do not play such an essential role as in stochastic programming. Also, in
applications of Monte Carlo sampling techniques to stochastic programming, the respective
sample is generated in the computer and its size can be controlled, while in statistical
applications the data are typically given and cannot be easily changed.

Starting with a pioneering work of Wald [222], consistency properties of the ML
method and M-estimators were studied in numerous publications. The epi-convergence ap-
proach to studying consistency of statistical estimators was discussed in Dupačová and Wets
[60]. In the context of stochastic programming, consistency of SAA estimators was also in-
vestigated by tools of epi-convergence analysis in King and Wets [108] and Robinson [173].

Proposition 5.6 appeared in Norkin, Pflug, and Ruszczyński [140] and Mak, Morton,
and Wood [123]. Theorems 5.7, 5.11, and 5.10 are taken from Shapiro [198] and [204],
respectively. The approach to second order asymptotics, discussed in section 5.1.3, is based
on Dentcheva and Römisch [51] and Shapiro [199]. Starting with the classical asymp-
totic theory of the ML method, asymptotics of statistical estimators were investigated in
numerous publications. Asymptotic normality of M-estimators was proved, under quite
weak differentiability assumptions, in Huber [96]. An extension of the SAA method to
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stochastic generalized equations is a natural one. Stochastic variational inequalities were
discussed by Gürkan, Özge, and Robinson [79]. Proposition 5.14 and Theorem 5.15 are
similar to the results obtained in [79, Theorems 1 and 2]. Asymptotics of SAA estimators
of optimal solutions of stochastic programs were discussed in King and Rockafellar [107]
and Shapiro [197].

The idea of using Monte Carlo sampling for solving stochastic optimization problems
of the form (5.1) certainly is not new. A variety of sampling-based optimization techniques
have been suggested in the literature. It is beyond the scope of this chapter to give a compre-
hensive survey of these methods, but we mention a few approaches related to the material
of this chapter. One approach uses the infinitesimal perturbation analysis (IPA) techniques
to estimate the gradients of f (·), which consequently are employed in the stochastic ap-
proximation (SA) method. For a discussion of the IPA and SA methods we refer to Ho and
Cao [90], Glasserman [75], Kushner and Clark [112], and Nevelson and Hasminskii [137],
respectively. For an application of this approach to optimization of queueing systems see
Chong and Ramadge [36] and L’Ecuyer and Glynn [115], for example. Closely related to
this approach is the stochastic quasi-gradient method (see Ermoliev [65]).

Another class of methods uses sample average estimates of the values of the objective
function, and maybe its gradients (subgradients), in an “interior” fashion. Such methods
are aimed at solving the true problem (5.1) by employing sampling estimates of f (·) and
∇f (·) blended into a particular optimization algorithm. Typically, the sample is updated or a
different sample is used each time function or gradient (subgradient) estimates are required
at a current iteration point. In this respect we can mention, in particular, the statistical
L-shaped method of Infanger [97] and the stochastic decomposition method of Higle and
Sen [88].

In this chapter we mainly discussed an “exterior” approach, in which a sample is
generated outside of an optimization procedure and consequently the constructed sample
average approximation (SAA) problem is solved by an appropriate deterministic optimiza-
tion algorithm. There are several advantages in such an approach. The method separates
sampling procedures and optimization techniques. This makes it easy to implement and, in
a sense, universal. From the optimization point of view, given a sample ξ 1, . . . , ξN , the ob-
tained optimization problem can be considered as a stochastic program with the associated
scenarios ξ 1, . . . , ξN , each taken with equal probability N−1. Therefore, any optimization
algorithm which is developed for a considered class of stochastic programs can be applied
to the constructed SAA problem in a straightforward way. Also, the method is ideally suited
for a parallel implementation. From the theoretical point of view, a quite well-developed
statistical inference of the SAA method is available. This, in turn, gives a possibility of
error estimation, validation analysis, and hence stopping rules. Finally, various variance
reduction techniques can be conveniently combined with the SAA method.

