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Abstract

This research studies two modelling techniques that help seek optimal strategies in
financial risk management. Both are based on the stochastic programming method-
ology. The first technique is concerned with market risk management in portfolio
selection problems; the second technique contributes to operational risk management
by optimally allocating workforce from a managerial perspective.

The first model involves multiperiod decisions (portfolio rebalancing) for an asset
and liability management problem and deals with the usual uncertainty of investment
returns and future liabilities. Therefore it is well-suited to a stochastic programming ap-
proach. A stochastic dominance concept is applied to control the risk of underfunding.
A small numerical example and a backtest are provided to demonstrate advantages of
this new model which includes stochastic dominance constraints over the basic model.

Adding stochastic dominance constraints comes with a price: it complicates the
structure of the underlying stochastic program. Indeed, new constraints create a link
between variables associated with different scenarios of the same time stage. This
destroys the usual tree-structure of the constraint matrix in the stochastic program
and prevents the application of standard stochastic programming approaches such as
(nested) Benders decomposition and progressive hedging. A structure-exploiting inte-
rior point method is applied to this problem. Computational results on medium scale
problems with sizes reaching about one million variables demonstrate the efficiency of
the specialised solution technique.

The second model deals with operational risk from human origin. Unlike market
risk that can be handled in a financial manner (e.g. insurances, savings, derivatives),
the treatment of operational risks calls for a “managerial approach”. Consequently,
we propose a new way of dealing with operational risk, which relies on the well known
Aggregate Planning Model. To illustrate this idea, we have adapted this model to the
case of a back office of a bank specialising in the trading of derivative products. Our
contribution corresponds to several improvements applied to stochastic programming
modelling. First, the basic model is transformed into a multistage stochastic program
in order to take into account the randomness associated with the volume of transac-
tion demand and with the capacity of work provided by qualified and non-qualified
employees over the planning horizon. Second, as advocated by Basel II, we calculate
the probability distribution based on a Bayesian Network to circumvent the difficulty
of obtaining data which characterises uncertainty in operations. Third, we go a step
further by relaxing the traditional assumption in stochastic programming that imposes
a strict independence between the decision variables and the random elements. Com-
parative results show that in general these improved stochastic programming models
tend to allocate more human expertise in order to hedge operational risks. The dual
solutions of the stochastic programs are exploited to detect periods and nodes that are
at risk in terms of expertise availability.
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Chapter 1

Introduction

This research is based on the methodology of stochastic programming, applied to mea-
sure and manage the financial risk. In this chapter we introduce the problems considered
and the main and basic methodology used in this project. An outline of this thesis is
provided at the end.

1.1 Financial Risk Management

On 11th of December 2008, the former chairman of the NASDAQ stock exchange and
the Wall Street firm Bernard L. Madoff Investment Securities LLC, Bernard Lawrence
Madoff was arrested by the FBI on the allegation of a $50bn fraud, the largest fraud
in history. This fraud operated as a Ponzi scheme, which pays investors with their own
money or the money collected from new investors. HSBC had potential exposure of
$1bn; the exposure for Royal Bank of Scotland was £400m; about $468m for France’s
BNP Paribas; Spain’s Banco Santander said it had a direct exposure of 17m Euros; etc.

Due to the development of financial services and financial products, financial busi-
ness is becoming more and more complicated, resulting in greater risks. In addition, the
financial industry is getting more involved in the economy, both nationally and globally.
The financial market has an influence on economy to a certain extent, e.g. the gloom of
the financial market could lead to an economic recession. Subprime mortgages, mono-
line insurers, collateralised debt obligations, the collapse of Lehman Brothers, bail-outs
for everyone from AIG to the Royal Bank of Scotland and one certain Bernard Madoff;
all of these warn the world that better financial risk control is desperately needed.

The Basel II framework [88], produced by the Basel Committee on Banking Su-
pervision which is located at BIS (Bank for International Settlement), helps financial
institutions to identify risk and manage it by regulatory capital requirements. It has
been widely applied in financial risk management. As the world’s oldest international
financial organisation, BIS fosters international monetary and financial corporations
as a bank of central banks, with 55 central bank members. The Basel Committee on
Banking Supervision, one of the five standing committees supporting central banks
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and authorities in charge of financial stability by providing background analysis and
policy recommendations, helps enhance understanding of key supervisory issues and
improve the quality of banking supervision worldwide, while also developing guidelines
and supervisory standards in desirable areas.

Basel II [88] introduced three pillars for measuring and managing financial risk:
minimum capital requirement, supervisory review process and market discipline. Min-
imum capital requirement guides the institutions on the calculation of capital that
should be set aside to cover the risk; it is followed by the supervisory review process to
enhance the responsibility of bank management to stick to the first pillar; then mar-
ket discipline warrants the introduction of disclosure requirements for banks using the
framework. The three main categories of financial risk under the analysis of Basel II
are market risk, credit risk and operational risk. Market risk is mainly from the fluc-
tuations of asset prices in the financial market. Credit risk corresponds to the default
of counterparties or business institutions involved in the financial market, i.e. failure
to comply with their obligation to service debt. Unlike market risk and credit risk, it
is difficult to give operational risk a clear-cut definition. An easy way to understand
operational risk is the risk involved in operations. More comprehensive definitions of
operational risk are given in Section 1.3. In this work, we are concerned with market
risk and operational risk.

1.2 Market Risk

When trading products or managing assets in financial markets, one has to consider
the risk due to market volatility, i.e. market risk. When pursuing an investment
program, different people have different attitudes to the profit they could earn and the
risk they consider acceptable. Hence, in modern portfolio theory, utility functions are
applied to measure the performance of the portfolio and the satisfaction of investors,
who will choose to maximise the expected utility, see [81]. One way to describe and
optimise utility is the mean-risk model, which originated in the late 1950s. Since then,
various risk measures have been used with variance and Value-at-Risk as two of the
most popular ones.

1.2.1 Utility

To know the purpose is the first task in constructing a portfolio to purchase. Generally,
the simple objective is to maximise our wealth with acceptable risk. Are people’s
attitudes the same toward wealth and risk? Even for the same portfolio? Suppose
there are two portfolios, i.e. one has returns of £100 and £0 with equal probabilities,
the other has return of £50 for sure. The expected returns of these two portfolios are
the same. A person who has only £10 in total will be more inclined to choose the latter
one. Another with property of over £10,000 is likely to prefer to gamble on the first
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one. This is because these two portfolios each present different utilities to these two
people.

The Swiss mathematician Daniel Bernoulli first proposed the notion of utility in a
paper named “Exposition of a New Theory on the Measure of Risk” [11], which was
published in 1738. He pointed out that the portfolio value must not be determined
only by its price, but also by the utility it yields, where utility is a measure of a degree
of satisfaction.

“The price of the item is dependent only on the thing itself and is equal for
everyone; the utility, however is dependent on the particular circumstances
of the person making the estimate.”

Two significant properties of utility were also discussed:

• any increase in wealth, no matter how insignificant, will always result in an in-
crease in utility;

• increase in utility is inversely proportional to the quantity of wealth already pos-
sessed.

In portfolio selection, utility functions are constructed according to investors’ atti-
tude to wealth and risk. Generally speaking, investors prefer more wealth. For each
portfolio pattern, a utility function associates a number to it. Figure 1.1 is an exam-

Figure 1.1: An example of utility function
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ple of a risk-averse utility function, which is a log function. See more in [84]. The
horizontal axis represents wealth, while the vertical axis represents utility. The curve
measures the relationship between wealth and utility. The positive slope indicates that
investors prefer more wealth to less wealth. The fact that the steepness of the slope
decreases as wealth increases implies that investors derive less and less satisfaction with
each increment unit of wealth. Both reflect two properties of utility. Such monotonic
increasing and concave functions are applicable in most cases. When utility functions
are used in portfolio selection where the return of the portfolio is uncertain, expected
utility maximisation serves as good judgement.

While it is not easy to find out the precise utility function for each investor, we can
also order utilities of portfolios by preference instead. Stochastic dominance manages
to rank portfolios consistent with general utility functions. In Chapter 3, we will show
how stochastic dominance can be used to control and manage market risk so as to
construct an optimal portfolio strategy.

1.2.2 Mean-Risk Model

In portfolio construction, we are concerned with two aspects: return and risk. Since
the return is uncertain, we usually consider its expected value. Risk represents the
variability of the portfolio value. An optimal portfolio should attain as large an expected
value as possible and this inevitably incurs considerable risk: therefore, we need to trade
off these two factors against each other. Mean-risk model, based on the stochastic
programming methodology which allows uncertainty to be taken into account, provides
a general framework to construct portfolio considering investors’ utility functions. The
efficient frontier described later can illustrate investors’ attitude to the return and risk
of the portfolio.

Suppose a financial institution plans to invest in assets from a set I = {1, . . . ,m},
with xi denoting the units invested in asset i. The return ri of asset i has a known
probability distribution and the total return of the portfolio is R. We make the strong
assumption that the probability distribution can be deduced (approximated) from his-
torical data. Then we can calculate the expected return of the portfolio:

E[R] =
∑
i∈I

E[xiri] =
∑
i∈I

xiE[ri].

Considering a risk function φ(x) measuring the risk incurred by decision x ∈ X ⊆
Rm where X is some feasible set of x, a general portfolio selection problem can be
formulated in one of the following three ways:

minx −E[r′x] + γφ(x), x ∈ X, (1.1)

minx φ(x), E[r′x] ≥ R, x ∈ X, (1.2)

minx −E[r′x], φ(x) ≤ β, x ∈ X, (1.3)
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where γ is the risk aversion parameter, R and β is the return and risk threshold,respectively.
r′ is the transpose of r. Suppose that the constraints E[r′x] ≥ R, φ(x) ≤ β admit
strictly feasible points. It is proved in [76] that given a convex set X and a convex risk
measure function φ(x), these three problems are equivalent in the sense that they can
generate the same efficient frontier. The best-known example of formulation (1.1) is the
Markowitz mean-variance multi-objective model [86], which considers both return and
risk in the objective. For this work, Harry Markowitz received the 1990 Nobel Prize
in Economics. In formulation (1.2) risk is minimised with acceptable returns, while in
formulation (1.3), the return is maximised subject to risk being kept at an acceptable
level. The constraint in (1.3) defines the feasible set with feasible risk so that in the
objective the decision-maker can focus on maximising the return.

Several constraints should be considered in practice. The first is the budget con-
straint, i.e. how much wealth should be invested initially. The second is the value
constraint in each asset: the minimum and maximum value that can be invested in a
particular asset, as well as a bound on the position change. In addition, the transaction
cost may be incorporated if multiple stages are considered. In practice, there may also
be some legal and policy constraints.

