
Copyright q 1999, Institute for Operations Research
and the Management Sciences
0092-2102/99/2902–0033/$5.00
This paper was refereed.

PROGRAMMING, STOCHASTIC
TUTORIAL

INTERFACES 29: 2 March–April 1999 (pp. 33–61)

An Introductory Tutorial on Stochastic Linear
Programming Models

Suvrajeet Sen Department of Systems and Industrial Engineering
The University of Arizona
Tucson, Arizona 85721

Julia L. Higle Department of Systems and Industrial Engineering
The University of Arizona

Linear programming is a fundamental planning tool. It is often
difficult to precisely estimate or forecast certain critical data
elements of the linear program. In such cases, it is necessary to
address the impact of uncertainty during the planning process.
We discuss a variety of LP-based models that can be used for
planning under uncertainty. In all cases, we begin with a de-
terministic LP model and show how it can be adapted to in-
clude the impact of uncertainty. We present models that range
from simple recourse policies to more general two-stage and
multistage SLP formulations. We also include a discussion of
probabilistic constraints. We illustrate the various models us-
ing examples taken from the literature. The examples involve
models developed for airline yield management, telecommuni-
cations, flood control, and production planning.

Over the past several decades, linear
programming (LP) has become a

fundamental planning tool. It is routinely
applied in engineering, business, econom-
ics, environmental studies, and other disci-
plines. This widespread acceptance may
be due to (1) good algorithms, (2) practi-

tioners’ understanding of the power and
scope of LP, and (3) widely available and
reliable software. Furthermore, research
on specialized problems, such as assign-
ment, transportation, and network prob-
lems, has made LP methodology indis-
pensable in many industries, including
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airlines, energy, manufacturing, and tele-
communications. Notwithstanding its suc-
cesses, however, the assumption that all
model parameters are known with cer-
tainty limits its usefulness in planning un-
der uncertainty. When one or more of the
data elements in a linear program is repre-
sented by a random variable, a stochastic
linear program (SLP) results.

In deterministic activity analysis, plan-
ning consists of choosing activity levels
that satisfy resource constraints while
maximizing total profit (or minimizing to-
tal cost). All the information necessary for
decision making is assumed to be avail-
able at the time of planning. Under uncer-
tainty, not all the information is available,
and some parameters should be modeled
as random variables. We discuss here
models that can include random variables
within optimization problems. Since deter-
ministic methodology has been prevalent
in optimization models, it may be tempt-
ing to suggest that random variables
should be replaced by their means and the
resulting optimization problem solved. In
general, this approach provides solutions
that are structurally different from those
provided by stochastic optimization
models.

To understand this, consider a network
with n nodes, as in Figure 1, on which
demand for connections between the ( )n

2

demand pairs must be accommodated.
Networks, such as those in telecommuni-
cations systems, are complex and typically
include hundreds of nodes. In the design
problem that we consider, the capacity of
each network link must be determined in
anticipation of future demand require-
ments. It is customary to assume that the

requirements between various node pairs
are known with certainty. Such determin-
istic network-design problems result in a
tree structure (Figure 2a). With a tree de-
sign, all demand pairs have paths through
which calls may be routed. However, the
design is rigid in that only one such path
is available. During periods of high de-
mand, the lack of alternative routes results
in the rejection of calls and a reduced level
of service. Moreover, if a link should fail
because of some catastrophic event, nodes
will be disconnected from the network.
Attempts to counter these difficulties by
scaling the demand upward, for example,
will increase the capacity of the links used;
it will not eliminate the rigidity of the de-
sign. To obtain a more flexibly designed
network (Figure 2b), one must incorporate
the need for flexibility within the model.
One must construct a model that explicitly
considers the likelihood of periodic (and
correlated) heavy loads on segments of the
network and the possibility of catastrophic
equipment failures. The improvement pos-
sible from the use of a stochastic model in-
creases with the size of the network. In
fact, in a case study conducted at Bellcore,
Sen, Doverspike, and Cosares [1994] re-
port a 75-percent reduction in the number
of lost calls using stochastic LP models in
place of deterministic models.

Methods for forecasting important
quantities, such as demand, are well
known and widely used. Moreover, the
fields of statistics and simulation provide
methods for obtaining distributional rep-
resentations of these quantities when point
estimators are inadequate. Although many
people routinely formulate LP models,
only recently have OR/MS practitioners
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Figure 1: In this simple network with three
nodes, there are ( ), or three point-to-point de-3

2

mand pairs: A-B, B-C, and A-C. The presence
of an edge indicates that capacity may be
added to form a link between the two nodes
in the network.

Figure 2: These illustrate alternative network
designs. The tree structure in 2a results from
the use of a deterministic model and yields a
very rigid routing protocol. The network in 2b
results from the use of a stochastic model. It
is a more flexible design due to the presence
of multiple routing capabilities for each de-
mand pair. In general, the design in 2b pro-
vides a greater opportunity to respond to net-
work failures and high loads than the design
in 2a.

begun using these methods to formulate
LP models for decision making under un-

certainty. In this tutorial, we explain
linear-programming models for optimiza-
tion under uncertainty at a very elemen-
tary level. Consequently, all we assume is
that readers are familiar with LP models
and elementary probability constructs.
The Impact of Uncertainty

The presence of uncertainty affects both
feasibility and optimality. In fact, formu-
lating an appropriate objective function it-
self raises interesting modeling and algo-
rithmic questions.
Feasibility Under Uncertainty

To incorporate uncertainty within an
LP, one must define feasibility. Two naive
approaches have sometimes been adopted
in practice.
Example 1: SLPs with Expected Values

Consider the following four variable de-
terministic LP:

Minimize 1x2

subject to x1 ` x2 ` x3 4 2
1x1 ` x2 ` x4 4 2 (1)
11 # x1 # 1
xj > 0, j 4 2, 3, 4.

Suppose that the coefficients of x1 and x2

in (1) are not known with certainty, and
all that is known about these parameters is
their joint distribution

(ã , ã )21 22

3 1
1, with probability1 24 2

4 5 15 13, with probability .1 24 2

In this case, E[ã21] 4 11 and E[ã22] 4 1
so that the coefficients in (1) correspond to
the expected values of the random vari-
ables. In examining this formulation, we
first investigate whether its solution, (x1,
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x2, x3, x4) 4 (0, 2, 0, 0)), is feasible under
uncertainty. Under uncertainty, the con-
straint corresponding to (1) is equally
likely to be either

3
x ` x ` x 4 21 2 44

or

5
13x ` x ` x 4 2.1 2 44

The vector (0, 2, 0, 0) does not satisfy ei-
ther of these equations and thus is infeasi-
ble under uncertainty! Under uncertainty,
the formulation in which random vari-
ables are replaced by their expected values
may not provide a solution that is feasible
with respect to the random variables.
Example 2: Wait and See

Another approach that practitioners
often adopt is based on a wait-and-see
analysis (sometimes referred to as scenario
analysis or what-if analysis). This ap-
proach mimics the process of delaying all
decisions until the last possible moment,
after all uncertainties have been resolved.
As a result, the LPs associated with all
possible outcomes of the random quanti-
ties are solved. This yields a collection of
decision vectors, one for each possible out-
come of the random variable(s). In gen-
eral, none of these solutions may be
worthwhile. For example, consider the
two possible realizations of the problem in
Example 1. The solution associated with
(ã21, ã22) 4 (1, 3/4) is (11, 3, 0, 0.75),
while the solution associated with (ã21, ã22)
4 (13, 5/4) is (12/17, 32/17, 0, 0.75). As
with the solution to the expected-value
problem, neither of these solutions is feasi-
ble with respect to the alternate outcome.

That is, if implemented, either solution
would have a 50-percent chance of failing
to satisfy a constraint.

As illustrated by Examples 1 and 2, an
appropriate decision-making framework
under uncertainty should explicitly con-
sider the consequences of future infeasibil-
ity within the model. This aspect of mod-
eling responses to future infeasibility sets
stochastic programs apart from their de-
terministic counterparts. In the stochastic-
programming literature, two approaches
are widely studied: one is based on mod-
eling future recourse (response) and an-
other restricts the probability of infeasibil-
ity (typically equivalent to system failures)
to be no greater than a prespecified
threshold. The first approach yields the
so-called recourse problems, and the sec-
ond approach yields problems with proba-
bilistic (or chance) constraints. While a
specific application may call for both ap-
proaches, we discuss them separately.