It is difficult to point out an exact origin of the SAA method. The idea is simple
indeed and it was used by various authors under different names. Variants of this approach
are known as the stochastic counterpart method (Rubinstein and Shapiro [184], [185])
and sample-path optimization (Plambeck et al. [151] and Robinson [173]), for example.
Also similar ideas were used in statistics for computing maximum likelihood estimators
by Monte Carlo techniques based on Gibbs sampling (see, e.g., Geyer and Thompson [72]
and references therein). Numerical experiments with the SAA approach, applied to linear
and discrete (integer) stochastic programming problems, can be also found in more recent
publications [3, 120, 123, 220].
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The complexity analysis of the SAA method, discussed in section 5.3, is motivated by
the following observations. Suppose for the moment that components ξi , i = 1, . . . , d, of
the random data vector ξ ∈ R

d are independently distributed. Suppose, further, that we use
r points for discretization of the (marginal) probability distribution of each component ξi .
Then the resulting number of scenarios is K = rd , i.e., it grows exponentially with an
increase of the number of random parameters. Already with, say, r = 4 and d = 20 we
will have an astronomically large number of scenarios 420 ≈ 1012. In such situations it
seems hopeless just to calculate with a high accuracy the value f (x) = E[F(x, ξ)] of the
objective function at a given point x ∈ X, much less to solve the corresponding optimization
problem.75 And, indeed, it was shown in Dyer and Stougie [61] that under the assumption
that the stochastic parameters are independently distributed, two-stage linear stochastic
programming problems are +P-hard. This indicates that, in general, two-stage stochastic
programming problems cannot be solved with a high accuracy, as say with accuracy of
order 10−3 or 10−4, as it is common in deterministic optimization. On the other hand,
quite often in applications it does not make much sense to try to solve the corresponding
stochastic problem with a high accuracy since the involved inaccuracies resulting from
inexact modeling, distribution approximations, etc., could be far bigger. In some situations
the randomization approach based on Monte Carlo sampling techniques allows one to solve
stochastic programs with reasonable accuracy and a reasonable computational effort.

The material of section 5.3.1 is based on Kleywegt, Shapiro, and Homem-De-Mello
[109]. The extension of that analysis to general feasible sets, given in section 5.3.2, was
discussed in Shapiro [200, 202, 205] and Shapiro and Nemirovski [206]. The material of
section 5.3.3 is based on Shapiro and Homem-de-Mello [208], where proof of Theorem
5.24 can be found.

In practical applications, in order to speed up the convergence, it is often advanta-
geous to use quasi–Monte Carlo techniques. Theoretical bounds for the error of numerical
integration by quasi–Monte Carlo methods are proportional to (logN)dN−1, i.e., are of or-
derO

(
(logN)dN−1

)
, with the respective proportionality constantAd depending on d. For

small d it is almost the same as of orderO(N−1), which of course is better thanOp(N
−1/2).

However, the theoretical constant Ad grows superexponentially with increase of d. There-
fore, for larger values of d one often needs a very large sample size N for quasi–Monte
Carlo methods to become advantageous. It is beyond the scope of this chapter to give a
thorough discussion of quasi–Monte Carlo methods. A brief discussion of quasi–Monte
Carlo techniques is given in section 5.4. For a further readings on that topic see Nieder-
reiter [138]. For applications of quasi–Monte Carlo techniques to stochastic programming
see, e.g., Koivu [110], Homem-de-Mello [94], and Pennanen and Koivu [146].

For a discussion of variance reduction techniques in Monte Carlo sampling we refer to
Fishman [68] and a survey paper by Avramidis and Wilson [10], for example. In the context
of stochastic programming, variance reduction techniques were discussed in Rubinstein and
Shapiro [185], Dantzig and Infanger [42], Higle [86] and Bailey, Jensen, and Morton [12],
for example.

The statistical bounds of section 5.6.1 were suggested in Norkin, Pflug, and
Ruszczyński [140] and developed in Mak, Morton, and Wood [123]. The common random

75Of course, in some very specific situations it is possible to calculate E[F(x, ξ)] in a closed form. Also,
if F(x, ξ) is decomposable into the sum

∑d
i=1 Fi(x, ξi), then E[F(x, ξ)] = ∑d

i=1 E[Fi(x, ξi)], and hence
the problem is reduced to calculations of one dimensional integrals. This happens in the case of the so-called
simple recourse.
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numbers estimator ĝapN,M(x̄) of the optimality gap was introduced in [123]. The KKT
statistical test, discussed in section 5.6.2, was developed in Shapiro and Homem-de-Mello
[207], so that the material of that section is based on [207]. See also Higle and Sen [87].