By varying the risk tolerance β or coefficient of risk term γ in the model, we can
generate an efficient frontier of portfolios, i.e. the portfolios on the curve are preferable
to those under the curve and the points above the efficient frontier are infeasible. For
example, in Figure 1.2 the curve given by the border of the dark area is the efficient
frontier. The whole dark area provides all the feasible solutions and the area above
the curve is infeasible. Such a frontier is efficient because compared to other portfolios,
these strategies can either produce highest return with the same risk or bear lowest
risk to achieve the same return.

Variance, as one of the key statistical parameters, has been used to measure market
risk in mean-risk model since Markowitz mean-variance model. It is easy to implement
and simple to understand, i.e. reflecting the mean distance of random values to the
expected value. Moreover, because variance has been well analysed and is familiar
to people, this facilitates its use as a risk measure. Its application, under two specific
cases, i.e. quadratic utility function and symmetric distributions of returns (e.g. normal
distributions, lognormal distributions), can provide investors with a proper assessment
of portfolios. Without these assumptions, however, variance has several drawbacks
and could even lead to inferior investment strategies. A straightforward explanation is
that variance considers extremely high and extremely low returns equally undesirable.
Besides downside risk, variance also takes upside variability as risk. The analysis of
pros and cons of variance can be found in Chapter 9 in [86]. From the risk measure’s
perspective, variance is not coherent. The following section will give the definition of
coherence of risk measure with examples of such measures.
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Figure 1.2: An example of efficient frontier.

1.2.3 Coherent Risk Measure

Following [6], a coherent risk measure is defined as:

Definition 1. A risk measure φ(ξ), where ξ ∈ Ω is a random variable as the future
value of a portfolio with probability distribution function Fξ, is called coherent if it
satisfies the following four conditions:

1. Translation invariance: for all ξ ∈ Ω and all real numbers α, we have φ(ξ+α) =
φ(ξ)− α;

2. Subadditivity: for all ξ1 and ξ2 ∈ Ω, φ(ξ1 + ξ2) ≤ φ(ξ1) + φ(ξ2).

3. Positive homogeneity: for all λ ≥ 0 and all ξ ∈ Ω, φ(λξ) = λφ(ξ).

4. Monotonicity: for all ξ1 and ξ2 ∈ Ω with ξ1 ≤ ξ2, we have φ(ξ2) ≤ φ(ξ1).

Translation invariance means that by adding a sure amount α to the portfolio,
the risk will be reduced by α because the future value of the portfolio will increase
by α. Subadditivity simply illustrates the diversification of the portfolio. Although
subadditivity implies that ρ(nX) ≤ nρ(X), multiplying the same position cannot lead
to diversification and the positive homogeneity holds. Monotonicity is natural. A
representation of coherence is exploited in [112] using convex analysis from a topology
perspective.
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Remark 1.1. It is not difficult to deduce from subadditivity and positive homogeneity
that: ρ(αξ1 + (1− α)ξ2) ≤ αρ(ξ1) + (1− α)ρ(ξ2), for 0 ≤ α ≤ 1.

Several risk measures have been proved to be coherent, including conditional Value-
at-Risk and semideviation. In the following part, we will discuss Value-at-Risk and
conditional Value-at-Risk, which have been attracting more and more attention from
financial industry.

Value-at-Risk [4, 76, 77, 79, 104, 109, 122, 123] is advised by the Basel committee
and has been accepted and used in a lot of financial institutions. In financial applica-
tions, the percentile of the loss is called Value-at-Risk (VaR). It describes the maximum
loss (or other measure of performance) with a specified confidence level. Let f(x, ξ) be
the loss (or other measure of performance) associated with the decision vector x, to be
chosen from a certain subset X of Rn, and the random vector ξ in Rm. X can be inter-
preted as representing a portfolio, such as the investment units on certain portfolios or
assets. The vector ξ stands for the uncertainties, e.g. market variables, that can affect
the loss. For each x, the loss f(x, ξ) is a random variable having a distribution in R
induced by that of ξ. The underlying probability of ξ in Rm is assumed for convenience
to have a density, which we denote p(ξ). The probability of f(x, ξ) not exceeding a
threshold α is then given by

Φ(x, α) =
∫

f(x,ξ)≤α
p(ξ)dξ.

Φ(x, α) is the cumulative distribution function for the performance f(x, ξ) depending
on x. It is nondecreasing and right continuous with α.

β-VaR i.e. β-quantile for the performance random variable associated with x and
any specified probability level β ∈ (0, 1), is defined as:

αβ(x) = min{α ∈ R : Φ(x, α) ≥ β}.

Since Φ(x, α) is right continuous and nondecreasing, β-VaR appears as the left endpoint
of the nonempty interval consisting of the values α such that F (x, α) = β, see [4]. Hence,
we can see that β-VaR gives the lowest loss amount α of the portfolio and the loss of
the portfolio will not exceed this amount with probability β, i.e.

Φ(x, αβ(x)) ≥ β. (1.4)

β-CVaR defined as:

φβ(x) = (1− β)−1

∫
f(x,ξ)≥αβ(x)

f(x, ξ)p(ξ)dξ,

is actually the conditional expectation of the performance f(x, ξ) which exceeds the β-
VaR. We can see that the probability of f(x, ξ) ≥ αβ(x) is just 1−β in the integration,
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Figure 1.3: Portfolio loss distribution: VaR & CVaR

that is
∫
f(x,ξ)≥αβ(x) p(ξ)dξ = 1− β. Then we have

E[f(x, ξ)|f(x, ξ) ≥ αβ(x)] (1.5)

=
∫

f(x,ξ)≥αβ(x)
f(x, ξ)p(y|f(x, ξ) ≥ αβ(x))dξ

=
∫

f(x,ξ)≥αβ(x)
f(x, ξ)

p(ξ)
p(f(x,Ξ) ≥ αβ(x))

dξ

= φβ(x).

β-CVaR is also called expected shortfall. This expectation must be greater than αβ(x),
i.e. β-CVaR ≥ β-VaR. For an alternative way of defining CVaR, see [104].

VaR and CVaR (especially CVaR) have been widely analysed and applied in port-
folio selection problems. The theory of probabilistic functions and percentiles was
introduced in [122, 123], including the sensitivities of probabilistic functions, sensitiv-
ities of VaR, both with respect to decision variables, and the application of CVaR to
portfolio optimisation modelling. The optimisation program with CVaR constraints
was constructed in [77]. The application of CVaR in credit risk which is the exposition
to counterparty default can be found in [4] based on CreditMetrics methodology. The
problem with CVaR constraints was translated to L-shape and solved efficiently in [79].
A decomposition framework handling CVaR objectives and constraints in two-stage
stochastic models was discussed in [41].

14



Although VaR is widely used as a risk measure nowadays, there are still some
criticisms about its undesirable properties. The subadditivity which should be true for
a coherent risk measure is not satisfied by VaR, which means the VaR of a portfolio
with two instruments may be greater than the sum of the individual VaRs of the two
instruments, i.e. αβ(x + ξ) ≥ αβ(x) + αβ(ξ), see [6]. As we know that there is a
covariance between two assets, this usually reduces the risk for portfolios consisting of
the combination of two assets (other than two assets individually). Therefore, VaR is
not coherent. In addition, it is difficult to optimise VaR in the discrete case. CVaR, as
a coherent risk measure, has better properties than VaR:

1. Translation invariance: if we denote φβ(x) = CV aR(f(x, ξ)), where the linear
function f(x, ξ) is the amount of loss, then,

φβ(x+ c) = φβ(x) + c.

It means that a set loss amount of c will lead to an increase of CVaR by c.

2. Subadditivity: φβ(x1 + x2) ≤ φβ(x1) + φβ(x2).

3. Positive homogeneity: for all λ ≥ 0, φβ(λx) = λφβ(x).

4. Monotonicity: for all x1 and x2 with x1 ≤ x2, we have φβ(x2) ≤ φβ(x1).

In addition, for the same threshold value, since CV aR ≥ V aR, if CV aR is below this
value, V aR is restricted to be less than this value as well. CV aR can be considered
as a replacement for V aR in this sense. Besides these properties, CVaR can also be
linearised and solved by an LP solver [109], which is a great advantage in practice.

It is difficult to handle CVaR because of the VaR function αβ(x) involved in the
definition, unless we have an analytical representation for VaR. However, β-CV aR(x, ξ)
is proved in [109] to be equivalent in terms of the mean risk model to:

Fβ(x, α) = α+ (1− β)−1

∫
f(x,ξ)≥α

(f(x, ξ)− α)p(ξ)dξ,

which is convex and continuously differentiable with respect to α, i.e.

φβ(x) = Fβ(x, αβ(x)) = min
α∈R

Fβ(x, α).

According to this, it can be easily derived that:

min
x∈X

φβ(x) = min
(x,α)∈X×R

Fβ(x, α),

where, moreover, a pair (x∗, α∗) achieves the right-hand side minimum if and only if
x∗ achieves the first minimum and α∗ is the corresponding VaR. Hence, the mean-risk
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model with CVaR can be constructed as:

min
(x,α)∈X×R

−E[r′x] + Fβ(x, α).

And in the case that the random variables have discrete probability distributions, the
integration in function Fβ(x, α) becomes a summation. As a result, this optimisation
problem becomes linear if the performance function f(x, ξ) is linear.

The mean-risk model with CVaR as the risk measure is proven to be consistent
with second-order stochastic dominance as shown in Section 3.2.3. While CVaR is
concerned with one threshold value VaR, second-order stochastic dominance actually
can be interpreted as a series of CVaR constraints for various threshold values.

1.2.4 Asset-Liability Management

Asset-Liability Management (ALM) is one main category of portfolio selection prob-
lems. Institutions involving large amounts of liquidity, like banks or insurance com-
panies, seek out efficient portfolio strategies for the use of their assets and liabilities,
under the consideration of the inherent uncertainty of portfolio returns, cash flows and
consequent costs. The aim is to maximise the profit while satisfying liability in the
mean time. The liabilities may take different forms: pensions paid to the members of
the scheme in a pension fund, savers’ deposits paid back in a bank, or benefits paid to
insurees in the insurance company. The situation in which liability is not satisfied is
called underfunding. To avoid underfunding while the return of assets is unpredictable
is actually a crucial question in optimally allocating the assets. While the general port-
folio selection problems considers the risk of market value decrease of assets, ALM is
additionally concerned with the risk of underfunding. This work will specialise in the
market risk involved in ALM.

Stochastic dominance, which is used to justify the efficiency of risk measures, can
provide a partial rank of portfolios consistent with general utility functions and can be
used to filter out the portfolios overperforming certain benchmarks that are set as a
threshold. In Chapter 3 we will show how this can be done for ALM problems to achieve
optimal portfolio strategy considering liabilities. Meanwhile, a specific issue in ALM is
the risk of underfunding, which is the situation where liabilities can not be satisfied.
The chance of underfunding should be kept under control, for which we introduce
a variation of second-order stochastic dominance called relaxed interval second-order
stochastic dominance, and show that this can be handled using linear constraints.