The stochastic-programming literature
also considers another problem: the distri-
bution problem. Researchers focus on
characterizing the distribution of the opti-
mal value or optimal solutions of random
LPs. As with wait-and-see problems, the
distribution problem does not provide a
decision-making framework. Nevertheless,
it provides a mathematical common
ground between the second-stage random
LP in recourse problems and the random
LP of the wait-and-see approach. From a
computational point of view, this problem
remains a major challenge [Prékopa 1995,
chapter 15].
Objectives Under Uncertainty

A great deal of research revolves
around the choice of objectives in decision
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making under uncertainty. One of the
more common objectives is to optimize ex-
pected costs (or returns). However, as de-
cision makers, we might be interested in
the variability of costs (or returns) associ-
ated with a plan. More generally, a deci-
sion maker’s choices may be guided by a
utility function. In decision-making mod-
els for an individual, the concept of a util-
ity function has many merits, although its
specification can be elusive. The notion of
a utility function can become even more
elusive in large-scale applications of LP. In
the following, we discuss four of the more
common objectives for large-scale LPs un-
der uncertainty:
(1) Minimization of expected costs is by
far the most common objective used in
large-scale optimization under uncer-
tainty. For such applications as planning
power generation, average seasonal cost
per day reflects the repetitive cost of sup-
plying electricity. For some applications in
telecommunications systems, system per-
formance is often measured in terms of
average unserved demand. Finally, in
production-and-inventory systems, it is
common to use average production and
holding costs in evaluating the cost effec-
tiveness of a system. For such systems, the
expected cost criterion is easily justified.
(2) Minimization of expected absolute de-
viations from goals is a class of objectives
that results from extending goal-
programming techniques to account for
uncertainty. In some cases, it may be ad-
vantageous to specify goals that depend
upon particular scenarios. For example,
production goals may depend upon eco-
nomic factors that are modeled as uncer-
tain quantities. Thus, the goals associated

with prosperous and recessionary times
may be decidedly different. To meet such
managerial objectives under uncertainty, it
may be appropriate to minimize expected
absolute deviations from set goals.
(3) Vector optimization under uncertainty
is a class of models that generalize the sto-
chastic goal-programming approach. An
example of a multiobjective model would
be a traveler’s advisory system to recom-
mend routes from origin to destination in
Tucson, Arizona. Because flash floods oc-
cur during the monsoon season in Tucson,
the advisory system must include low wa-
ter level on the roads as one of the objec-
tives. In addition, it should incorporate the
traditional objective of minimal travel
time. Because these objectives are essen-
tially noncommensurate, it is appropriate
to adopt the vector-optimization frame-
work. Furthermore, since the route is to be
recommended before a potential down-
pour, water levels are random variables
(as are travel times). This results in a
vector-optimization problem under
uncertainty.
(4) Minimization of maximum costs is an
alternate class of models. There are vari-
ous interpretations of the term minimax in
stochastic-programming models. In one in-
terpretation, no distributional information
is available, and all that is known is the
set of possible outcomes. In this case, the
minimax objective minimizes the maxi-
mum loss among all possible outcomes of
the random variable. A similar class of
problems arises in the case of partial infor-
mation regarding the probability distribu-
tions. For instance, one may have informa-
tion regarding some characteristics of the
distribution (for example, support, mean,
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and variance), and the set of probability
measures of interest may be those that
share those characteristics. A worst-case
approach under partial information is one
in which we choose a decision that mini-
mizes maximum expected loss, regardless
of the distribution (from among the class
with the specified characteristics). When
the class of distributions can be character-
ized as a polyhedral set, this class of prob-
lems can be solved using generalized LP.
This minimax approach is known to be
conservative and may be appropriate in
models that plan to avoid catastrophes.
Thus, models associated with environmen-
tal planning may appropriately use this
objective [Pinter 1991].

In this tutorial, we discuss primarily
models with the expected value objective.
Two-Stage Recourse Models

In two-stage recourse models, we explic-
itly classify the decision variables accord-
ing to whether they are implemented be-
fore or after an outcome of the random
variable is observed. Decisions that are im-
plemented before are known as first-stage
decisions while those after are second-stage
decisions. The first-stage decision variables
can be regarded as proactive and are often
associated with planning issues, such as
capacity expansion or aggregate produc-
tion planning. Second-stage decision vari-
ables can be regarded as reactive and are
often associated with operating decisions.
These second-stage decisions allow us to
model a response to the observed out-
come, which constitutes our recourse.
When outcomes are revealed sequentially,
decision making involves a multistage
planning problem.

In recourse planning, we model a re-

sponse for each outcome of the random
elements that might be observed. In gen-
eral, this response will also depend upon
the first-stage decisions. In practice, this
type of planning involves setting up poli-
cies that will help the organization adapt
to the revealed outcome. For example, in
production and inventory systems, the
first-stage decision might correspond to
production quantities, and demand might
be modeled using random variables.
When demand exceeds the amount pro-
duced, policy may dictate that customer
demand be backlogged at some cost. This
policy constitutes a recourse response. The
exact level of this response (the amount
backlogged) depends on the amounts pro-
duced and demanded. Under uncertainty,
it is essential to adopt initial policies that
will accommodate alternative outcomes.
Consequently, modeling under uncer-
tainty requires that we incorporate a
model of the recourse policy.

In some applications, it is possible to de-
viate from prescribed limits, although with
a penalty cost. For example, in production
and inventory management, a backlogging
policy leads to shortage costs whenever
the demand exceeds the amount in stock.
Such a policy is called a simple recourse
policy, which we illustrate using the data
from Example 1.
Example 3: A Simple Recourse Model

Consider the data for Example 1 and
suppose that the variables (x1, x2, x3, x4)
are all first-stage (planning) variables.
Suppose that the recourse policy allows
one to compensate for second-stage dis-
crepancies by incurring a penalty cost of 5
per unit of deviation from the right-hand-
side value 2. With this added flexibility,
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we revisit the issue of future infeasibility
under uncertainty. The stochastic repre-
sentation of Example 1 includes the con-
straint (1),

ã x ` ã x ` x 4 2.21 1 22 2 4

We have already discussed the difficul-
ties associated with satisfying this con-
straint. In penalizing deviations from the
prescribed value of 2, the model uses a
penalty cost that is a function of the deci-
sion vector (x1,. . ., x4), which is the ran-
dom quantity

5|2 1 (ã x ` ã x ` x )|.21 1 22 2 4

Including the expected value of this
penalty cost in the objective function, we
can state the decision-making problem as
follows:

Minimize
1 x2 ` 5E[|2 1 (ã21x1 ` ã22x2 ` x4)|]
subject to x1 ` x2 ` x3 4 2
11 # x1 # 1
xj > 0, j 4 2, 3, 4.

The main difference between this prob-
lem and the expected-value LP in Example
1 is that due to the simple recourse policy,
first-stage decisions that do not satisfy (1)
are still considered acceptable, albeit more
costly. Although this problem is stated as
a nonlinear-programming problem, those
familiar with LP models will recognize
that E[|2 1 (ã21x1 ` ã22x2 ` x4)|] can be
written as

1 1` 1 ` 1(y ` y ) ` (y ` y )1 1 2 22 2

where the nonnegative variables , , i` 1y yi i

4 1, 2 satisfy

3 ` 1x ` x ` x ` y 1 y 4 21 2 4 1 14
5 ` 113x ` x ` x ` y 1 y 4 21 2 4 2 24

as discussed by Murty [1983], for example.
Thus, the model in Example 3 can be re-
written as in LP1.

In this formulation, (x1,. . ., x4) are first-
stage variables; they do not vary with the
outcome of (ã21, ã22). Instead, they are ap-
plied against all outcomes. On the other
hand, there is a separate set of recourse
variables (y`, y1) for each outcome. This
model is one of simple recourse; for a
given level of the first-stage variables, the
appropriate levels of the recourse vari-
ables are trivially determined. Solving this

problem, we obtain ( , , , ) 4* * x* *x x x1 2 3 4

(0.2222, 1.7778, 0, 0.4444). This solution
differs from those obtained in Example 1,
where we considered the LP with ex-
pected values, and Example 2, where we
considered the wait-and-see problem.

For a generic two-stage formulation un-
der a simple recourse policy, we use an
extension of the notation used in deter-
ministic LP. The rows of a deterministic
LP are usually written as Ax 4 b. Under
uncertainty, we may think of a submatrix
A1 (of A) and a subvector b1 (of b) as rows
that contain only deterministic parameters.
We refer to this portion of the problem as
the deterministic part. It corresponds to a
first stage of the problem. The remaining
rows (containing at least one random ele-
ment) will be indexed by the set R. We re-
fer to ai as the ith row vector in A, and use
a ; to reflect the presence of random vari-
ables. Let gi . 0 denote the penalty cost
for violating the target Then we canb̃ .i
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Minimize

1x2 `
5 `y12

`
5 1y12

`
5 `y22

`
5 1y22

subject to
x1 `x2 `x3 4 2

x1 ` x2
3
4

`x4 ` `y1 1 1y1 4 2

13x1 ` x2
5
4

`x4 ` `y2 1 1y2 4 2

11 # x1 # 1.
All other variables are nonnegative.