The estimate of the sample size derived in Theorem 5.32 is due to Campi and Garatti
[30]. This result builds on a previous work of Calafiore and Campi [29], and from the
considered point of view gives a tightest possible estimate of the required sample size.
Construction of upper and lower statistical bounds for chance constrained problems, dis-
cussed in section 5.7, is based on Nemirovski and Shapiro [134]. For some numerical
experiments with these bounds see Luedtke and Ahmed [121].

The extension of the SAA method to multistage stochastic programming, discussed
in section 5.8 and referred to as conditional sampling, is a natural one. A discussion of
consistency of conditional sampling estimators is given, e.g., in Shapiro [201]. Discussion
of the portfolio selection (Example 5.34) is based on Blomvall and Shapiro [21]. Complexity
of the SAA approach to multistage programming was discussed in Shapiro and Nemirovski
[206] and Shapiro [203].

Section 5.9 is based on Nemirovski et al. [133]. The origins of the stochastic ap-
proximation algorithms go back to the pioneering paper by Robbins and Monro [169]. For
a thorough discussion of the asymptotic theory of the SA method, we refer to Kushner
and Clark [112] and Nevelson and Hasminskii [137]. The robust SA approach was devel-
oped in Polyak [152] and Polyak and Juditsky [153]. The main ingredients of Polyak’s
scheme (long steps and averaging) were, in a different form, proposed in Nemirovski and
Yudin [135].

Chapter 6

Foundations of the expected utility theory were developed in von Neumann and Morgen-
stern [221]. The dual utility theory was developed in Quiggin [161, 162] and Yaari [229].

The mean-variance model was introduced and analyzed in Markowitz [125, 126,
127]. Deviations and semideviations in mean–risk analysis were analyzed in Kijima and
Ohnishi [106], Konno [111], Ogryczak and Ruszczyński [142, 143], and Ruszczyński and
Vanderbei [190]. Weighted deviations from quantiles, relations to stochastic dominance,
and Lorenz curves are discussed in Ogryczak and Ruszczyński [144]. For Conditional
(Average) Value-at-Risk see Acerbi and Tasche [1], Rockafellar and Uryasev [177], and
Pflug [148]. A general class of convex approximations of chance constraints was developed
in Nemirovski and Shapiro [134].

The theory of coherent measures of risk was initiated in Artzner et al. [8] and fur-
ther developed, inter alia, by Delbaen [44], Föllmer and Schied [69], Leitner [117], and
Rockafellar, Uryasev, and Zabarankin [178]. Our presentation is based on Ruszczyński
and Shapiro [187, 189]. The Kusuoka representation of law invariant coherent risk mea-
sures (Theorem 6.24) was derived in [113] for L∞(�,F , P ) spaces. For an extension
to Lp(�,F , P ) spaces see, e.g., Pflug and Römisch [149]. Theory of consistency with
stochastic orders was initiated in [142] and developed in [143, 144]. An alternative ap-
proach to asymptotic analysis of law invariant coherent risk measures (see section 6.5.3),
was developed in Pflug and Wozabal [147] based on Kusuoka representation. Application
to portfolio optimization was discussed in Miller and Ruszczyński [130].

The theory of conditional risk mappings was developed in Riedel [167] and
Ruszczyński and Shapiro [187, 188]. For the general theory of dynamic measures of
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risk, see Artzner et al. [9], Cheridito, Delbaen, and Kupper [33, 34], Frittelli and Rosazza
Gianin [71, 70], Eichhorn and Römisch [63], and Pflug and Römisch [149]. Our inventory
example is based on Ahmed, Cakmak, and Shapiro [2].

Chapter 7

There are many monographs where concepts of directional differentiability are discussed
in detail; see, e.g., [22]. A thorough discussion of the Clarke generalized gradient and
regularity in the sense of Clarke can be found in Clarke [38]. Classical references on
(finite dimensional) convex analysis are books by Rockafellar [174] and Hiriart-Urruty and
Lemaréchal [89]. For a proof of the Fenchel–Moreau theorem (in an infinite dimensional
setting) see, e.g., [175]. For a development of conjugate duality (in an infinite dimensional
setting) we refer to Rockafellar [175]. Theorem 7.11 (Hoffman’s lemma) appeared in [93].

Theorem 7.21 appeared in Danskin [40]. Theorem 7.22 goes back to Levin [118] and
Valadier [218] (see also Ioffe and Tihomirov [98, page 213]). For a general discussion of
second order optimality conditions and perturbation analysis of optimization problems we
refer to Bonnans and Shapiro [22] and references therein. Theorem 7.24 is an adaptation
of a result going back to Gol’shtein [76]. For a thorough discussion of epiconvergence we
refer to Rockafellar and Wets [181]. Theorem 7.27 is taken from [181, Theorem 7.17].