1.3 Operational Risk

The other category of financial risk we deal with in this project is operational risk, which
is a fairly new topic and has limited sophisticated research outcomes. Operational risk
management has been attracting attention and interest since the 1990s, when the fast
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development and increasing complexity of the financial market led to more and more
loss which was not due to market risk or credit risk, but instead was due to operational
risk. Operational risk covers a wide range of events and can result from various sources,
where managerial issues normally play significant parts. It can result from human or
machines; can be hidden in calculations or documentations; can be external or internal.
Before managing operational risk efficiently, it is important to identify what operational
risk is.

1.3.1 Definition of Operational Risk

Three ways of defining operational risk are listed in [69]. In the broadest sense, opera-
tional risk is any financial risk other than market risk. This definition is fuzzy and too
broad and makes it difficult to measure and control the risk. The narrowest approach
defines operational risk as risk arising from operations, including back office problems,
(technology) failures in transaction processing and in systems, and technology break-
down. However, some aspects other than operations should also be taken into account,
e.g. internal fraud, improper sale practices or model risk. An intermediate and more
acceptable definition is given by the Basel Committee on Banking Supervision in Basel
II [87, 88]:

“the risk of loss resulting from inadequate or failed procedures, people, sys-
tems or from external events”.

Operational risk under this definition can be classified by sources and causes as in
Table 1.1 [87, 88].

New stringent norms and regulations are in operation to help with operational
risk management. But on the other hand, those new regulations make operations
more complicated. The Sarbannes-Oxley Act of 2002, the most significant piece of
securities legislation since the 1930s in the US, is one of them. By improving the system
of financial reporting and reinforcing the responsibility and governance of corporate
management which are critical to investor confidence, the Act aimed to better align
the incentives of managers, auditors and other professionals with those of investors,
especially in the wake of significant fraud at that time, e.g. the Enron scandal in 2001.
It came into force in 2002 and applied to all corporations in the US.

1.3.2 Measuring and Managing Operational Risk

The logic underlying risk management in a Basel II context is always the same for
each category of banking risks. The first pillar of Basel II proposes two methods to
deduce the minimum capital amount: the standardised method (a simple way of cal-
culation provided by Basel II that can be applied to most banks) and the advanced
method (comprehensive ways involving more analysis and numerical tools developed
for specific banks). When the bank invests in qualified staff, software, and develops an
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Internal Risks
People Processes Systems
Employee collusion/fraud Accounting error Data quality
Employee error Capacity risk Programming errors
Employee misdeed Contract risk Security breach
Employers liability Misselling/suitability Strategic risks
Employment law Product complexity (platform/suppliers)
Health and safety Project risk System capacity
Industrial action Reporting error System compatibility
Lack of knowledge skills Settlement/payment error System delivery
Loss of key personnel Transaction error System failure

Valuation error System suitability

External Risks
External Physical
Legal Fire
Money laundering Natural disaster
Outsourcing Physical security
Political Terrorist
Regulatory Theft
Supplier risk
Tax

Table 1.1: Source: British Bankers’ Association survey.

advanced model, the bank is able to “economise” some capital assuming that it con-
tributes actively to risk management. The common factor of these models is that they
rely on quantitative variables whose behaviour is described by theoretical probability
distributions. These parametric methods have the advantage of being defined by just
a few parameters (e.g. centrality and dispersion indicators for the normal probability
distribution function). Just to name a few of them, the mean-variance framework (i.e.
based on the Markowitz model), the Sharpe ratio (i.e. CAPM model), the different
VaR (except for the VaR based on historical simulations), are all examples of such
methods. When the bank is not up to developing its own advanced model, then the
capital that is to be set aside is calculated using a standardised approach.

Several approaches have been developed to calculate the minimum amount of capi-
tal required for managing operational risk, corresponding to the advanced measurement
approach. For instance, Panjer [100] exploited probability theory and statistical tools
that could help build up operational risk management models. Generally, these ap-
proaches can be categorised as belonging to one of two methodologies: top-down and
bottom-up [24, 90, 130]. The top-down methodology measures the operational risk
as a percentage of a certain amount of profit or other quantity without analysing the
causes of risk. In contrast, the bottom-up methodology researches on the probabilities
and severities of events which could lead to loss in order to measure the risk. In this
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methodology, there are statistical methods (estimating probability distribution of risk
events), causal approaches (based on cause-effect analysis) and Bayesian approaches
(via Bayes theorem). For example, [82] proposes a statistical model combined with
cause-effect analysis named the OpRisk Tree model. In this method, people firstly
identify the risk events and classify them; they then draw a flow diagram similar to
a decision tree to demonstrate the cause and effects between risk events and control
behaviour; thirdly, they assign probability distributions in this diagram; a simulation
of the frequency and severity of each risk event is then run, and then an analysis of the
correlations of these events can be conducted. There is also operational risk analysis
in specific areas: complexity introduced by derivative products in [64] and operational
risk in foreign exchange market analysed in [74]. Both methodologies can deduce the
amount of money to be set aside to cover the possible loss in the future due to opera-
tional risk.

The book of Cruz [25] presents a general framework for operational risk model-
ing, managing and hedging. The modelling and measuring part covers three aspects:
data modelling (database construction, key indicators for operational risk), stochastic
modelling (using statistical theory to model the severity and frequency of operational
risk events as two discrete stochastic processes) and casual modelling (analysing cause
and effects of operational risk events). The author uses operational Value-at-Risk to
measure the risk modelled in a stochastic manner. Operational risk management is
proposed in an approach composed of separate reports to regulators and managers,
real-time control and cost control. To hedge operational risk, it is suggested using risk
mitigation by derivatives, insurance and capital allocation.

However, measuring operational risk is rather subjective due to its qualitative na-
ture, being related as it is to managerial issues. The benefit from these methodologies,
which heavily rely upon statistical theory and quantitative variables to measure and
manage operational risk is really limited. Instead of using one single tool to digest
all aspects and to generate rough management strategy, in the following section we
propose a stochastic programming model to deal with the operational risk of human
origin. The method is illustrated by a Workforce Planning Problem.

1.3.3 Workforce Planning Problem

It is common in financial sectors that both professionals and non-professionals are em-
ployed to deliver service. Much of the work involved in the financial industry demands
people with high education, experimental knowledge and certain skills, while other
parts can be dealt with by routine processes or under simple instructions. A notion
arising from service science makes the distinction between explicit (information) and
implicit (or tacit) knowledge [102]. Explicit knowledge can be recorded on documents
easily and learnt by most people within short period of time. Such knowledge is suf-
ficient for employees dealing with routine work. Implicit knowledge, corresponding to
professional knowledge and skills, requires much more time to understand and to be
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put into practice. This kind of knowledge may not be requested on a daily basis, but
it is critical to maintain a high quality of business. Especially when operations go
into unusual situations for which explicit knowledge does not show the solution, only
professionals with implicit knowledge are able to drive it back to the right track. From
the point of view of capacities of employees, professionals are always preferable to non-
professionals. On the other hand, however, the cost of hiring professionals is higher
than the other group. It is a management decision to plan the workforce optimally
considering the operational risk and the resulting benefit.

The Aggregate Planning Model (APM) adapted to services can be successfully
applied to assess the level of expertise necessary to deal with operational risks in the
back offices of banks. The Aggregate Planning Model was developed in the middle of
last century and has been successfully applied in production planning problems, see
[58, 78, 114], and manpower planning problems, see [1, 38, 75]. The most important
feature of the Aggregate Planning Model is the aggregation, either of products or
manpower or both, which are presented as inventory constraints. We demonstrate
it using different extensions of the stochastic programming version of the Aggregate
Planning Model. The novelty of approach presented in this research is to apply APM
to services rather than to goods. Indeed, the “production” of services is intangible (see
[101] for the characteristics of service). In other words, services do not produce goods
and therefore cannot contain inventory of goods. In the APM approach presented in
this research, we consider the inventory of human expertise available in the back office.

Therefore, instead of taking all aspects of operational risk together and dealing
with it ambiguously, we prefer to analyse one source of operational risk, i.e. employees,
which results in a large portion of the loss from operational risk, using the Aggregate
Planning Model framework. Starting from a classical multistage linear programming
version of the Aggregate Planning Model, in Chapter 4 we develop several extensions
that enable us to capture the true nature of operations risks.

1.4 Stochastic Programming

The operational research methodology, as it has developed over many decades, has
been serving the world in many aspects. Using the methodology, people observe and
formulate real problems carefully, then model those problems in scientific way, by con-
sidering viewpoints as wide and reasonable as possible. Then a solution is obtained to
optimality. Those features of operational research characterizes its applications in a
variety of fields.

Probability Theory and statistics help people better understand and recognise the
rules by which systems operate. Generally, events will happen with probabilities. That
different outcomes will occur under the same circumstances is explained by the fact
that those outcomes all have positive probabilities. In many cases, it is more precise to
predict what the future will more likely be rather than what the future will exactly be.
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A combination of operational research with statistics results in stochastic program-
ming. Stochastic programming is mathematical programming with random parameters.
In a real context of enterprise risk management, when future events need to be con-
sidered in business activity planning, uncertainty of parameters plays the key role.
Initiated in the late fifties by Dantzig and Madansky, stochastic programming provides
a paradigm to include uncertainty into optimisation-based decision models [13, 71]. In
particular, a multistage stochastic program with recourse is a multi-period mathemat-
ical program where parameters are assumed to be uncertain along the time path. The
term recourse means that the decision variables adapt to the different outcomes of ran-
dom parameters at each time period. The stochastic programming model allows one
to handle several scenarios simultaneously while scenarios present different outcomes
of random variables. It provides an adaptive policy that is close in spirit to the way
decision-makers have to deal with uncertain futures in real life.

Uncertainty, which is everywhere in the financial market, is the common charac-
teristic of market risk management and operational risk management. It follows that
stochastic programming is suited well to both risk management problems. In man-
aging market risk in ALM problems, the uncertainty of asset return is unavoidable.
A mean-risk framework is adopted with reasonable risk control to generate optimal
portfolio strategy whose risk is tolerable. In managing operational risk resulting from
human factors, the uncertainty of service demand and efficiency of employees cannot be
ignored. A stochastic Aggregate Planning Model is built up to allocate the workforce
optimally so that a service of high quality is guaranteed with lowest cost.

However, there are also differences in dealing with market risk and operational risk.
As a result, different techniques are needed in constructing stochastic programming
models.