LP1: Linear programming problem associated with Example 3.

state a prototypical model allowing a sim-
ple recourse policy as follows:

Minimize cx ` giE[| 1 ãix|]b̃o i
i[R

subject to A1x 4 b1

L1 # x # U1.

This is an SLP with simple recourse. In
such an SLP, the first-stage decision vari-
ables (x) are the same as the decision vari-
ables associated with the “parent” deter-
ministic LP. Hence, the formulation is not
flexible in its response to uncertainty.

Whenever the random vectors {(ãi, b̃ )}i i[R

are discrete random variables as in Exam-
ple 2, this model can be rewritten as a lin-
ear program as shown below. For i [ R,
let Si denote an index set of all outcomes
of the random vector {(ãi, and let pis 4b̃ )}i

P{(ãi, 4 (ais, bis)}.b̃ )i

Minimize cx ` pis( `` 1g y y )o i o is is1 2
i[R s[Si

subject to A1x 4 b1

aisx ` 1 4 bis ∀ s [ Si ∀ i [ R.` 1y yis is

L1 # x # U1.

In this formulation, the penalty cost per
unit is the same whether ãi(x) 1 is posi-b̃i

tive or negative. In some applications, the
cost may be nonzero only in one of these

two cases. More generally, the per unit
cost of 1 ãix may be for positive val-`b̃ gi i

ues (of this random variable) and for1gi

negative values. In this case, the costs
used for compensating variables ( , )` 1y yi i

are and and the objective function` 1g gi i

must be changed to reflect this.
Finally, in stating the SLP with simple

recourse, we have assumed that the upper
and lower bounds are not subject to uncer-
tainty. In some situations, these bounds
may be random. Suppose, for example,
that the upper bounds reflect capacity re-
strictions. When systems fail, such capac-
ity limits may be modeled as random vari-
ables. Assuming a simple recourse policy,
we can easily extend the statement of the
model to include this situation.

While the simple recourse policy offers
a notion of feasibility for first-stage plans,
the recourse actions themselves are quite
limited. For example, in a production-and-
inventory system that is experiencing
shortages, a simple recourse policy is one
that simply allows the manufacturer to
adopt an outsourcing option. A more gen-
eral recourse policy would allow changes
in production rates, thus allowing greater
flexibility. Under uncertainty, greater flexi-
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Minimize
1 x21

1
2

1 x22
1
2

subject to x1 `x21 `x31 4 2
x1

` x21
3
4

`x41 4 2

x1 `x22 `x32 4 2

13x1
` x22

5
4

`x42 4 2.

11 # x1 #1
All other variables are nonnegative.

LP2: Linear programming problem for the two-stage program with general recourse.

bility translates into greater responsive-
ness and greater profitability.
Example 4: A General Recourse Model

Consider the situation described in Ex-
ample 1 with the following modification: it
is now possible to postpone decisions re-
garding x2, x3, and x4 until after an out-
come of the random variable is observed.
Thus the only first-stage variable is x1,
which must be implemented right away.
This greater flexibility leads to greater prof-
its, as shown below. To formulate the
decision-making problem, we will con-
tinue to assume that minimizing expected
cost is an appropriate objective.

Since x2, x3, and x4 are implemented af-
ter an outcome is observed, we define one
set of second-stage (recourse) variables for
each outcome. Thus let (x21, x31, x41) de-
note the second-stage (recourse) variables
when the outcome is (1, 3/4) and let (x22,
x32, x42) denote the recourse variables
when the outcome is (13, 5/4). Recalling
that each outcome occurs with probability
1/2, we can formulate the two-stage pro-
gram with general recourse as in LP2.

Because of the added flexibility of our
recourse policy, this model need not in-

clude penalty costs for infeasibility. An
optimal solution for this problem is x1 4

0.1176, while x21 4 x22 4 1.8824, x41 4

0.4706, and all other variables are zero.
The cost-effectiveness of this flexibility is
reflected in the optimal values of the gen-
eral and simple recourse problems. The
optimal value for the general recourse
problem is 11.8824, which is better than
the optimal value obtained for the simple
recourse case discussed in Example 2,
11.7772. Because of the added flexibility
of our recourse policy, this particular
model need not include penalty costs for
infeasibility.

As with the formulation of a simple re-
course model, we will present the general
recourse formulation as an extension of an
LP problem:

Minimize cx
subject to Ax 4 b
L # x # U.

Suppose that the decision maker speci-
fies a subvector of x, say x1, as the first-
stage decision variables. As in Example 3,
these variables cannot be postponed until
better information is available. The re-
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maining variables, say x2, can be post-
poned. Naturally, with this temporal divi-
sion of the problem, two types of
constraints arise: constraints that involve
only the first-stage variables (x1), and con-
straints that may involve both sets of vari-
ables. Thus, it is convenient to think of a
submatrix A1 (of A) and a subvector b1 (of
b) yielding a subset of the constraints, A1x1

4 b1. The remaining constraints involve x1

and x2, which we write as Bx1 ` A2x2 4

b2. Finally, the cost vector c is partitioned
as (c1, c2) so that we may rewrite the for-
mulation as

Minimize c1x1 ` c2x2

subject to A1x1 4 b1

Bx1 ` A2x2 4 b2

L1 # x1 # U1, L2 # x2 # U2.

It is convenient to think of this deter-
ministic LP as the “core” problem from
which the stochastic LP will be derived. It
models the time-staged dynamics of the
interactions among the decision variables.

The constraints A1x1 4 b1 include the
immediate constraints, those that involve
only the variables that cannot be delayed.
As such, there are no random variables in
the immediate data (c1, A1, b1). The ran-
dom variables appear in the second stage
of the problem, which includes the vari-
ables x2 and can be postponed until the
uncertainties are realized. Thus, we con-
sider the second-stage data to include ran-
dom variables, so that we express them as
(c̃2, B̃, ã2, (here, we use ; to indicate ab̃ )2

random entity).
To formulate the stochastic LP, let S de-

note an index set of all possible outcomes
of the second-stage quantities (B̃, ã2, c̃2, b̃ )2

such that each s [ S corresponds to a

unique realization of these quantities (Bs,
A2s, c2s, b2s). If S is a discrete set, then for

each s [ S, let ps 4 P{(B̃, ã2, c̃2, ) 4 (Bs,b̃2

A2s, c2s, b2s)}. Also, let x2s denote the re-
course response associated with scenario s.

The two-stage program with general re-
course may now be written as follows:

Minimize c x ` p c x (2)1 1 o s 2s 2s
s[S

subject to A1x1 4 b1

B x ` A x 4 b ∀s [ Ss 1 2s 2s 2s

L # x # U , L # x # U ∀s [ S. (3)1 1 1 2 2s 2

This formulation is unlike the simple re-
course formulation, in that some (or per-
haps all) choices of x1 that satisfy (2) can
render (3) infeasible for some scenarios. It
is possible to include compensating vari-
ables (with positive penalty costs) to en-
sure that the resulting problem is feasible.
Furthermore, it can be shown that this ex-
tended formulation always has a lower
optimal value than a formulation in which
the decision maker restricts all decision
variables in x (the vector from the deter-
ministic LP) to be first-stage decisions and
only a simple recourse policy is allowed in
the second stage.

The stochastic program with general re-
course is also referred to as a problem
with random recourse, since the matrices
A2s are allowed to depend on the outcome
s [ S. However, since the term random re-
course might be misconstrued as a case in
which the decision maker has no control
over the recourse policy, we use the term
general recourse. When the matrices A2s are
the same for all s [ S (that is, A2 is not
random), the stochastic program is said to
have fixed recourse. Even in such cases, the
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random right-hand-side vector, causesb̃ ,2

the recourse decision itself to vary with s,
and hence the fixed-recourse formulation
retains the variables x2s, s [ S. Finally, the
special case of fixed recourse, in which A2s

4 [I, 1I] (where I denotes an identity ma-
trix) yields the simple recourse model dis-
cussed earlier.

A general recourse problem is said to
have complete recourse if for any choice of
x1, a feasible recourse decision is possible
for all outcomes s [ S. The simple re-
course formulation possesses complete re-
course. A slightly less restrictive property
is that of relatively complete recourse
whereby one requires that a feasible re-
course decision be possible for all out-
comes s provided the first-stage decision
(x1) satisfies the first-stage constraints (A1x1

4 b1, L1 # x1 # U1). By using penalty
costs for deviations from constraint satis-
faction, one can ensure complete recourse
in any problem.