There are many books on probability theory. Of course, it is beyond the scope of this
monograph to give a thorough development of that theory. In that respect we can mention the
excellent book by Billingsley [18]. Theorem 7.32 appeared in Rogosinski [182]. Athorough
discussion of measurable multifunctions and random lower semicontinuous functions can
be found in Rockafellar and Wets [181, Chapter 14], to which the interested reader is referred
for further reading. For a proof of the Aumann and Lyapunov theorems (Theorems 7.40
and 7.41) see, e.g., [98, section 8.2].

Theorem 7.47 originated in Strassen [211], where the interchangeability of the sub-
differential and integral operators was shown in the case when the expectation function
is continuous. The present formulation of Theorem 7.47 is taken from [98, Theorem 4,
page 351].

Uniform Laws of Large Numbers (LLN) take their origin in the Glivenko–Cantelli
theorem. For a further discussion of the uniform LLN we refer to van der Vaart and
Welner [219]. Epi-convergence LLN, formulated in Theorem 7.51, is due to Artstein and
Wets [7]. The uniform convergence w.p. 1 of Clarke generalized gradients, specified in
part (c) of Theorem 7.52, was obtained in [197]. The LLN for random sets (Theorem
7.53) appeared in Artstein and Vitale [6]. The uniform convergence of ε-subdifferentials
(Theorem 7.55) was derived in [209].

The finite dimensional Delta method is well known and routinely used in theoreti-
cal statistics. The infinite dimensional version (Theorem 7.59) goes back to Grübel [78],
Gill [74], and King [107]. The tangential version (Theorem 7.61) appeared in [198].

There is a large literature on large deviations theory (see, e.g., a book by Dembo
and Zeitouni [45]). The Hoeffding inequality appeared in [92] and the Chernoff inequality
in [35]. Theorem 7.68, about interchangeability of Clarke generalized gradient and integral
operators, can be derived by using the interchangeability formula (7.117) for directional
derivatives, Strassen’s Theorem 7.47, and the fact that in the Clarke-regular case the direc-
tional derivative is the support function of the corresponding Clarke generalized gradient
(see [38] for details).
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A classical reference for functional analysis is Dunford and Schwartz [58]. The con-
cept of algebraic subgradient and Theorem 7.78 are taken from Levin [119]. (Unfortunately,
this excellent book was not translated from Russian.) Theorem 7.79 is from Ruszczyński
and Shapiro [189]. The interchangeability principle (Theorem 7.80) is taken from [181,
Theorem 14.60]. Similar results can be found in [98, Proposition 2, page 340] and [119,
Theorem 0.9].
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[143] W. Ogryczak and A. Ruszczyński. On consistency of stochastic dominance and
mean–semideviation models. Mathematical Programming, 89:217–232, 2001.
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approximation
conservative, 257

Average Value-at-Risk, 257, 258, 260,
272

dual representation, 272

Banach lattice, 403
Borel set, 359
bounded in probability, 382
Bregman divergence, 237

capacity expansion, 31, 42, 59
chain rule, 384
chance constrained problem

ambiguous, 285
disjunctive semi-infinite formulation,

117
chance constraints, 5, 11, 15, 210
Clarke generalized gradient, 336
CLT (central limit theorem), 143
common random number generation method,

180
complexity

of multistage programs, 227
of two-stage programs, 181, 187

conditional expectation, 363
conditional probability, 363
conditional risk mapping, 310, 315
conditional sampling, 221

identical, 221
independent, 221

Conditional Value-at-Risk, 257, 258, 260
cone

contingent, 347, 386
critical, 178, 348
normal, 337
pointed, 403
polar, 29

recession, 29
tangent, 337

confidence interval, 163
conjugate duality, 340, 403
constraint

nonanticipativity, 53, 291
constraint qualification

linear independence, 169, 179
Mangasarian–Fromovitz, 347
Robinson, 347
Slater, 162

contingent cone, 347, 386
convergence

in distribution, 163, 382
in probability, 382
weak, 384
with probability one, 374

convex hull, 337
cumulative distribution function, 2

of random vector, 11

decision rule, 21
Delta theorem, 384, 386

finite dimensional, 383
second order, 387

deviation of a set, 334
diameter

of a set, 186
differential uniform dominance condition,

145
directional derivative, 334

ε-directional derivative, 381
generalized, 336
Hadamard, 384
second order, 386
tangentially to a set, 387

distribution
asymptotically normal, 163
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Binomial, 390
conditional, 363
Dirichlet, 98
discrete, 361
discrete with a finite support, 361
empirical, 156
gamma, 102
log-concave, 97
log-normal, 107
multivariate normal, 16, 96
multivariate Student, 150
normal, 163
Pareto, 151
uniform, 96
Wishart, 103

domain
of a function, 333
of multifunction, 365

dual feasibility condition, 128
duality gap, 340, 341
dynamic programming equations, 7, 64,