Stochastic programming makes modelling possible in the case the parameters needed
are random, i.e. the value could be from sets, continuous or discrete. We still need
to know what set it is and the corresponding behavior (probability distribution over
this set). A big assumption of general stochastic programming is that the probability
distributions of random parameters are known. In most cases, we can use historical
data or do simulation with assumptions upon the statistical parameters. We will use
historical market data in market risk management. However, this is rarely applicable in
operational risk modelling, where historical data is limited and statistical parameters
are complicated to evaluate. Therefore, we propose the use of Bayesian network theory
to construct the probability distribution of random parameters in the programming.
This will be illustrated in Section 4.4.

Most stochastic programming used today is in the context of exogenous problems,
where uncertainty is independent of decision variables and can be predicted as a set of
values in advance. An individual investor’s trading performance can rarely influence
the whole market. We also assume that institutional trading action would not lead
significant changes to the market. This means that our portfolio strategy would not
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have any subsequent impact on the behavior of the market, i.e. the parameters in
the model are independent on our decisions. For other problems, endogenous random
factors exist, where the decision taken at current stage will influence the behaviour
of those uncertainties. This will be an important issue to be taken into account in
modelling operational risk resulting from human factors. Section 4.5 will show how to
model this fact in a stochastic Aggregate Planning Model.

The other issue in stochastic programming besides modelling comes from the solu-
tion techniques. The main challenge in solving stochastic programming is the size of
the model. It can easily grow with the increase of time horizons and the set of random
parameters values. There are algorithms, like Benders decomposition method and pro-
gressive hedging algorithm [108], which take the advantage of the special structure of
typical stochastic programming models. A certain number of stochastic programming
models, however, do not contain such structure. As a result, a direct decomposition
method is not as efficient as for those typical stochastic programming models. An
object-oriented parallel solver (OOPS), based on interior point method, is employed to
solve the ALM models constructed here. By exploiting the special structure present in
the models, this solver works in an efficient manner saving both computation time and
memory requirement.

This research studies two modelling techniques based on stochastic programming
that help seek optimal strategies in financial risk management. The first technique is
concerned with market risk management for an Asset and Liability Management prob-
lem. A stochastic dominance concept is applied to control the market risk and the risk of
underfunding. A small numerical example and an out-of-sample backtest demonstrate
advantages of this new model. By creating a link between variables associated with dif-
ferent scenarios of the same time stage, the risk control constraints always destroy the
usual tree-structure of the constraint matrix in the stochastic program and prevent the
application of standard stochastic programming approaches such as (nested) Benders
decomposition or progressive hedging. A structure-exploiting solver (OOPS) is applied
to this problem. Computational results on medium scale problems with sizes reach-
ing about one million variables demonstrate the efficiency of the specialised solution
technique.

The second model deals with operational risk from human origin by optimally al-
locating workforce from a managerial perspecitve. Unlike market risk that can be
handled in a financial manner, the treatment of operational risks calls for a “manage-
rial approach”. Consequently, we propose a new way of dealing with operational risk,
which relies on the well known Aggregate Planning Model. Our contribution corre-
sponds to several improvements applied to stochastic programming modelling. First,
the incorporation of randomness associated with demand volume and with the ca-
pacity of work provided by employees transforms the general APM into a multistage
stochastic program. Then, as advocated by Basel II, we calculate the probability dis-
tribution based on a Bayesian Network to circumvent the difficulty of obtaining data
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which characterises uncertainty in operations. Third, we go a step further by relaxing
the traditional assumption in stochastic programming that imposes a strict indepen-
dence between the decision variables and the random elements. Comparative results
show that in general these improved stochastic programming models tend to allocate
more human expertise in order to hedge operational risks. The dual solutions of the
stochastic programs are exploited to detect periods and nodes that are at risk in terms
of expertise availability.

1.5 Outline of the Thesis

In Chapter 2, we introduce and formalise stochastic programming methodology. Our
focus will be upon the recourse problem, from 2-stage problem to multiple-stage prob-
lem. The block-angular structure of the problem will also be described. Corresponding
to this special structure, we will present and compare two algorithms dealing with
stochastic programming models, i.e. a dual decomposition method and an interior-
point method based parallel solver. At the end of this chapter, endogenous problems
will be discussed briefly, followed with a list of applications of stochastic programming.

Asset-Liability Management is detailed in Chapter 3, where we use stochastic dom-
inance to control the market risk. The modelling methodology is explained and theo-
retical issues are also discussed. Furthermore, we introduce a variation of second-order
stochastic dominance and develop chance constraints from this variation. A small nu-
merical example and an out-of-sample backtest will show how this model works. Due to
the challenge arising from solving stochastic programming models, OOPS, an interior-
point solver, will be used to solve the ALM models built up and its performance will
be illustrated in the implementation part.

In Chapter 4, operational risk originating from human factors is analysed and mod-
elled as a workforce planning problem according to Aggregate Planning Model frame-
work. While ALM modelling follows a general stochastic programming prototype, this
workforce planning model breaks through the two major assumptions made in general
stochastic programming regarding to the uncertain factors. To model the risk precisely,
we take three steps starting from the stochastic Aggregate Planning Model with random
service demand, i.e. firstly considering the randomness of operation efficiency, secondly
revising the probability distribution of operation efficiency using a Bayesian network,
and thirdly adapting the influence of decision variables on the uncertainty of demand
upon the model. The implementation is illustrated for each stage of development,
followed by a perspective from the point view of shadow prices.

Chapter 5 concludes the thesis and proposes prospective research directions.
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Chapter 2

Some Modelling and Solution

Techniques of Stochastic

Programming

Stochastic programming has been identified as a useful tool dealing with uncertainties
in optimisation problems for more than half a century. In this chapter, we will first
introduce the general concepts of stochastic programming following the presentation
of Kall and Wallace [71] and then focus on recourse problems. We then compare
two solution methods of Benders decomposition and an interior-point method based
algorithm, followed with a brief discussion of endogenous and exogenous problems. A
list of applications of stochastic programming is presented at the end of this chapter.

2.1 Induction of Stochastic Programming

Optimisation is often used to model real problems under the strong assumption that
all the data is known. However, for some real-life problems it is either too expensive
or even impossible to guarantee this certainty, in which case stochastic programming
is explored.

Many practical problems, assuming known parameters, can be modeled as a math-
ematical programming problem:

min f0(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X ⊂ Rn, (2.1)

where the set X and functions f0, gi : Rn → R, i = 1, . . . ,m, are generated during the
modelling process.

In real-life applications many coefficients, i.e. the parameters in f0 and gi, i =
1, . . . ,m, are unpredictable, in which case, models of fixed coefficients may be impre-
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cise or even not the problem that we want to deal with. Such coefficients should be
considered uncertain or random. Stochastic programming takes this uncertainty into
account and aims to find the optimal solution to the problems involving uncertain-
ties. Allowing the uncertainty of parameters in (2.1), the stochastic program can be
presented as:

“ min ” f0(x, ξ)

s.t. gi(x, ξ) ≤ 0, i = 1, . . . ,m

x ∈ X ⊂ Rn, (2.2)

where ξ is a random variable varying over a set Ω ⊂ Rk with probability measure P,
or say in the probability space (Ω,F ,P), where F is an algebra over set Ω and P

is the probability measure of F . As a result, we can see that the values of functions
f0(x, ·) and gi(x, ·), i = 1, . . . ,m, are random as well.

The precise characterisation of the feasible set, as well as the question of how to
perform the minimisation of the objective function in (2.2), has yet to be clearly defined,
that’s why there are quotation marks on the minimisation. With different realisations
of the random factor ξ, the objective function and constraint functions have different
values. Before we solve this problem, a further step to revise modelling is necessary
and this leads to an equivalent deterministic programme. There are several ways to do
this revision, e.g. consider the worst case, or consider the best case, or take expectation
over all random values. In this work, we will follow the way of stochastic programming
with recourse as illustrated in the next section.

2.2 Recourse Problems

The presentation in this section follows closely Kall and Wallace [71].
We introduce the deterministic equivalent to (2.2) in the manner of inclusion of

recourse. Denote

g+
i (x, ξ) =

{
0, if gi(x, ξ) ≤ 0
gi(x, ξ), otherwise

Then ith constraint of (2.2) is violated if and only if gi(x, ξ) > 0 for a given decision
x and realisation ξ of ξ. Hence, to compensate for this violation after observing the
value of ξ, we could add a recourse variable yi(ξ) to each corresponding constraint
such that gi(x, ξ)− yi(ξ) ≤ 0. For instance in the production planning problem, when
there is a shortage of products so that demand cannot be fully satisfied, purchase can
be operated from other suppliers to make it up. This compensation is assumed to be
accompanied by an extra cost or penalty which is qi per unit. These additional costs
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can be formulated as the recourse functions and amount to:

Q(x, ξ) = min
y
{

m∑
i=1

qiyi(ξ) | yi(ξ) ≥ g+
i (x, ξ), i = 1, . . . ,m}, (2.3)

yielding a total cost of
f(x, ξ) = f0(x, ξ) +Q(x, ξ).

A more general linear recourse program with a recourse vector y(ξ) ∈ Y ⊂ Rk, where Y
is some given polyhedral set, and an arbitrary fixed m× k matrix W , which is referred
to as the recourse matrix, can be formulated as follows:

Q(x, ξ) = min
y
{q′y | Wy ≥ g+(x, ξ), y ∈ Y }, (2.4)

where q ∈ Rk is a corresponding unit cost vector and g+(x, ξ) = (g+
1 (x, ξ), · · · , g+

m(x, ξ)).
By constructing a reasonable recourse function using any of (2.3), (2.4), to achieve

the minimal expected value of the total costs, model (2.2) can be revised as a deter-
ministic equivalent of a stochastic program with recourse:

min
x∈X

Eξ∈Ωf(x, ξ) = min
x∈X

Eξ∈Ω{f0(x, ξ) +Q(x, ξ)}. (2.5)

This equivalent program is considered as a two-stage program, i.e. recourse is
determined at the second stage after decision x made at the first stage and the value
of random variable ξ known.

After generating the deterministic equivalent, one may be concerned with the math-
ematical properties of such programs, e.g. convexity, so as to determine if it is manage-
able with general algorithmic and computational capabilities. The following proposition
traced back to Kall and Wallace [71] addresses this issue.

Proposition 1. If f0(·, ξ) and Q(·, ξ) are convex in X, ∀ξ ∈ Ω, and if X is a convex
set, then (2.5) is a convex program.

In the next section, we will specifically focus on the linear stochastic programs when
the recourse (2.4) is linear.

2.2.1 Linear Recourse Programming

Linear recourse is relevant to most practical problems and has favourable properties in
terms of solution methods.