One of the more important notions in-
corporated within a stochastic program-
ming formulation is that of implementabil-
ity (or nonanticipativity). This term reflects
the requirement that under uncertainty,
the planning decisions (x1) must be imple-
mented before an outcome of the random
variable is observed. That is, the planning
decision is made while the random vari-
able is still unknown, and therefore it can-
not be based on any particular outcome of
the random variable. Thus the wait-and-
see approach, which is anticipative, is not
an appropriate decision-making frame-
work for planning. On the other hand, the
here-and-now approach embodied in the
two-stage SLP with general recourse pro-
vides planning decisions (x1) that are not

dependent on any outcome of the random
variable and hence are nonanticipative. An
alternate statement of this requirement is
given in the scenario formulation below:

Minimize p [c x ` c x ]o s 1 1s 2s 2s
s[S

subject to A1x1s 4 b1 ∀s [ S
Bsx1s ` A2sx2s 4 b2s ∀s [ S
x1 1 x1s 4 0 ∀s [ S (4)
L1 # x1s # U1, L2 # x2s # U2 ∀s [ S.

In this formulation, the variables x1s are
dependent on the outcome s. However,
constraint (4) explicitly enforces imple-
mentability by requiring that all outcomes
agree on the same planning decision x1.
We can obtain a slightly more compact
representation of this formulation by re-
quiring first A1x1 4 b1 and then requiring
(4). By doing so, we avoid replicating the
first set of constraints for each outcome.
Both of these are equivalent representa-
tions of the two-stage SLP with general re-
course. The particular representation used
typically depends on the algorithm being
used to solve the problem.

Note that the general recourse problem
is a finite-dimensional linear program
whenever S is a finite set. However, when-
ever the random variable is continuous
these formulations lead to infinite dimen-
sional problems. Under these circum-
stances, it is more convenient to state the
model in the following decomposed form:

Minimize cx1 ` ˜E[h(x )]1

subject to A1x1 # b1

L1 # x1 # U1

where each outcome hs(x) of the random
variable is a function of the LP de-h̃(x)
fined by the outcome (c2s, A2s, Bs, b2s) of
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the random variable (c̃2, ã2, B̃, That is,b̃ ).2

h (x ) 4 Minimize c x (5)s 1 2s 2s

subject to A2sx2s 4 b2s 1 Bsx1

L2 # x2s # U2.

This decomposed formulation is con-
venient when the sample space S contains
either a large number of atoms (in the case
of discrete random variables) or a contin-
uum (in the case of continuous random
variables). The function is referred˜E[h(x )]1

to as the recourse function. This formulation
emphasizes the time-staged nature of the
decision problem. That is, the selection of
x1 is followed by the selection of x2, which
is undertaken in response to the scenario
that unfolds. Thus, the first decision, x1,
represents the immediate commitment
made, while the second decision is de-
layed until additional information is ob-
tained. For this reason, when solving a re-
course problem, one typically reports only
the first-stage decision vector.

Much of the difficulty associated with
recourse models may be traced to difficul-
ties with evaluating and approximating
the recourse function. In essence, the diffi-
culty in solving the recourse problem may
be attributed to the evaluation of the ex-
pectation of the random linear-program
value function, which involves mul-h̃(x ),1

tidimensional integration. Notwithstand-
ing the impracticality of the multidimen-
sional integration of this particular
function, the recourse function possesses
one of the most sought-after properties in
all of mathematical programming, namely
convexity.

Theorem 1 [Wets 1974]: The recourse
function, is convex over its effec-˜E[h(x )],1

tive domain D 4 {x [ X | , `}.˜E[h(x )]1

Although the recourse function is con-
vex, it is not, in general, differentiable. It is
well known from LP theory that the value
of a linear program as a function of its
right-hand side is piecewise linear and
convex (when the LP is stated as a mini-
mization problem). Hence every outcome
of is a piecewise linear function. It fol-h̃(•)
lows that, if the number of outcomes of
the random variable is finite, then ˜E[h(x )]1

is a convex combination of finitely many
piecewise linear functions and conse-
quently piecewise linear. It is therefore
clear that for problems with discrete ran-
dom variables, the recourse function is
piecewise linear and therefore nondiffer-
entiable in general. Indeed conditions re-
quired to ensure differentiability of the
recourse function are quite stringent, re-
quiring absolutely continuous random
variables for all elements of the right-hand
side in (5) [Kall 1976].
Scenario Construction

Each scenario corresponds to a particu-
lar outcome of the random quantity (c̃2, ã2,
B̃, B̃2). It is largely a matter of notational
convenience that we refer to these vectors
and matrices as being random. In most
cases, only a small number of the elements
are actually random; the rest are constant
(that is, degenerate random variables). In
the examples we’ve presented (Examples
1-3), only two coefficients are random. In
defining the set of scenarios, it is necessary
to identify all possible outcomes of (c̃2, ã2,
B̃, B̃2). This is equivalent to identifying the
values of those elements that are fixed and
the set of all possible outcomes of those
elements that vary. In undertaking this
last task, it is important to note the dis-
tinctions between models of dependent
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and independent random variables.
From a modeling perspective, depen-

dence results when the random elements
are subject to a common influence and are
most easily described using joint distribu-
tions. For example, in a hydroelectric-
power-planning model, all hydrological
reserves are influenced by the weather. In
wet years, reservoirs will tend to be full;
in dry years they will tend toward lower
levels. In such a case, it would be conven-
ient to model wet periods and dry periods
(or even multiple degrees of wet and dry
periods) and to specify the set of reservoir
levels that correspond to each type of pe-
riod. By specifying the probability with
which each type of period occurs, one ob-
tains a joint distribution on the reservoir
levels.

Independent random variables result
when there is no apparent link between
the various elements. In this case, one can
most easily describe the random elements
individually using marginal distributions.
For example, in the telecommunication-
network-planning example, the number of
calls initiated between any pair of nodes is
generally not influenced by the calls be-
tween any other pair. Thus, one models
the pairwise demand as independent ran-
dom variables using distributions appro-
priate to the application. (For example, if it
is reasonable to assume that calls arrive
according to a Poisson process, then a
Poisson distribution is appropriate.) In this
case, a scenario identifies a value for each
realization. With independent random
variables, the set of all possible outcomes
is the Cartesian product of the elemental
outcomes for each random variable. The
probability associated with any given out-

come is the product of the corresponding
marginal probabilities. For example, if
there are two random variables with five
outcomes each and one random variable
with four outcomes and the random vari-
ables are independent, there are 5 2 5 2

4 4 100 possible scenarios being modeled.
It is easy to see that with independent ran-
dom variables, the number of possible sce-
narios grows exponentially in the number
of random elements.
Probabilistic Constraints

As discussed earlier, one of the main
consequences of uncertainty within the
context of decision making is the possibil-
ity of infeasibility in the future. In two-
stage recourse models, this issue is ad-
dressed through the use of penalties in the
simple recourse model and by postponing
some decisions into the second stage in
the general recourse model. However, in
the general recourse model, we might
have to resort to the introduction of some
compensating variables to eliminate the
possibility of second-stage infeasibility. In
any event, the recourse-based modeling
philosophy requires the decision maker to
impute a price to activities that are under-
taken in response to the randomness. In
some applications, such as production-
and-inventory models, these costs are
standard. However, in some situations it
may be more appropriate to accept the
possibility of infeasibility under some cir-
cumstances, provided the probability of
this event is restricted below a given
threshold. For example, in power-
generation planning, planners often spec-
ify a loss-of-load probability (say one day
in 10,000) to ensure system reliability. Sim-
ilarly, in planning emergency medical ser-
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vices, it is customary to plan for a grade of
service based on the probability of an-
swering a call within a prespecified time
limit. In such cases, there is an implicit ac-
ceptance of the inability to meet system re-
quirements at all times. Hence the system
is designed in such a way as to meet crite-
ria most of the time. Such models lead to
mathematical programs with probabilistic
constraints.

As with the recourse models, we can
view this formulation as an extension of
deterministic LP formulations. Suppose
that the constraints of a deterministic LP
are represented in the form Ax > b. Under
uncertainty, suppose that we partition
these constraints as inequalities that con-
tain only deterministic parameters and
those that contain at least one random
variable. The former (deterministic) con-
straints will be denoted A1x > b1, and the
latter will be stated as a probabilistic con-
straint as follows:

Minimize cx
subject to A1x > b1

P(Ã2x > ) > p,b̃2

L # x # U

where p [ (0, 1) denotes the reliability
with which the system is required to
operate.

The probabilistic constraint in this for-
mulation is known as a joint probabilistic
constraint because there may be multiple
inequalities in the system A2x > b2. In gen-
eral, the set of points x that satisfy the con-
straint may be nonconvex. However, when
the matrix A2 is known with certainty,
Prékopa [1971] provides conditions under
which convexity (of the feasible set) is
assured.

Theorem 2 [Prékopa 1971]: Suppose that
the matrix A2 is deterministic, p [ (0, 1) is
given, and the vector b2 has a log-concave
multivariate probability density function.