313

empirical cdf, 3
empirical distribution, 156
entropy function, 237
epiconvergence, 357

with probability one, 377
epigraph of a function, 333
ε-subdifferential, 380
estimator

common random number, 205
consistent, 157
linear control, 200
unbiased, 156

expected value, 361
well defined, 361

expected value of perfect information, 60

Fatou’s lemma, 361
filtration, 71, 74, 309, 318
floating body of a probability measure,

105
Fréchet differentiability, 334
function

α-concave, 94
α-concave on a set, 105
biconjugate, 262, 401

Carathéodory, 156, 170, 366
characteristic, 334
Clarke-regular, 103, 336
composite, 265
conjugate, 262, 338, 401
continuously differentiable, 336
cost-to-go, 65, 67, 313
cumulative distribution (cdf), 2, 360
distance generating, 236
disutility, 254, 271
essentially bounded, 399
extended real valued, 360
indicator, 29, 334
influence, 304
integrable, 361
likelihood ratio, 200
log-concave, 95
logarithmically concave, 95
lower semicontinuous, 333
moment-generating, 387
monotone, 404
optimal value, 366
polyhedral, 28, 42, 333, 405
proper, 333
quasi-concave, 96
radical-inverse, 197
random, 365
random lower semicontinuous, 366
random polyhedral, 42
sample average, 374
strongly convex, 339
subdifferentiable, 338, 402
utility, 254, 271
well defined, 368

Gâteaux differentiability, 334, 383
generalized equation

sample average approximation, 175
generic constant O(1), 188
gradient, 335

Hadamard differentiability, 384
Hausdorff distance, 334
here-and-now solution, 10
Hessian matrix, 348
higher order distribution functions, 90
Hoffman’s lemma, 344
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identically distributed, 374
importance sampling, 201
independent identically distributed, 374
inequality

Chebyshev, 362
Chernoff, 391
Hölder, 400
Hardy–Littlewood–Polya, 280
Hoeffding, 390
Jensen, 362
Markov, 362
Minkowski for matrices, 101

inf-compactness condition, 158
interchangeability principle, 405

for risk measures, 293
for two-stage programming, 49

interior of a set, 336
inventory model, 1, 295

Jacobian matrix, 335

Lagrange multiplier, 348
large deviations rate function, 388
lattice, 403
Law of Large Numbers, 2, 374

for random sets, 379
pointwise, 375
strong, 374
uniform, 375
weak, 374

least upper bound, 403
Lindeberg condition, 143
Lipschitz continuous, 335
lower bound

statistical, 203
Lyapunov condition, 143

mapping
convex, 50
measurable, 360

Markov chain, 70
Markovian process, 63
martingale, 324
mean absolute deviation, 255
measurable selection, 365
measure

α-concave, 97
absolutely continuous, 359

complete, 359
Dirac, 362
finite, 359
Lebesgue, 359
nonatomic, 367
sigma-additive, 359

metric projection, 231
mirror descent SA, 241
model state equations, 68
model state variables, 68
moment-generating function, 387
multifunction, 365

closed, 175, 365
closed valued, 175, 365
convex, 50
convex valued, 50, 367
measurable, 365
optimal solution, 366
upper semicontinuous, 380

news vendor problem, 1, 330
node

ancestor, 69
children, 69
root, 69

nonanticipativity, 7, 52, 63
nonanticipativity constraints, 72, 312
nonatomic probability space, 367
norm

dual, 236, 399
normal cone, 337
normal integrands, 366

optimality conditions
first order, 207, 346
Karush–Kuhn–Tucker (KKT), 174,

207, 348
second order, 179, 348

partial order, 403
point

contact, 399
saddle, 340

polar cone, 337
policy

basestock, 8, 328
feasible, 8, 17, 64
fixed mix, 21
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implementable, 8, 17, 64
myopic, 19, 325
optimal, 8, 65, 67