Consider a linear stochastic program,

“ min ” c′x

s.t. Ax = b,

L(ξ)x = h(ξ),

x ≥ 0, (2.6)
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where both A ∈ Rm0×n and b ∈ Rm0 are deterministic, the matrix L(·) ∈ Rm1×n

and vector h(·) ∈ Rm1 in contrast depend on the random variable ξ. The set X in
formulation (2.2) is defined as X = {x | Ax = b, x ≥ 0} in this case.

Following the approach of (2.5) and (2.4) in constructing a deterministic equivalent
to the stochastic program (2.6), we have the following stochastic linear program with
linear recourse:

min
x

c′x+ Eξ{Q(x, ξ)}

s.t. Ax = b

x ≥ 0,

where

Q(x, ξ) = min
y
{q′y | W (ξ)y = h(ξ)− L(ξ)x, y ≥ 0}, (2.7)

and the recourse matrix W (ξ) ∈ Rm1×n depends on the random variable ξ.
The second-stage decision variable y in the stochastic program is often used to

model the compensation of deficiencies arising in practical applications. It is expected
that, given any first-stage decision x ∈ X and any realisation of random variable ξ,
such compensation exists, i.e. the second-stage program

Q(x, ξ) = min
y

q′y

s.t. W (ξ)y = h(ξ)− L(ξ)x, (2.8)

y ≥ 0,

is feasible ∀ξ ∈ Ω. To specify the conditions of feasibility, we assume a discrete dis-
tributed random variable ξ with realisations ξj , j = 1, . . . , r. Then, the first-stage
feasibility set K can be generated as

K = {x | L(ξj)x+W (ξj)yj = h(ξj), yj ≥ 0, j = 1, . . . , r}.

For any x ∈ X ∩ K, and realisation ξ, the recourse problem is always feasible.
Hence, if X ∩K 6= ∅, the stochastic program is feasible. We now introduce the concept
of complete fixed recourse. A recourse matrix W is fixed if it does not depend on the
random variable ξ. Furthermore, a fixed m1 × n recourse matrix W is defined to be
complete if

{z | z = Wy, y ≥ 0} = Rm1 ,

implying that K = Rn, i.e. for any first-stage decision x and any realisation ξ of ξ, the
second-stage program (2.8) is always feasible.

In fact, relatively complete recourse is sufficient for feasibility of the second-stage
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program, which is defined as

h(ξ)− L(ξ)x ∈ {z | z = Wy, y ≥ 0}, ∀ξ and ∀x ≥ 0 satisfying Ax = b.

It is obvious that complete recourse implies relatively complete recourse.
Furthermore, if the random variables have a finite joint discrete probability distri-

bution

P (ξ = ξk) = pk,
r∑

k=1

pk = 1, pk ≥ 0, k = 1, . . . , r,

the expected value of the recourse function can be explicitly stated. We can rewrite
the stochastic program (2.7) as

min
x

c′x+
r∑

k=1

pkq
′yk

s.t. Ax = b

L(ξk)x+Wyk = h(ξk), k = 1, . . . , r,

x ≥ 0,

yk ≥ 0, k = 1, . . . , r. (2.9)

The two-stage stochastic linear program has the special structure named dual decom-
position structure as illustrated in Figure 2.1. The block structure is well-suited to the
dual decomposition method discussed in Section 2.4.2.

2.2.2 Multiple-Stage Recourse Problems

It is natural to extend the two-stage recourse program discussed in the previous section
to a multi-stage context by considering decisions in more stages other than x at the
first stage and y at the second stage.

Assume there are T + 1 stages with T + 1 sequential decisions xτ to be taken
at stages τ = 0, 1, . . ., T . Stages here do not necessarily have to correspond to time
periods. Then, at stage τ (τ ≥ 1), knowing the previous decisions and values of random
variables, including realisations ξ1, · · · , ξτ of ξ1, · · · , ξτ and decisions x0, · · · , xτ−1, we
have to decide on xτ satisfying the constraints:

gτ (x0, · · · , xτ , ξ1, · · · , ξτ ) ≤ 0,

where gτ are vector-valued functions.
Assuming a cost function qτ (xτ ) at stage 1 ≤ τ < T which are known parameters

at the beginning, the recourse function can be presented recursively as

Qτ (x0, x1, · · · , xτ−1, ξ1, · · · , ξτ ) = minxτ Eξτ+1
{qτ (xτ ) +Qτ+1(x0, · · · , xτ , ξ1, · · · , ξτ , ξτ+1)}

s.t. gτ (x0, · · · , xτ , ξ1, · · · , ξτ ) ≤ 0.
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Figure 2.1: Block structure of a two-stage recourse problem.

And at stage T ,

QT (x0, x1, · · · , xT−1, ξ1, · · · , ξT ) = min
xT

{qT (xT ) | gT (x0, · · · , xT , ξ1, · · · , ξT ) ≤ 0}.

It can be easily seen that the optimal recourse decision x̂τ depends on x0, · · · , xτ−1

and ξ1, · · · , ξτ , i.e.

x̂τ = x̂τ (x0, x1, · · · , xτ−1, ξ1, · · · , ξτ ), τ ≥ 1.

The deterministic equivalent for this multi-stage stochastic program with recourse,
which involves dynamic decision process, can be written as

min
x0∈X

Eξ1
{f0(x0) +Q1(x0, ξ1)},

which is similar to (2.5) and a straightforward extension for multi-stage problems.
Proposition 1 is also true for multi-stage case.

The evolution of uncertainties in multi-stage stochastic programming in the discrete
case can be presented as an event tree, which describes the unfolding of values of the
random parameters through the time horizon considered. Take a 3-stage problem for
example as shown in Figure 2.2. Each path from the root to a leaf node is a scenario
presenting a possible outcome of the uncertainties, which is assigned with a probability.
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Each node of the event tree is defined with a set of constraints, a set of variables and
its ancestor node. The associated decisions at a non-leaf node are the same to all the
scenarios sharing this node, at the corresponding stage of that node.

Figure 2.2: A simple event tree.

Similar to the 2-stage problem, a multi-stage stochastic linear program with linear
recourse has the following formulation:

min
x

Eξ1
{c′x0 +Q1(x0, ξ1)}

s.t. Ax0 = b

x0, · · · , xT ≥ 0, (2.10)

where

Qτ (x0, · · · , xτ−1, ξ1, · · · , ξτ ) = min
xτ

Eξτ+1
{q′τxτ +Qτ+1(x0, · · · , xτ , ξ1, · · · , ξτ , ξτ+1)}

s.t. W (ξτ )xτ = h(ξτ )− L(ξτ )xτ−1.

Furthermore, if the random variables have a finite joint discrete probability dis-
tribution, i.e. rτ nodes at stage τ , the above stochastic program can be rewritten
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as

minx c′x0 +
T∑

τ=1

rτ∑
kτ=1

pkτ q′τx
kτ
τ

s.t. Ax0 = b (2.11)

L(ξkτ )xkτ−1

τ−1 +W (ξkτ )xkτ
τ = h(ξkτ ), τ = 1, . . . , T, kτ = 1, . . . , rτ ,

x0, · · · , xT ≥ 0.

By associating an event tree to the program and listing the constraints by depth-first
search ordering of the nodes, the constraint matrix corresponding to the event tree of
Figure 2.2 has a nested dual block-angular structure as presented in Figure 2.3, similar
to Figure 2.1.

Figure 2.3: Block structure of a multi-stage linear recourse problem.

Both the ALM problem and workforce planning problem considered in this project
are modelled as multi-stage programs with linear recourse. While the ALM modelling
is linear, the workforce planning, however, is a mixed-integer program where the objec-
tive function and constraint functions are linear but the decision variables need to be
integers. The solution techniques for stochastic linear programming will be discussed in
a later section. How to solve the stochastic integer programming is out of the scope of
this work. We will resort to reliable integer solvers for the workforce planning models
introduced in Chapter 4.
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2.3 Scenario Generation

In the previous section, we mentioned the event tree which describes the unfolding
of values of random parameters through the modelling horizon. When modelling a
stochastic problem, it is a very important issue to estimate the random parameters.
Scenario can be applied to present realizations of random factors under the assumption
that the random variables have discrete probability distributions. The corresponding
probability distribution could be analyzed and concluded from historical data. Then a
scenario tree can be generated from the probability distribution [16], i.e. by sampling
values from the probability distribution of ξ. If there are correlated random variables,
it would be necessary to specify the marginal distributions and the correlation matrix
[15]. In case of unknown probability distribution, scenarios could be generated with
required moments [117], e.g. mean, variance, skewness, etc. However, there is danger
that the scenario tree grows exponentially and leads to difficulty in solving the model,
when scenario reduction techniques [35] can be applied to reduce the size of the tree
with the minimum loss of accuracy. Comparison of scenario generation methods can
be found in [73].

2.4 Solving Stochastic Linear Programming

The main challenge in stochastic programming is the size of the deterministic equivalent,
especially when there are more than two stages. The number of contingent variables
and constraints grows linearly with the number of realisations of random factors and
exponentially with the number of stages. The size of the problem creates a challenge
to the solution approach. On the other hand, stochastic linear programming models
present a special structure (as shown in Figures 2.1 and 2.3) that can be exploited to
improve the efficiency of the solution approach. The general approach is to resort to
a decomposition principle. Two solution techiniques are discussed below, namely the
Benders decomposition and an interior-point method based approach which consists of
decomposing the linear algebra operations.

2.4.1 Duality Theory and Shadow Prices

Before introducing the decomposition methods, we review some basic statements from
duality theory for linear programming. Given a linear program, which is also called the
primal program, of the form

min c′x

s.t. Ax = b

x ≥ 0, (2.12)
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the so-called dual program can be formulated as

max b′u

s.t. A′u ≤ c. (2.13)

The feasible set of the primal program is denoted by P = {x ∈ Rn : Ax = b, x ≥ 0}
and that of its dual by D = {u ∈ Rm : A′u ≤ c}. We say

inf
x∈P

c′x = +∞, if P = ∅,

sup
u∈D

b′u = −∞, if D = ∅.

It is proven that
inf
x∈P

c′x ≥ sup
u∈D

b′u, (2.14)

which is called weak duality. In other words, the dual objective provides a lower bound
on the primal objective, and the primal provides an upper bound on the dual.

Furthermore, if either P 6= ∅ or D 6= ∅ then it follows that [71]:

inf
x∈P

c′x = sup
u∈D

b′u.

If one of these two problems is solvable then so is the other, and we have

min
x∈P

c′x = max
u∈D

b′u.

By the strong duality at the optimum, if both the primal and dual problems are
feasible, the optimal value is then

z = c′x̂ = b′û, (2.15)

where x̂ ∈ Rn and û ∈ Rm are the optimal solutions to the primal and dual problems,
respectively.