Then {x | P{A2x > } > p} is a convex set.b̃2

For the sake of completeness, we in-
clude the following definition: A function f
is said to be log-concave if for all k [ [0, 1]
and z1, z2,

k 11kf[kz ` (1 1 k)z ] > f(z ) f(z ) .1 2 1 2

When A2 is fixed, the probabilistically
constrained model may be stated as
follows:

Minimize cx
subject to A1x > b1

A2x 1 z 4 0
F(z) > p,
L # x # U

where F(z) denotes the joint cumulative
distribution function of the right-hand-
side vector, (that is, F(z) 4 P{ # z}).˜ ˜b b2 2

Prékopa [1989] has introduced a type of
polynomial multivariate distribution func-
tion that has a product form. This distribu-
tion has been shown to be log-concave
and is particularly well suited for geomet-
ric programming problems.

Next we illustrate a case in which a
probabilistic constraint leads to a noncon-
vex feasible set.
Example 5: Nonconvex Feasible Set in
Probabilistically Constrained Problems

Consider the following problem:

Minimize x1 ` x2

subject to P(2x1 ` x2 > b̃ ;1

x1 ` 2x2 > > 0.5,b̃ )2

where and are dependent random˜ ˜b b1 2
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variables with joint probability mass func-
tion given by

b1 b2 4 b1, 4 b2)˜ ˜P(b b1 2

0 1 0.5
1 0 0.5.

The feasible region for this example is
shown in Figure 3. Clearly, this set is not
convex.

One of the early stochastic-
programming models studied by Charnes
and Cooper [1959] was based on multiple
probabilistic statements, such as P(a2ix >

b2i) > pi, where i is a row index. In some
applications, this notion of feasibility may
be appropriate. For example, in some ap-
plications within telecommunications-
network planning, analysts often specify
the grade of service for each type of cus-
tomer. Hence the grade-of-service require-
ment for each type of customer may be
stated in the form of a single probabilistic
constraint. To ensure that a meaningful
model results, one must carefully capture
the various customers’ competition for the
network resources. For example, in addi-
tion to the probabilistic constraints, one
may use a network-flow model to capture
the manner in which the network will be
loaded and thus the potential for blocked
calls. In such cases, one can write probabi-
listic constraints involving a single in-
equality using the inverse of the cumula-
tive distribution function.

Consider a single probabilistic con-

straint, in which is a one-dimensionalb̃2

random variable, the vector a2 is determin-
istic, and we wish to satisfy

˜P(a x > b ) > p.2 2

Let F denote the cumulative distribution

function of and let Kp be chosen so thatb̃2

F(Kp) 4 p. The constraint P(a2x > > pb̃ )2

can be written as F(a2x) > p, or equiva-
lently, a2x > Kp.

Other special cases for which a probabi-
listic constraint can be easily converted to
a more standard type of constraint have
been studied. Prékopa [1995] provides an
excellent summary of this subject. In clos-
ing this section, we reiterate that probabil-
istically constrained models and recourse
models need not be treated as mutually
exclusive approaches for modeling uncer-
tainty. In certain applications, it is worth-
while to combine the two approaches.
Alternative Models

We have outlined the more popular ap-
proaches in stochastic programming. To
extend the scope of stochastic program-
ming models, researchers have proposed
some alternative models. We shall com-
ment on these more recent approaches.
Integrated Chance Constraints

Prékopa [1973] and Klein Haneveld
[1986] have proposed models with so-
called integrated chance constraints (ICC).
ICCs can be thought of as offering a bal-
ance between recourse models and chance
(probabilistic) constraint models. That is,
ICCs can be used to constrain the expected
or average behavior of some phenomena.
In contrast to probabilistic constraints,
which are interpreted as imposing reliabil-
ity requirements, ICCs may be used to
constrain availability, average perfor-
mance, and other similar measures. One of
the main advantages of this approach is
that, unlike probabilistically constrained
models that may result in nonconvex fea-
sible sets, models based on ICCs are often
convex.
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Figure 3: This is an illustration of the feasible region for Example 5. The shaded region depicts
the set of points that satisfy the probabilistic constraint. The lack of convexity is readily appar-
ent.

To motivate the discussion, consider a
situation in which a target “budget” b [ 5

is given, and the “cost” associated with
plan x is given by the random variable c̃x.
A probabilistic constraint that restricts’ the
probability of exceeding the budget to be
at most 1 1 p may be written as

P{c̃x # b} > p.

That is, cost overruns may be permissible
in extraordinary circumstances. This can
be represented using an ICC by restricting
the long-term-cost overrun to be at most
a:

E[Max {c̃x 1 b, 0}] # a.

While Klein Haneveld focuses on linear
constraints whose coefficients or right-

hand sides are random, some of his results
may be extended to convex functions,
whose parameters may be random vari-
ables. A particularly relevant convex func-
tion that arises in stochastic programming
is the recourse function, and it gives rise
to models that can be called recourse con-
strained models. To understand this class
of models, recall that in a standard two-
stage stochastic program with recourse the
first-stage decision often denotes a strate-
gic plan, while the recourse function asso-
ciated with the second stage denotes the
expected cost of future operations. Such
recourse models do not explicitly ac-
knowledge a decision maker’s attitude to-
ward variability in costs associated with
the second stage. For example, in a
capacity-planning study for a large auto-
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mobile manufacturer, Eppen, Martin, and
Schrage [1989] initially studied a pure
two-stage stochastic program with re-
course. In this application, denoted thel̃(x)
amount of lost revenue associated with
capacity plan x, which varied by scenario
and thus was a random quantity. The ini-
tial application of stochastic programming
used the term in the objective func-˜E[l(x)]
tion, which resulted in a two-stage sto-
chastic linear program with recourse. An
examination of the results of this model
revealed that the minimization of expected
losses yielded inadequate solutions. There
was a clear need to guide the choice of ca-
pacity plans toward those that held lost
revenues below a given target, b. To con-
strain the downside risk, Eppen, Martin,
and Schrage [1989] used a recourse-
constrained model to successfully restrict
the decision space to plans that would be
considered acceptable. Higle and Sen
[1995] discuss statistical algorithms for this
class of problems.
Robust Optimization
Stochastic programming has had several
successes in portfolio-planning models
[Cariño et al. 1994; Kusy and Ziemba
1986]. While these models optimize an
expected-value criterion, they often in-
clude constraints on downside risk that
can be modeled using convex functions
[Cariño et al. 1994; Dembo 1989]. How-
ever, financial planners are often inclined
to model variance as a measure of risk.
This approach has its roots in Markowitz
[1959], which was based on such assump-
tions as normally distributed returns.
While these assumptions may not neces-
sarily hold in some applications, decision

makers often wish to investigate trade-offs
between means and variances of costs (or
profits) associated with their decisions.

In an attempt to model such trade-offs,
Mulvey, Vanderbei, and Zenios [1995]
propose a model referred to as the robust
optimization (RO) model. Assuming that
the random variable is discrete, they sug-
gest that an apparent mean-variance type
of model may be stated as follows:

Minimize c1x1 ` pszs ` h ps(zs 1 z̄)2o o
s[S s[S

subject to A1x1 4 b1

Bsx1 ` A2sx2s 4 b2s ∀s [ S
c2sx2s 4 zs

pszs 4 z̄o
s[S

L1 # x1 # U1, L2 # x2s # U2 ∀s [ S.

In this formulation, the parameter h . 0
may be interpreted as the weight assigned
to the variance of the random variable z̃
whose outcomes are {zs}, each occurring
with probability {ps}. It is typically in-
tended as a measure of the decision mak-
ers’ aversion to objective function variabil-
ity. A solution to this formulation depends
on the choice of h and the units used in
the formulation. While it is reminiscent of
the Markowitz mean-variance portfolio-
optimization model, we caution that the
objective differs from the more appropri-
ate objective

˜ ˜Minimize c x ` E[h(x )] ` hVar[h(x )].1 1 1 1

As in previous sections, denotes ah̃(x )1

random variable representing the cost of
the optimal second-stage response. The
discrepancy between the two models is at-
tributed to the fact that zs need not reflect
the optimal second-stage cost for scenario
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2nd-Stage Solutions

Robust Least Cost

x21 26 (26) 26 (26)
x22 10.5 (21) 2.5 (5)
expected cost 21.5 7.1
variance 2.25 39.69
Table 1: Output from robust and least-cost
models.

s. That is, the random variables z̃ and h̃
need not be identical. Once an outcome of
the random variable has been revealed,
the appropriate response in the second
stage is one that yields the least cost.
Hence because z̃ is generally different
from the RO model paints a misleadingh̃,
picture of the variance of the second-stage
objective. The following example illus-
trates this discrepancy.
Example 6: A Comparison of the Robust
and Mean-Variance Models

Consider a two-stage problem in which
the first-stage decision is to be chosen in
the range 0 # x1 # 10 with c1 4 16. Sup-
pose that the second-stage data are uncer-
tain, with scenarios described as follows:
For scenario 1, p1 4 0.1 and c21 4 1, A21

4 11, B1 4 3, b21 4 4, so that the con-
straint is an inequality of the form 3x1 1 x21

# 4. The cost-minimizing response is x21

4 Maximize {0, 3x1 1 4}. For scenario 2, p2

4 0.9 and c22 4 2, A22 4 12, B2 4 1, b22

4 5, so that the constraint is an inequality
of the form x1 1 2x22 # 5. As in scenario
1, the form of the cost-minimizing re-
sponse is x22 4 Maximize {0, 0.5x1 1 2.5}.