portfolio selection, 13, 298
positive hull, 29
positively homogeneous, 178
probabilistic constraints, 5, 11, 87, 162

individual, 90
joint, 90

probabilistic liquidity constraint, 94
probability density function, 360
probability distribution, 360
probability measure, 359
probability vector, 309
problem

chance constrained, 87, 210
first stage, 10
of moments, 306
piecewise linear, 192
second stage, 10
semi-infinite programming, 308
subconsistent, 341
two stage, 10

prox-function, 237
prox-mapping, 237

quadratic growth condition, 190, 350
quantile, 16

left-side, 3, 256
right-side, 3, 256

radial cone, 337
random function

convex, 369
random variable, 360
random vector, 360
recession cone, 337
recourse

complete, 33
fixed, 33, 45
relatively complete, 10, 33
simple, 33

recourse action, 2
relative interior, 337
risk measure, 261

absolute semideviation, 301, 329
coherent, 261
composite, 312, 318

consistency with stochastic orders,
282

law based, 279
law invariant, 279
mean-deviation, 276
mean-upper-semideviation, 277
mean-upper-semideviation from a tar-

get, 278
mean-variance, 275
multiperiod, 321
proper, 261
version independent, 279

robust optimization, 11

saddle point, 340
sample

independently identically distributed
(iid), 156

random, 155
sample average approximation (SAA), 155

multistage, 221
sample covariance matrix, 208
sampling

Latin Hypercube, 198
Monte Carlo, 180

scenario tree, 69
scenarios, 3, 30
second order regularity, 350
second order tangent set, 348
semi-infinite probabilistic problem, 144
semideviation

lower, 255
upper, 255

separable space, 384
sequence

Halton, 197
log-concave, 106
low-discrepancy, 197
van der Corput, 197

set
elementary, 359
of contact points, 399

sigma algebra, 359
Borel, 359
trivial, 359

significance level, 5
simplex, 237
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Slater condition, 162
solution

ε-optimal, 181
sharp, 190, 191

space
Banach, 399
decomposable, 405
dual, 399
Hilbert, 275
measurable, 359
probability, 359
reflexive, 399
sample, 359

stagewise independence, 7, 63
star discrepancy, 195
stationary point of α-concave function,

104
stochastic approximation, 231
stochastic dominance

kth order, 91
first order, 90, 282
higher order, 91
second order, 283

stochastic dominance constraint, 91
stochastic generalized equations, 174
stochastic order, 90, 282

increasing convex, 283
usual, 282

stochastic ordering constraint, 91
stochastic programming

nested risk averse multistage, 311,
318

stochastic programming problem
minimax, 170
multiperiod, 66
multistage, 64
multistage linear, 67
two-stage convex, 49
two-stage linear, 27
two-stage polyhedral, 42

strict complementarity condition, 179, 209
strongly regular solution of a generalized

equation, 176
subdifferential, 338, 401
subgradient, 338, 402

algebraic, 402
stochastic, 230

supply chain model, 22
support

of a set, 337
of measure, 360

support function, 28, 337, 338
support of a measure, 36

tangent cone, 337
theorem

Artstein–Vitale, 379
Aumann, 367
Banach–Alaoglu, 401
Birkhoff, 111
central limit, 143
Cramér’s large deviations, 388
Danskin, 352
Fenchel–Moreau, 262, 338, 401
functional CLT, 164
Glivenko–Cantelli, 376
Helly, 337
Hlawka, 196
Klee–Nachbin–Namioka, 404
Koksma, 195
Kusuoka, 280
Lebesgue dominated convergence, 361
Levin–Valadier, 352
Lyapunov, 368
measurable selection, 365
monotone convergence, 361
Moreau–Rockafellar, 338, 402
Rademacher, 336, 353
Radon–Nikodym, 360
Richter–Rogosinski, 362
Skorohod–Dudley almost sure rep-

resentation, 385
time consistency, 321
topology

strong (norm), 401
weak, 401
weak∗, 401

uncertainty set, 11, 306
uniformly integrable, 382
upper bound

consevative, 204
statistical, 204

utility model, 271
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value function, 7
Value-at-Risk, 16, 256, 273

constraint, 16
variation

of a function, 195
variational inequality, 174

stochastic, 174
Von Mises statistical functional, 304

wait-and-see solution, 10, 60
weighted mean deviation, 256