From (2.15), we can see that if the dual solution does not change, an increase of
bj , j = 1, . . . ,m by 1 can lead to a ûj unit increase in the optimal value. The dual
solution û represents the so-called shadow prices. The definition of a shadow price can
be found in [65, 125]:

“The shadow price of the ith constraint is the amount by which the optimal
z-value is improved (increased in a max problem and decreased in a min
problem) if we increase bj by 1 (from bj to bj + 1). ”

A “≥” constraint will always have a nonpositive shadow price; a “≤”constraint will
always have a nonnegative shadow price; an equality constraint has a shadow price not
restricted in sign.
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A shadow price provides valuable information for the management. For instance
in the production planning problem, there are recourse constraints, i.e. the right hand
side bj represents the amount of available jth material. While the dual solution remains
optimal, increase of one more unit of bj can bring ûj more profit. This information is
very helpful when an increase in jth material can be achieved only by simply purchasing
more of the resource in the marketplace. This also implies the maximum price the
manager would like to pay for an additional unit of a resource.

Furthermore, the shadow price is also related to sensitivity analysis of the linear
program, whose main purpose is to identify the sensitive parameters (namely those that
cannot be changed without changing the optimal solution). For those parameters, the
value has to be estimated with special care, due to the risk of obtaining an erroneous
optimal solution. ûj = 0 implies that the optimal solution is not sensitive to at least
small changes in bj . On the other hand, for those ûj ’s with large absolute values, the
optimal solution could be very sensitive to bj and extra care is needed. The sensitivity
analysis of nonlinear programs will be discussed in Chapter 4.

2.4.2 Benders Decomposition

The Benders decomposition algorithm [9] (also called the dual decomposition method)
is one of the most popular algorithmic schemes to deal with two-stage linear stochastic
programming problems. The use of the Benders decomposition method requires the
dual decomposition structure of the problem where the coefficients of recourse variables
(second-stage variables) appear as a block diagonal matrix as shown in Figure 2.1.
Essentially, one considers a two-stage stochastic program and defines two independent
problems, one for each stage. The problem decomposes at the second stage, so we have
as many subproblems as there are second stage nodes. The decomposition algorithm
consists of a dialogue between the problem at the first stage and subproblems at the
second stage, in order to reach an optimum for the original problem. We have already
seen that programs (2.9) and (2.11) have a dual decomposition structure; we now show
how this special structure can be used in the Benders decomposition algorithm.

Restate the program (2.9) as

min
x

c′x+
r∑

k=1

fk(x)

s.t. Ax = b

x ≥ 0, (2.16)

where

fk(x) = min
yk
{q′yk | Wyk = hk − Lkx, yk ≥ 0}, k = 1, . . . , r.

It can be obtained that the recourse function fk(x) is piecewise linear and convex. For
any given value of x, recourse functions fk(x), k = 1, . . . , r, are independent. The
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subproblems are r recourse programs fk(x), k = 1, . . . , r. Program (2.16) is equivalent
to:

min
x,θk

c′x+
r∑

k=1

θk

s.t. Ax = b (2.17)

θk − fk(x) ≥ 0, k = 1, . . . , r,

x ≥ 0,

with fk(x) defined above. (2.17) is called the master problem.
The decomposition method starts with a reasonable value x̂0 of x and θ̂0 of θ, with

which we evaluate the recourse function in the formulations of both primal and dual
programs:

fk(x̂0) = min
yk
{(qk)′yk | Wyk = hk − Lkx̂0, y

k ≥ 0}

= max
yk
{(hk − Lkx̂0)′uk | W ′uk ≤ qk}. (2.18)

Solving each subproblem will generate a cut for the master problem, which could be an
optimality cut or a feasibility cut, depending on whether the primal recourse program
is feasible or not.

• Case 1: the primal problem is feasible, i.e. fk(x̂0) is finite. Then we have a dual
optimal solution ûk and a primal optimal solution ŷk. From (2.18), we have

fk(x̂0) = (hk − Lkx̂0)′ûk, (2.19)

while observe that for any value of x

fk(x) = sup
uk

{(hk − Lkx)′uk | W ′uk ≤ qk}

≥ (hk − Lkx)′ûk.

Using the constraint θk−fk(x) ≥ 0 in program (2.17), the above inequality yields:

θk ≥ (ûk)′(hk − Lkx).

By (2.19), we can rewrite the above equation as:

θk ≥ fk(x̂0)− (ûk)′Lk(x− x̂0)

This is the so-called optimality cut that the optimal pair (x̂, θ̂) should satisfy.

• Case 2: the primal problem is infeasible, i.e. fk(x̂0) = +∞. This means x̂0 is
indeed not feasible for all the constraints in (2.16), in which case the dual will be
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unbounded. Then we can find a ray of unboundedness ûk such that W ′ûk ≤ 0 and
(hk − Lkx̂0)′ûk ≥ 0, since by multiplying by a positive number on the left-hand
side of both equations, the constraints of dual problem are satisfied and the value
of the objective function can grow to infinity. Meanwhile, given any feasible value
x, some y ≥ 0 exists such that Wy = hk − Lkx. Hence, we have

(ûk)′(hk − Lkx) = (ûk)′Wy ≤ 0,

because W ′ûk ≤ 0 and y ≥ 0. Such inequality should hold for all feasible values
of x; observe that it is violated by x̂0 because (hk − Lkx̂0)′ûk ≥ 0. Therefore we
introduce the feasibility cut, cutting off the infeasible solution x̂0, as

(ûk)′(hk − Lkx̂) ≤ 0.

After computing all r terms of the recourse function, that is solving all subproblems
here, r cuts are generated, either optimality or feasibility cuts. Then, adding these cuts
to the problem (2.17), the master problem can be replaced with:

min
x

c′x+
r∑

k=1

θk

s.t. Ax = b

θk ≥ fk(x̂0)− (ûk)′Lk(x− x̂0), k ∈ K1 (2.20)

(ûk)′(hk − Lk)x̂ ≤ 0, k ∈ K2

x ≥ 0, K1 ∪K2 = {1, . . . , r}, K1 ∩K2 = ∅,

where K1 and K2 are the sets of optimality and feasibility cuts, respectively. The
solution of the above master problem provides the next query point (x̂1, θ̂1), which
can be substituted into the recourse subproblems. The computations can then all be
repeated keeping all previously generated cuts.

The optimal solution to the master problem (2.20) provides a lower bound φ to the
original program (2.17). Observe that an upper bound of the optimal value of (2.17)
can be generated as

φ = c′x̂0 +
r∑

k=1

fk(x̂0),

if all subproblems are feasible, or it can be selected as φ = +∞ otherwise. If

φ− φ ≤ ε,

where ε is some small number to be chosen, the algorithm stops.
In all, the master problem conveys a query point to the subproblems which will

generate cuts as feedback to the master problems and the solution of the master problem
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provides an upper bound to the original program. Then solution of the master problem
will provide a lower bound for the program and the next query point. When the lower
bound and the upper bound are close enough, an optimum is achieved.

The following proposition can be found in Kall and Wallace [71]:

Proposition 2. If the program (2.16) is solvable and its feasible set is bounded, the
Benders decomposition method yields an optimal solution after finitely many steps.

2.4.3 Interior Point Method and OOPS

Over the past two decades of linear programming research, interior point methods [127]
have arisen as an alternative to the simplex method. Theoretical research and practical
analysis have already shown their superior performance and efficiency over the simplex
method for certain classes of problems. Interior point methods consistently require
a small number of iterations to achieve the optimal solution, as well as fairly simple
linear algebra: this makes the method well-suited to large scale problems. We know
that the size of stochastic programming can easily grow with the number of realisations
of random factors. This section provides a brief derivation of interior point methods
and an introduction of OOPS [55, 57], a structure-exploiting parallel interior point
method.

Primal-Dual Interior Point Methods

Interior point methods (IPM) provide a unified framework for optimisation algorithms
for linear, quadratic and nonlinear programming. The explanation of their theoretical
background can be found in [127]. In this section we present the algorithm for linear
programming problems.

Consider a primal-dual pair of a linear program in a standard form as presented in
(2.12) and (2.13), which is restated here for convenience:

(Primal)
min c′x

s.t. Ax = b

x ≥ 0,

(Dual)
max b′u

s.t. A′u+ s = c,

s ≥ 0,

(2.21)

where c, x ∈ Rn, b, u ∈ Rm, A ∈ Rm×n, and m ≤ n, s ∈ Rn are so-called slack variables.
In this section we will consider the dual form in (2.21). Without loss of generality, we
can assume that A has full row rank, rank(A) = m. Specialising the Karush-Kuhn-
Tucker (KKT) conditions for the above primal-dual pair, the vector x̂ ∈ Rn is a solution
to the primal problem in (2.21) if and only if there exist vectors û ∈ Rm and ŝ ∈ Rn
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for which the following conditions hold for (x, u, s) = (x̂, û, ŝ):

Ax = b, (2.22a)

A′u+ s = c, (2.22b)

xisi = 0, i = 1, 2, . . . , n, (2.22c)

(x, s) ≥ 0. (2.22d)

(2.22a), (2.22b) and (2.22d) imply primal and dual feasibility. Condition (2.22c) implies
that for each i = 1, . . . , n, either xi or si must be zero, which are called complementarity
conditions, i.e. zeros in x and s appear in complementary positions. By multiplying
with x′ on both sides of (2.22b) and rearranging we obtain

c′x− b′u = x′s,

implying the equivalence of complementarity and the duality gap for feasible points,
which is zero at optimality as shown previously.

The vector (û, ŝ) ∈ Rm×Rn is a solution to the dual problem in (2.21) if and only if
there exists a vector x̂ ∈ Rn such that the conditions (2.22) hold for (x, u, s) = (x̂, û, ŝ).
In conclusion, x̂ is the primal solution and (û, ŝ) is the dual solution if and only if
(x̂, û, ŝ) is the solution to the system (2.22). (x̂, û, ŝ) is called a primal-dual solution.

We rewrite the KKT conditions as

F (x, u, s) =

 Ax− b

A′u+ s− c

XSe

 = 0,

(x, s) ≥ 0,

(2.23)

where X and S are diagonal matrices, X = diag(x1, · · · , xn) and S = diag(s1, · · · , sn),
e = (1, 1, · · · , 1)′ ∈ Rn. This is a nonlinear system. The optimal solution can be
achieved through solving the KKT system (2.23) by Newton’s method. The primal-
dual interior-point methods apply the Newton’s method to achieve the optimal solution.

The primal and dual feasible sets can be written as:

P = {x ∈ Rn : Ax = b, x ≥ 0}, D = {(u, s) ∈ Rm × Rn : A′u+ s = c, s ≥ 0}.

The strictly feasible sets, or the set of primal interior points and the set of dual interior
points, are given as

P0 = {x ∈ Rn : Ax = b, x > 0}, D0 = {(u, s) ∈ Rm × Rn : A′u+ s = c, s > 0}.