With these data and h 4 1, we solve the
robust optimization model and obtain x̄1

4 10, x21 4 26, and x22 4 10.5. In this so-
lution, x21 is a cost-minimizing value, al-

though x22 is not. Table 1 summarizes the
failure of the RO model to achieve cost
minimization.

The data in Table 1 illustrate the dra-
matic differences between the second-
stage response assumed by the RO model
and the least-cost second-stage response.
For example, when x̄1 4 10, x21 is the
same in both cases. However, x22 varies
dramatically between the two models. The
RO model uses the suboptimal response x22

4 10.5. This artificially increases the cost
of scenario 2 to bring it closer to that of
scenario 1, thereby providing the appear-
ance of less variability. In our example, the
ineffiency induced by the RO model re-
sults in a cost increase of more than 400
percent for the most likely scenario!

For the given value of the first-stage
variable, x̄1, the robust model yields
second-stage costs that are at least as large
as those produced by the least-cost model,
with probability one. That is, the least-cost
responses, which one obtains from re-
course models, dominate the responses
from the RO model. This is always the
case for the RO model, which provides a
strong argument against its use.

To further illustrate the pitfalls associ-
ated with the RO model, we solve the
mean-variance problem with h 4 1 and

obtain 4 and 4 14.5 and1
o* *x 6 x1 216

. The mean and variance of )7
o ˜* *x 4 h(x22 112

are 2.45 and 15.8, respectively. Thus, we
see that the solutions obtained from the
so-called robust models are, in general,
structurally unrelated to the solutions ob-
tained from the mean-variance recourse
model and are dominated by the solutions
obtained from the least-cost model.
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Multistage Recourse Models
With two-stage recourse models, all un-

certainties are resolved when the second-
stage decision is made. However, in many
decision-making problems, observations of
the random variables are revealed sequen-
tially over time, and decisions are made
over multiple periods. For example, in
production-and-inventory problems, fore-
casted demands are eventually replaced
by firm orders, so that production deci-
sions are made in anticipation of current
and future demands. More generally,
long-range planning is a multistage deci-
sion process in which resources are com-
mitted over time, and the goal is to pro-
vide a smooth transition into the future.
Such applications lead very naturally to
multistage recourse models. Multistage
models have the advantage of a long-
range outlook, which avoids myopic
choices in the first period. An important
byproduct of this planning process is the
generation of recourse plans for alterna-
tive scenarios in the future. From an orga-
nizational viewpoint, this permits greater
responsiveness at lower cost.

A key feature of multistage models is
the evolution of the random phenomena
over time. That is, the decision problem
faced in a given period, t, can vary dra-
matically, depending on the outcomes re-
alized in previous periods. For example, in
a hydroelectric-power-planning problem,
rainfall may be correlated across time pe-
riods. In addition, decisions made in one
period can influence the options available
in future periods. Finally, at any given
time, planning decisions made under dry
conditions vary dramatically from those
made under wet conditions. It is therefore

important to adopt a modeling framework
that reflects this interperiod dependence
among the random elements and the deci-
sions made.

As with the two-stage models, we begin
with a generic multistage linear program.
In the following, T denotes the number of
stages being modeled, xt denotes a deci-
sion vector in stage t, and so forth.

T

Minimize c xo t t
t41

subject to A1x1 4 b1
t11

B x ` A x 4 b t [ {2, 3, . . ., T}.o kt k t t t
k41

L # x # U t [ {1, 2, . . ., T}.t t t

In this formulation, a variable xt may ap-
pear in any of the constraints associated
with stage t, t ` 1, . . ., T, but it does not
appear prior to stage t.

As in the two-stage models, c1, A1, b1, L1,
and U1 correspond to the immediate deci-
sion x1 and thus are not subject to uncer-
tainty. In general, the remaining data ele-
ments may contain random variables.
Moreover, these random variables gener-
ally depend on the values of random vari-
ables that precede them. For this reason, it
is often convenient to depict the scenarios
using a tree, in which the outcomes in one
stage branch out from the outcomes in the
previous stage (Figure 4).

Each complete path through this tree is
known as a scenario, and thus this struc-
ture is known as a scenario tree. In Figure
4, there are eight scenarios, corresponding
to the terminal nodes, which evolve over
three stages. In general, the evolution of
the scenarios needn’t be balanced; some
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Figure 4: The scenario tree is a useful mechanism for depicting the manner in which events
may unfold. It can also be used to guide the formulation of a multistage SLP model.

scenarios might be completed before oth-
ers. For this reason, it is convenient to in-
dex the nodes of the tree, a, b, c, . . ., as
depicted. Of course, each node has a cor-
responding stage index (for example, node
c appears in the second stage), so that one
can recover stage information easily if
necessary.

The scenario tree provides a convenient

mechanism for formulating multistage re-
course problems. With the evolution of
time, outcomes are revealed sequentially,
and one can trace a sample path through
the tree, as indicated by the bold line in
Figure 4. An underlying tree structure ex-
ists even when one uses continuous ran-
dom variables. However, in this case, the
branches span a continuum, rather than
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discrete points as in Figure 4. The set of
nodes of the scenario tree will be denoted
1. With each node n [ 1, S(n) , 1 de-
notes the set of nodes that are immediate
successors to n. We will refer to a node s

as being reachable from node n if a sample
path exists on which node n precedes
node s. Associated with each node n is Pn,
which denotes the probability of reaching
node n, as well as the decision vector xn,
which denotes the action that will be
adopted if the sample path passes through
node n. Furthermore, with each node n,
we will associate constraints that will be in
force if a sample path passes through that
node. The rows corresponding to this
node may be referenced by the name rn.
The constraint matrix (input/output ma-
trix) corresponding to node n will be de-
noted An. Furthermore, if a decision xn has
an impact on constraints for a node s that
is reachable from node n, then I/O coeffi-
cients reflecting this impact will be de-
noted by the matrix Bn,s.

We may now formulate the LP by fol-
lowing the paths of the scenario tree. For
each node n, the variable xn has an objec-
tive row coefficient given by Pncn. In addi-
tion, the matrix An and right-hand-side
vector bn appear in rows referenced by rn,
and Bn,s appears in rows referenced by rs,
where node s is reachable from node n.

In general, we can formulate this prob-
lem in a manner that is analogous to the
two-stage SLP with general recourse as
follows:

Minimize Pncnxno
n[1

subject to Bsnxs ` Anxn 4 bno
s[R(n)

∀ n [1

Ln # xn # Un.

where R(n) , 1 denotes the set of nodes
from which node n is reachable.

Because the LP formulation of the multi-
stage problem grows so rapidly, people
commonly use decomposition techniques
to solve multistage recourse problems.
These techniques frequently begin with a
restatement of the problem. We discuss
two alternative forms below.
A Recursive Formulation on a Scenario
Tree

This formulation is amenable to compu-
tations that combine dynamic-
programming-based recursive calculations.
To simplify the notation, we state the fol-
lowing recursive formulation under the
assumption that Bn,s is nonzero only if s [

S(n) (that is, s is an immediate successor of
n). With this assumption we simplify the
notation by writing Bs [ Bn,s. The problem
that resides at node n may be stated as

hn(xl(n)) 4 Minimize cnxn ` E[hs̃(n)(xn)]
subject to Anxn 4 bn 1 Bnxl(n)

Ln # xn # Un

where l(n) denotes the immediate prede-
cessor to node n on the path from 1 to n
and s̃(n) is a random variable that denotes
a successor of node n. If s is a successor to
node n, then P(s̃(n) 4 s) is simply the con-
ditional probability that node s is reached,
given that node n is reached, which is pro-
portional to Ps.

In this formulation, which is analogous
to the decomposed formulation of the
two-stage SLP with general recourse, the
successor to a node on the scenario tree is
a random variable, s̃(n). With the root
node designated as node 1, the master
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problem may be stated as follows:

Minimize c1x1 ` E[hs̃(1)(x1)]
subject to A1x1 4 b1

L1 # x1 # U1.

Although this formulation is stated in
the form of a decision-making problem on
a tree, it can also be stated in a recursive
manner using time as the index over
which the recursion is performed. How-
ever, since this form provides no added
insights, we omit this alternate form.
A Scenario Formulation

One of the more important issues in
multistage models is the notion of imple-
mentability. Since information is revealed
sequentially, two or more scenarios may
share a common sequence of outcomes for
the first k periods (k , T, where T denotes
the number of periods). For example, sce-
narios 1 and 2, which correspond to the
paths a-b-d-h and a-b-d-i in Figure 4, have
the same sequence of outcomes in the first
two periods (that is, a-b, b-d) and hence
these two scenarios are indistinguishable
until the third period. To maintain imple-
mentability, the decisions associated with
these two scenarios must be identical in
the first two periods. In general, if two
scenarios share the same sequence of
nodes during the first k periods, they
share the same information base during
these periods, and consequently, decisions
associated with such scenarios must be
identical through period k. This require-
ment is known as the implementability (or
nonanticipativity) condition. The formula-
tion on the tree honors this requirement
implicitly.

The scenario formulation of the two-
stage SLP with general recourse includes a

statement of the implementability require-
ment for two-stage problems as (4). To de-
velop an analogous formulation for multi-
stage problems, recall that with each node
n, we associate the decision vector xn. The
set of scenarios passing through node n
will be denoted Sn. Let denote theT{y }ts t41

sequence of decisions associated with sce-
nario s, where t denotes a stage in the de-
cision problem. The implementability re-
quirement may be imposed on the
planning variables by the following con-
straint in which t(n) represents the stage in
which node n appears:

x 1 y 4 0 ∀s [ S .n t(n),s n

There are alternative (equivalent) ways to
state this, and the choice depends largely
on the choice of the solution algorithm (for
example, Rockafellar and Wets [1991]).

One of the advantages of stating the im-
plementability restrictions explicitly in the
model is that every scenario can be treated
independently, with coordination being
provided through the implementibility
constraints. Hence what remains to be
stated is the deterministic dynamic formu-
lation for each scenario s. For each sce-
nario s, let (cts, {Bkts}k,t, Ats, bts) denote the
vectors and matrices that are associated
with s, and let denote the decisionT{y }ts t41

vectors associated with each period under
scenario s. Let ps denote the probability
that scenario s occurs. The multistage
formulation may be stated as fol-
lows:

Minimize ps [c1y1s ` ctsyts]o o
s[S t

subject to A1y1s 4 b1 ∀s [ S
` Atsyts 4 btsB yo kts ks

k,t
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t [ {2, . . ., T}, s [ S
xn 1 yt(n),s 4 0 ∀ s [ S(n), ∀ n [ 1

Lts # yts # Uts, t [ {1, . . ., T}, s [ S.

This multistage scenario formulation is a
straightforward extension of the two-stage
scenario formulation. The main difference
is that the implementability restrictions for
the multistage problem are somewhat
more complicated than those for the two-
stage problem.
Applications

In the past few years, there have been
numerous applications of models of the
type we have discussed. We won’t survey
these applications. Instead, we describe
one application from each of the main
types of models we have discussed:
simple-recourse, general-recourse, proba-
bilistically constrained, and multistage-
recourse models. With these applications,
we shall try to span a variety of settings in
which SLP has been applied effectively.
We describe models for airline-yield man-
agement, telecommunications-network
planning, flood control, and production-
and-inventory planning.
A Simple-Recourse Formulation for
Airline Yield Management

One of the earliest applications of sto-
chastic programming discussed in the lit-
erature is the aircraft-allocation problem
[Ferguson and Dantzig 1956]. More re-
cently, the simple-recourse approach has
been applied to yield-management prob-
lems in the airline industry. In the context
of this application, the formulation is
sometimes referred to as the probabilistic
nonlinear program (PNLP) [Williamson
1992]. It turns out that the PNLP approach
does not capture some of the important

practical considerations in yield manage-
ment, and more effective SP approaches
have been developed. However, we re-
strict our illustration to PNLP since a dis-
cussion of extensions that allow a more re-
alistic model would take us too far afield.

In the yield-management problem that
we consider, passenger itineraries are
comprised of flight segments. The demand
for each itinerary is a random variable,
and we wish to allocate flight-segment ca-
pacities in such a way as to maximize the
expected value of the profit obtained. For
itinerary i, the demand random variable is
denoted If we let xi (a decision variable)d̃ .i
denote the allocation of capacity for itiner-
ary i, then the number of passengers
served is given by Min{xi, If the valued̃ }.i

(fare) associated with itinerary i is as-
sumed to be known and is denoted vi,
then the maximization of expected reve-
nue may be written as

Maximize viE[Min{xi, d̃ }].o i
i

With each itinerary i, we associate an
incidence vector Ai, which consists of as
many elements as there are flight seg-
ments. If flight segment l is traveled by
passengers flying itinerary i, then the ele-
ment ail 4 1; otherwise ail 4 0. Finally let
b denote the vector of capacities for legs of
the network. Assuming that one ignores
the possibility of overbooking, the capac-
ity constraint (in vector form) may be
written as

Aixi # b.o
i

To view the yield-management problem
as a simple-recourse problem, consider the
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following formulation:

Maximize {vixi 1 E[hi(xi, d̃ )]}o i
i

subject to Aixi # bo
i

0 # xi, ∀i

where

hi(xi, di) 4 Minimize vi
1zi

subject to 1 4 di 1 xi
` 1z zi i

, > 0.` 1z zi i

With this statement, hi(xi, di) 4 viMax(0, xi

1 di). It follows that the objective function

vixi 1 E[hi(xi, di)]

4 vixi ` viE [Min(0, 1 xi)]d̃i

4 viE[Min(xi, d̃ )],i

as previously indicated.
Since PNLP results in a simple recourse

problem, it follows that the resulting
model is a convex separable program.
While this is an attractive property, the
model itself is inadequate for reasons dis-
cussed by Talluri and van Ryzin [1996].
A General-Recourse Model for
Telecommunications Network Planning

The general-recourse model for
telecommunications-network planning is
presented by Sen, Doverspike, and
Cosares [1994]. They developed the model
to design networks that provide private-
line telecommunication services. Medium
to large corporations that need high speed
and reliable communications for data
transfer, video conferencing, and so forth
use private lines. An example of a cus-
tomer for private-line services is a broker-
age company with its headquarters on
Wall Street and its research, financial-
planning, and computing teams dispersed

throughout the country. Similarly, the
Federal Aviation Authority uses private-
line networks for interconnecting several
major airports.

The telecommunication network com-
prises a collection of points (nodes) be-
tween which requests for service (calls)
arise. The network is connected by a col-
lection of links. To satisfy a request for
service, the system must allocate capacity
(bandwidth) over a series of links that
connect the call origin and destination.
Such a sequence is called a route. If no
routes have enough capacity available to
accommodate the request, it cannot be
served. The problem is to determine link
capacities that minimize the expected
number of unserved requests. Because of
budgetary restrictions, the total capacity
available for allocation among the various
links is constrained. This planning prob-
lem lends itself to a natural two-stage pro-
gression of decisions. That is, one must
determine the capacity of the links well
before the demand for service can be
known. Once the capacity decisions have
been made, requests for service can be
routed in a manner that allows efficient
operation of the network.

To formulate the problem, let the first-
stage decision variables be defined as

xj 4 the amount of capacity to be added to
the jth link.

The parameters for the first stage are

n 4 the number of links that are to be con-
sidered for capacity expansion,
b 4 the total capacity that can be allocated
throughout the network, and

4 the m dimensional random variabled̃
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that represents demands associated with
the m point-to-point pairs served by the
network.

With this notation, we summarize the
model as follows:

Minimize E[h(x, d̃)]

subject to # b
n

xo j
j41

x > 0.

The function h(x, d) represents the number
of unserved requests when the demand
for service is given by d and the capacity
expansion plan is denoted x. This function
is represented by the optimal value func-
tion of a second-stage program. To define
this program, let

m 4 the number of point-to-point pairs
served by the network,
R(i) 4 the set of routes that can be used to
connect point-to-point pair i,
Air 4 an incidence vector in 5n whose jth
element is 1 if link j belongs to route r [

R(i), and is 0 otherwise, and
e 4 is a vector in 5n of current (existing)
link capacities.

The decision variables for the second
stage are as follows:

fir 4 the number of calls associated with
point-to-point pair i that are served via
route r [ R(i),
si 4 the number of unserved requests
associated with point-to-point pair i.

The network-flow model used to route
calls is

h(x, d) 4 Minimize
m

so i
i41

subject to Airfir # x ` eo o
i r[R(i)

fir ` si 4 di i 4 1, . . ., mo
r[R(i)

f, s > 0.