Then the primal-dual feasible set is

F = P ×D = {(x, u, s) | Ax = b, A′u+ s = c, (x, s) ≥ 0},
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and accordingly, the set of primal-dual interior points (the primal-dual strictly feasible
set) is

F0 = P0 ×D0 = {(x, u, s) | Ax = b, A′u+ s = c, (x, s) > 0}.

Given a scalar τ > 0, solving the system

Ax = b, (2.24a)

A′u+ s = c, (2.24b)

xisi = τ, i = 1, 2, . . . , n, (2.24c)

(x, s) > 0. (2.24d)

gives a point (xτ , uτ , sτ ), a primal-dual strictly feasible point. Instead of the comple-
mentarity condition and nonnegative bounds condition, the pairwise products xτ

i s
τ
i are

all equal to a positive number τ for all i = 1, . . . , n and these two vectors are strictly
positive. Varying the value of τ , points (xτ , uτ , sτ ) construct an arc, which is the so
called central path

C = {(xτ , uτ , sτ ) | τ > 0}.

Given the strictly feasible set F0 6= ∅, the point (xτ , uτ , sτ ) is unique for each τ > 0.
If the central path converges while driving τ to approach 0, it must converge to a
primal-dual solution, e.g. Fig 2.4, where the bold curve is the central path.

Figure 2.4: An example of a central path.
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A Newton step (∆x,∆u,∆s) towards the central path can be generated by solving

J(x, u, s)

 ∆x
∆u
∆s

 = −F (x, u, s) = −

 Ax− b

A′u+ s− c

XSe− στe

 ,
where J is the Jacobian of F , σ ∈ [0, 1] is a centering parameter and τ is a duality
measure defined by

τ =
1
n

n∑
i=1

xisi = x′s/n.

The linear system is then A 0 0
0 A′ I

S 0 X


 ∆x

∆u
∆s

 =

 ζp

ζd

ζµ

 , (2.25)

where
ζp = b−Ax, ζd = c−A′u− s, ζτ = στe−XSe.

The step (∆x,∆u,∆s) is toward a point at which each pairwise product xisi is equal
to στ in contrast to 0 required by (2.23). This step would be a standard Newton step
of the KKT system (2.23) if σ = 0, while σ = 1 gives a centering direction that leads to
a central point (xτ , uτ , sτ ) ∈ C at which xτ

i s
τ
i = τ . Hence, trading off between reducing

the duality gap τ and improving centrality is always needed, for example by taking an
intermediate value of σ from the open interval (0, 1).

”Since these steps are biased toward the interior of the nonnegative or-
thant defined by (x, s) ≥ 0, it usually is possible to take longer steps along
them than along the pure Newton steps for F before violating the positivity
condition.” [127] p.7

By elimination of

∆s = X−1(ζτ − S∆X) = −X−1S∆X +X−1ζτ ,

from the second equation of (2.25), we get the symmetric indefinite augmented system
of linear equations [

−Θ−1 A′

A 0

] [
∆x
∆u

]
=

[
ζd −X−1ζτ

ζp

]
(2.26)

to be solved, where Θ = XS−1 is a diagonal matrix. In addition, the constraint matrix
A in stochastic programming presents a block-angular structure, for instance Fig 2.3.
And as a result, the whole augmented system (2.26) displays a block-sparse pattern for
stochastic programming problems which can be exploited to make the solution process
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Figure 2.5: Nested block-structured constraint matrix with its tree representation

more efficiently.

Object-Oriented Parallel Solver

An Object-Oriented Parallel Solver (OOPS) [55, 57] is based on primal-dual interior-
point method. This solver can exploit the nested block structure of the problem by
representing the matrices defining the problem as a tree of structured matrices. A
linear algebra kernel which can exploit special structure is used inside a primal-dual
interior point solver targeted at convex optimization problems. It is able to solve large
scale linear or quadratic problems efficiently, by exploiting the block structure of the
matrices in the augmented system (2.26). The matrices with the block structure are
composed of sub-matrices; furthermore, each sub-matrix could be a block-structured
matrix itself, which shows a nested block structure. Such matrices appear in a number
of mathematical programming problems. Stochastic programming is one of the class of
problems that have such properties. More nesting of blocks is involved as the number
of stages modelled is increased.

In OOPS, each matrix block is treated as an object. A linear algebra is designed
to exploit the structure information of the matrix and to build up a representing tree
with the blocks as nodes, i.e. the whole matrix is represented as the root, a child
of a node is a sub-matrix of the matrix represented by this node and leaf nodes are
elementary matrices that cannot be broken down further into smaller blocks. Figure 2.5
illustrates how to build up a representing tree of the multi-stage stochastic program
shown in Figure 2.3. The structure information of each block is associated with the
corresponding node.

Then, every primal-dual interior point iteration will be working on this tree. The
leaf nodes are evaluated first. The evaluation of a matrix corresponding to a non-
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leaf node can be distributed to a sequence of operations on its sub-blocks represented
by its child nodes. The operations on those sub-blocks are independent, and can be
processed in a parallel manner. What is worth mentioning is that the exact sequence
of operations at a given node depends on the structure of the corresponding matrix;
however, the structure information of the parent and child node is not related to each
other. Therefore, instead of solving the whole large augmented system as one, it is
decomposed to a sequence of operations on several smaller blocks according to the
structure of the matrix and those blocks may be decomposed further.

Both Benders decomposition and OOPS work in a fashion that breaks the large
problem into several small ones and they both suit most stochastic linear programs.

Using Benders decomposition, it is even not necessary to write and input the large
whole deterministic equivalent to the algorithm, namely one can just write the smaller
master problem and subproblems to save memory. However, the increase of the stage of
stochastic programs may lead to significant complexity in the decomposition algorithm.
Different algorithms will be needed for linear problems (LP) and nonlinear problems
(NLP). As Benders decomposition relies on the diagonal block structure (nonzero’s only
appear in the diagonal blocks besides a border of columns), the challenge will come if
constraints linking the blocks together appear, as we will see in Chapter 3.

Since it is embedded in an IPM solver, OOPS is designed to deal with convex
problems, both LP and NLP. One can use OOPS just by inputting the model and
the structure of the model which is normally known through the modelling process.
The algorithm does not require any modification to solve models with more stages.
Furthermore, the block structure that OOPS can deal with allows for any combination
of nested block structures, including the diagonal block structure.

2.5 Exogenous and Endogenous Problems

All stochastic programs and related recourse problems discussed above assume that the
probability distributions of the random parameters are all independent of the decision
variables. Recall stochastic program (2.2)

“ min ” f0(x, ξ)

s.t. gi(x, ξ) ≤ 0, i = 1, . . . ,m

x ∈ X ⊂ Rn,

where ξ is a random vector varying over a set Ω with probability measure P, or say
in the probability space (Ω,F ,P). The probability measure P in most cases is in-
dependent of the decision variables xj , j = 1, . . . , n, and these kinds of problems are
referred to as exogenous problems. Different from them are the so called endogenous
problems, which deal with some important decision problems in which, through the de-
cision process, an endogenous randomness depending on decision variables occurs. In
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the classical form of stochastic programming, the decision variables and uncertainties
are independent, see [13, 37, 71, 106]. The stochastic programs modelled with the so
called endogenous uncertainty, in which decision variables can influence the uncertain-
ties, were first addressed by Pflug [103].

As an example, consider the gas field development planning problem presented in
[50]. There is a set of gas reservoirs available for production, with unknown sizes and
qualities of the reserves. This uncertainty is resolved only when a facility is installed at
that field. Thus, the timing of uncertainties to be resolved depends on the investment
decisions. It is important to consider the potential of obtaining valuable information as
a result of the investment, besides considering the capital expenditures and associated
revenues.

Ignoring the dependence by formulating a simpler model is a way to deal with this
complicated problem. However, it is not a satisfactory approach. Embedding this
dependence in the model may cause various technical difficulties, e.g. if f0(x, ξ) is
convex in x for each realisation ξ of ξ, then it is also convex for the problem with
independent probability measure, whereas the convexity property may be lost for Px

(i.e. when the probability distribution P is a function of the decision variable x).
Endogenous problems are generally classified in two types:

• the probability distribution is of a known type and only its parameters depend
on decisions;

• there is a fixed finite set of probability distributions and the one to be chosen
depends on decisions. Such dependence may be modeled by Boolean variables
and decisions may be partly related to the choice of probability distribution from
the given set.

A hybrid mixed-integer disjunctive programming formulation for stochastic program-
ming corresponding to endogenous problems is presented in [50] with a branch and
bound algorithm, while a decomposition algorithm for a model with boolean variables
is proposed in [68].

While most work in non-standard problems is about the decision-dependent proba-
bility distributions, in the workforce planning problem in Chapter 4 we are dealing with
uncertain elements in the model (e.g. service demand) depending on decisions. This is
due to the fact that the labour allocation strategies will determine the output of the
service, which could have an impact on the reputation of the institution. While cus-
tomers make choices of the companies to deliver service according to their reputations,
demands of the institution could be further influenced.

The reader interested in further discussions of non-standard problems is referred to
[5, 36, 50, 68] and the references therein.
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2.6 Application Areas

Stochastic programming has been used to solve problems in the fields where uncertainty
is an important factor. With the aid of fast-growing computational capability, stochas-
tic programming methodology becomes applicable even in complex problems and new
areas. Here we list a few categories of problems in which this technique is considered
to be reliable and in which it is well developed.

• Finance, including fund management, risk management, derivative product pric-
ing. Asset-Liability Management [132] is a well-known example of a financial
problem dealt with by stochastic programming, where both asset returns and lia-
bilities are uncertain. This problem will be discussed in detail in Chapter 3. Fur-
ther developments in this area consider the strategy-making of pension schemes,
i.e. how to set the minimum payment by customers in order to maintain a sustain-
able pension fund. Stochastic programming can also be used in market risk and
credit risk management in the financial market [4, 54]. Some work has already
shown how to price derivative products by stochastic programming [22, 23]. The
principle is using the replication rule, which means the return of such product can
be replicated by a set of simple financial products whose prices are already known.
By the arbitrage free assumption, the price of this product should be equal to this
set of assets and such a set is determined by minimising the difference in returns
between the product and the set of assets.

• Management. Production planning is one of the classical application areas of
stochastic programming, which seeks to maximise profit when resources are lim-
ited [3, 40]. In such problems, demand, as well as the prices of resources and
the sale price of products, is normally random. It is important to take these
uncertainties into account to avoid unsatisfied demand, lack of resources or drop
in profit. Some manufactures may also look for opportunities to expand their
capacities in the situation in which both expanding cost and induced profit can-
not be predicted, considering how these can be organised efficiently so that high
revenue with low cost is attainable in the long term. On the other hand, hu-
man resource allocation can also be planned by stochastic programming, to find
an optimal strategy such that all the work requested is completed on time with
lowest managerial cost, while the available workforce or work due may be uncer-
tain. The problem dealt with in Chapter 4 is concerned with the human factor
in operational risk management.