Within this statement of the routing prob-
lem, the first set of constraints ensures that
link utilization does not exceed link capac-
ity, while the second set of constraints en-
sures that demand that cannot be routed is
counted as unserved.
A Probabilistically Constrained Flood-
Control Model

This model was first developed by
Prékopa and Szántai [1978]. Simply stated,
the problem is to determine reservoir ca-
pacities to be used to control flooding that
may occur as a result of random stream
inputs. A unique feature of this model is
that it includes both a penalty cost (as in
simple-recourse models) and probabilistic
constraints that impose limits on the prob-
ability that the water level rises above
reservoir capacities. However, to focus the
discussion on probabilistic constraints, we
neglect the penalty terms that appear in
the original formulation.
Let
J 4 the number of reservoir sites in the
river basin (these sites are fixed),
cj 4 the cost per unit of capacity of
reservoir j,
uj 4 the maximum capacity of reservoir j,
xj 4 the capacity of reservoir j (a decision
variable), and
I 4 the number of tributaries in the river
basin.

The random variables are
4 the amount of water input to tribu-ñi

tary i [ I.
The task of modeling floods is fairly in-

volved. In essence, Prékopa and Szántai
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assume that flooding occurs when the
stream flow on a tributary exceeds its ca-
pacity. Reservoirs can be used on certain
tributaries to contain stream flow and pre-
vent it from continuing to a downstream
location. This leads to a system of linear
inequalities

˜T n # Rx,

which indicate that at each point of inter-
est stream flow is contained. That is, T ñ

models accumulated upstream flows and
Rx models accumulated capacities. Thus, if
we let p denote the desired reliability of
the reservoir system, the following formu-
lation results:

Minimize c xo j j
j

subject to 0 #xj # uj j 4 1, . . ., J

P{T # Rx} > p.ñ

A Multistage Production-and-Inventory
Model

This model is an extension of a deter-
ministic process-selection model presented
by Johnson and Montgomery [1974, Exam-
ple 4-11, pp. 243–244]. Within the model,
each product can be produced by several
alternative processes. However, product
demand and resource availability are
modeled as random variables. The objec-
tive is to minimize the expected produc-
tion costs, including inventory and back-
order costs, over multiple periods. Given
the nature of inventory and back-order
quantities, a multistage model with simple
recourse results.

Let
T 4 the number of time periods under
consideration,
cijt 4 the per-unit production cost of prod-

uct i using process j in period t,
aijk 4 the number of units of resource k re-
quired to produce a unit of product i by
using process j,
hit 4 the cost for each unit of product i
held in inventory at the end of period t,
and
pit 4 the cost for each unit of product i on
back-order at the end of period t.

The uncertain parameters are the
following:

4 the demand for product i in period t;d̃it

dits denotes the value of associated withd̃it

scenario s.

4 the amount of resource k available inb̃kt

period t;

bkts denotes the value of of associatedb̃kt

with scenario s, and
ps 4 the probability with which scenario s
occurs. Note that

ps 4 4 dits, 4 bikts, t 4 1,. . .,T}.˜ ˜P{d bit ikt

Finally, the decision variables are as
follows:
Xijts 4 the number of units of product i
produced by process j in period t under
scenario s, and
Iits 4 the inventory of product i in period t
under scenario s.

As time progresses, the collection of out-
comes that may unfold can be organized
into a scenario tree. In addition, a node n
in the scenario tree corresponds to a par-
ticular time period, t(n) and summarizes a
unique unfolding of the random events
from the initial period until period t(n). To
ensure that the model yields solutions that
are implementable, one must ensure that
at any given time, scenarios that share a
common history are constrained to yield a
common production-and-inventory plan at
that time. Thus, let 1 denote the set of
nodes in the scenario tree. For each n [ 1,
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let S(n) 4 {s | s passes through node n}.
The implementability constraints may be
stated as follows:

Xijt(n)s 4 Yijn ∀ i, j, n and s [ S(n)
Iit(n)s 4 Hin ∀ i, j, n and s [ S(n).

In this fashion, the variables {Yijn} and
{Hin} represent the production-and-
inventory plan associated with node n in
the scenario tree.

With the above parameters, the multi-
stage stochastic model may be stated as
follows.

Minimize cijtXijts `p [o s o
s ijt

(hit ` pit )]` 1I Io its its
it

subject to aijkXijts # bkts ∀k, t, so
ij

1Iits ` Ii,t11,s ` Xijts 4 Dits ∀i, t, so
j

Iits 1 ` 4 0 ∀i, t, s` 1I Iits its

Yijn 1 Xij,t(n),s 4 0 ∀s [ S(n), n [ 1

Hin 1 Iits 4 0 ∀s [ S(n), n [ 1

Xijts > 0, > 0, > 0 ∀ i, j, t, s.` 1I Iits its

Whenever the product demands are
treated as independent random variables
in such multiproduct models, the size of
the scenario tree grows dramatically.
However, if these demands are known to
depend on some external parameters, such
as leading economic indicators (for exam-
ple, interest rate), then one can make the
formulation depend on a scenario tree as-
sociated with the economic indicator. For
some applications, such a tree may be
more manageable.
Conclusions

As competition increases, we need mod-
els that help hedge against future uncer-
tainties. This need has sparked greater in-

terest in stochastic-programming models
among practitioners. Furthermore, suc-
cesses with industrial applications (for ex-
ample, those of Bellcore, General Motors,
and Russell Financial Services) have moti-
vated practitioners to include uncertainty
within decision-making models.
Assessing the Need for Stochastic
Programming Models

The starting point for many stochastic-
programming models is a linear-
programming model. If some of the pa-
rameters in an LP are uncertain and the
LP appears to be fairly sensitive to
changes in these parameters, then it may
be appropriate to consider a stochastic-
programming model. For example, con-
sider a blending model that uses LP to rec-
ommend how to produce a blend with
specific characteristics by combining dif-
ferent types of ingredients (for example,
types of crude oil or mineral ore). In some
instances, the contents of these ingredients
may vary. If the optimal blend remains
relatively unaffected within the range of
variation, then one can justify the certainty
assumption of linear programming. On
the other hand, if the variations cause the
optimal blend to vary substantially, then it
may be worth pursuing a stochastic-
programming model. In such a case, one
can use LP sensitivity analysis for diag-
nostic purposes and stochastic program-
ming to obtain an optimal blend.

In many instances, one needs stochastic-
programming models because of a paucity
of information. Such a situation is likely to
arise with the introduction of new prod-
ucts or services. For example, a telecom-
munications company that wants to pro-
vide a call-tracing service in its regional
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area may try to obtain information on the
usage of this new service in multiple
ways. It may look at usage data from a
similar demographic region in a different
part of the country. It could also obtain
surrogate data from a computer simula-
tion model. And finally, it could carry out
a market survey or perform a test within a
small segment of the region. All of these
approaches provide estimates of market
demand for the new service, and they are
likely to be different. With a stochastic-
programming model, the company can in-
clude these alternative forecasts within
one decision-making model to produce a
more robust plan.
Data Requirements

Many of the data requirements for
stochastic-linear-programming models are
similar to those of linear-programming
models. The additional data in stochastic
programming are needed to represent un-
certainty. In some applications, one repre-
sents uncertainty by subjectively assessing
weights to assign to possible future sce-
narios. In such cases, one can build the
stochastic-programming model using few
scenarios and set up the model as a large-
scale linear program. Such models are of-
ten solved using off-the-shelf LP software.
The case study (from GM) reported by
Eppen, Martin, and Schrage [1989] is such
a model. In many applications, however,
econometric models and forecasting sys-
tems provide detailed information regard-
ing some of the random variables. Under
these circumstances, it is difficult to cap-
ture the randomness via a handful of sce-
narios. Nevertheless, it is advantageous to
be able to represent the uncertainty in
terms of only a few random variables, if

possible. As one might expect, a model
with few random variables is easier to rep-
resent for computational algorithms and
may be more amenable to exact solution
using deterministically motivated algo-
rithms, such as the method developed by
Rockafellar and Wets [1991]. In many in-
stances, it may also be possible to derive
deterministic upper and lower bounds on
the value of the stochastic program, as in
Birge [1982]. Nevertheless, one can easily
run up against very large-scale stochastic-
programming models for which determin-
istic methods soon become inadequate. In
such instances, sample-based algorithms,
such as the stochastic decomposition
method [Higle and Sen 1991], provide a
practical solution approach.

For any of the approaches mentioned
above, data on the random variables are
usually provided to the algorithms via the
SMPS format developed by Birge et al.
[1987]. This data format is based on the
MPS format of mathematical-
programming systems and provides a con-
venient representation of random vari-
ables in a stochastic-linear program. A
more recent framework for multistage sto-
chastic programs is available within the
OSL system marketed by IBM. Finally, the
stochastic-programming community is
working toward an object-oriented stan-
dard for representing this class of prob-
lems. We expect it to develop such a stan-
dard over the next several years.
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