• Energy industry, e.g. the electricity and gas markets. A typical application of
stochastic programming is electricity generation scheduling and planning. There
are three broad classes of problems having received much attention [128, 29], i.e.
unit-commitment problems [120, 119], hydro-thermal scheduling [20, 95] and ca-
pacity expansion [2, 85]. In the most general form, all of these problems can be
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modelled as multi-stage stochastic programming problems. In addition, stochas-
tic equilibrium modelling for electricity markets is also a new development of
stochastic programming [94]. In gas markets, natural gas is produced in produc-
tion fields and transported in pipelines by using compressors such that molecules
flow from the originating end of a pipeline with a high pressure towards the an-
other end. The planning problems for the producers are uncertain, due to the
price uncertainty and flexibility of pipeline systems and contracts [62]. Stochas-
tic mixed integer programming is used to model supply chain optimisation for
coordination of production, transportation, storage and contract management.

• Logistics. The efficient design of the supply chain is crucial to manufacturing,
which involves a network organisation of suppliers, manufacturing plants, ware-
houses, and distribution channels, so as to acquire raw materials, convert these
raw materials to finished products, and distribute these products to customers.
The costs and demands are both difficult to predict. The production and distri-
bution have to be optimised based on these uncertainties, which can be handled
by stochastic programming, [115].

• Telecommunications. The demand of network capacity is scarce resource due
to the growing requirement of higher bandwidths. In the meantime, such a de-
mand requirement presents an opportunity for significant revenue growth, un-
der the condition of enough resources are available. Because of the competitive
telecommunication market customers can choose the network provider they pre-
fer. Therefore, the network provider has to plan bandwidth allocation through
network links carefully so as to maximise the potential number of requests served
by the network. The function of the network and demand are both random in such
problems. Stochastic programming was used to determine the optimal bandwidth
such that the maximal revenue is achieved, [116].
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Chapter 3

Measuring and Managing Market

Risk by Stochastic Dominance

Stochastic programming has been used to aid portfolio decision making for over twenty
years. The control of market risk is one of the most important aspects of this ap-
plication. In this chapter, we will work on multi-stage Asset-Liability Management
modelling and explore efficient risk control methods. Furthermore, OOPS, an object-
oriented parallel solver, is used to solve the resulting optimisation problems and its
sound performance is demonstrated by the computational results compared with an-
other solver at the end of this chapter. The original content of most parts of this
chapter has already appeared in [129], coauthored with Jacek Gondzio and Andreas
Grothey.

3.1 Asset-Liability Management

ALM models assist financial institutions in decision making on asset allocations con-
sidering full use of the fund and resources available. The model aims to maximise the
overall revenue, sometimes as well as revenue at intermediate stages, with restrictions
on risk. Risk in ALM problems is present in two aspects: a possible loss of investment
and missing the ability to meet liabilities. The returns of assets and the liabilities are
both uncertain. It is essential in ALM modelling to deal with uncertainties as well as
with risks. The stochastic programming approach is naturally applicable to problems
which involve uncertainties; an approach (with stochastic dominance) to deal with risk
management is discussed in the next section.

3.1.1 Literature Review of Asset-Liability Management Modelling

The asset and liability management problem is essential to insurance companies and
banks in which the business involves large amount of liquidity. By liquidity, we mean
that the financial sector has to satisfy liability while pursuing profit. The liability
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mainly comes from savers’ deposits for banks, and from benefits paid to insurees for
insurance companies. A collection of scientific papers about ALM can be found in [132].

In [93], ALM modelling is reviewed from a financial engineering point of view. The
authors discuss 3 issues in ALM modelling: modelling, scenario generation and solution
techniques. About modelling, the authors emphasise 7 factors that should be considered
in modelling:

1. multiperiodity, corresponding to the dynamic nature of the problem including
return over time, cash flows, rebalance, etc;

2. adequate treatment of uncertainty, which is involved in certain parameters, e.g.
returns, cash flows. These uncertainties result in the liquidity risk;

3. risk management, ability to account for the decision maker’s risk-bearing attitude;

4. consideration of transaction costs, implying the expenses incurred in transactions,
e.g. commissions;

5. integration of asset and liabilities, addressing the financial planning process;

6. understandability, that the model can be explained to fund managers and other
users;

7. other factors, e.g. legal, institutional, policy constraints.

A major difficulty in modelling the ALM problem consists in risk management. In
1986, Kusy and Ziemba [80] proposed a model for a bank that maximises revenues in
the objective while satisfying several categories of constraints composed of legal, policy,
liquidity, cash flow and budget constraints which make sure that deposit liability is
satisfied as much as possible. The main methodology adopted was stochastic modelling
with simple recourse and linear programming, and it was practical even for large banks
under the computational limit at that time. However, the market risk of assets was not
well defined or measured.

The Markowitz risk-averse paradigm [86] is also considered to model ALM problem
and optimise multiple objectives: maximise the return and minimise the associated
risk, e.g. [107]. Several techniques can also be used to model the problem in stochastic
form, e.g. chance-constraints [18], dynamic programming [26], and sequential decision
[126]. A successful example of optimisation-based ALM modelling which took risk
management issues into account was the Russell-Yasuda Kasai model for a Japanese
insurance company by the Frank Russell consulting company, which used multi-stage
stochastic programming [16, 17]. This dynamic stochastic model took into account
multiple accounts, regulatory rules and liabilities to enable the managing of complex
issues arising in the Yasuda Fire and Marine Insurance company. Expected shortfall,
i.e. the expected amount by which the goals were not achieved, was applied to measure
risk more accurately than the calculation of expected penalties and it was easy to handle
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in the solution process. Moreover, the model proved to be easy for decision-makers to
understand. The implementation results showed the advantages of the Russell-Yasuda
model over the mean-variance model in multi-period and multi-account problems.

Conditional Value-at-Risk was applied to an ALM problem for modelling pension
funds in [14]. The ratio of assets to liabilities is referred to as the funding ratio of
the pension fund and a target funding ratio is incorporated into the model, which can
be different from stage to stage. How the target funding ratio is satisfied by asset
value is constrained by Conditional Value-at-Risk. In addition to portfolio strategies,
the contribution rate is also decided in the model. The objective of the model is to
minimise the contribution from employees and employers as well as the loans involved.
Instead of using a scenario tree or event tree, the authors introduced bundles, which
grouped some sample paths at the time point until where the paths from the starting
point are the same. The numbers of asset units are the same in this bundle, i.e. they
correspond to the same strategy. This can ease the computational burden due to a
decrease in the number of scenarios while maintaining the stochastic nature of the
problem.

The concept of stochastic dominance dates from the work of Karamata in 1932 where
he proved a theorem which is quite similar to the second-order stochastic dominance
(see [83] for a survey). Subsequently, similar concepts have been applied in statistics.
The application to decision theory began about half a century ago. However, only
after the end of 1960s was the theory of stochastic dominance developed, as well as its
theoretical and empirical extensions in economics and finance. Stochastic dominance as
a risk control tool has recently gained substantial interest from the research community.
It has several attractive features but two of them are particularly important: stochastic
dominance is consistent with utility functions and it considers the whole probability
distribution and provides a partial order of random variables.

To the best of our knowledge, stochastic dominance has not yet been applied in the
ALM context and in this work we demonstrate how this can be done. Further, we de-
velop a chance constraint from relaxed interval second-order stochastic dominance and
show that it is an intermediate dominance constraint between first-order and second-
order with a discrete probability distributions. By combining second-order stochastic
dominance and relaxed interval second-order stochastic dominance, the model can help
generate portfolio strategies with better management of risk and better control of un-
derfunding. We illustrate this issue with a small example analysed in Section 3.4.1 and
a backtest in Section 3.4.2.

As the second issue, scenario generation is also critical to the programming. This
includes generating scenarios for three uncertain parameters: economic factor (e.g. in-
terest rate), return of assets, and liability to be satisfied. Scenarios generated constitute
the universe of possible outcomes. The problem requires parameter estimation of those
random variables, which can be done by several techniques, such as maximum likeli-
hood, generalised method of moments, simulated moment estimations and integrated
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parameter estimation, to mention just a few of them.
The third issue concerns with the solution technique. The problem can be solved

directly as a linear or nonlinear program. Since traditional stochastic programming
gives a tree structure of constraints, decomposition is considered efficient by taking
advantage of such special structure. The model named CALM was proposed in SMPS
format by Consigli and Dempster in [21] using dynamic recourse programming and
generating a large scale deterministic equivalent problem. They applied the nested
Benders decomposition method to solve it, which was shown at the time to be more
efficient than the general simplex method or interior point method, in terms of speed
and memory requirement.

Three optimisation technologies that can be applied to the portfolio selection prob-
lem i.e. stochastic control, stochastic programming and Monte Carlo simulation, are
also reviewed and compared in [92] by Mulvey. When a solution is achieved, stochastic
control represents an ideal framework that is easy to understand and implement, but it
is limited to small problems and hard to solve in analytic form. Stochastic programming
provides a general purpose decision model; however the size of the program may grow
quickly with the length of the planning horizon and the number of scenarios. Rather
than seeking an optimal strategy, Monte Carlo aims to find the best set of parameters
for a prespecified policy rule. It is the simplest approach among these three and is easy
to implement.

Risk constraints may link variables which are associated with different nodes at
the same stage in the event tree. Adding such constraints to the stochastic program-
ming problem destroys the usual tree-structure of the problem and prevents the use
of Benders decomposition and progressive hedging [108]. However, such problem still
presents a special structure, which is shown in Section 3.4.3. We convey such structure
of ALM models to a specialised structure-exploiting parallel interior point solver OOPS
[57] which takes advantage of such information in the solution process and can effec-
tively deal with complicated ALM problems which contain special constraint structure.
The analysis of computational results confirms that, by exploiting the structure, OOPS
outperforms the commercial optimisation solver CPLEX 10.0 on these problems.

3.1.2 Multi-Stage ALM Modelling

Generally, ALM modelling follows the mean-risk methodology. Besides the return and
risk control, the ALM model also has the following features:

1. Transaction costs; each transaction will be charged at a certain percentage of
total transaction value, and different transaction costs may apply to purchases
and sales;

2. Cash balance; liabilities should be paid to clients, meanwhile there is an inflow
in terms of deposits or premiums; the model should make sure the outflow and
inflow match;
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3. Inventories of assets and cash, which are essential in a dynamical systems of 2-
or even a multiple - stage problems;

4. Legal and policy constraints aligned with the financial sector’s requirements.

We only consider the first three features in ALM model.
It is important for the decision makers to rebalance the portfolio during the in-

vestment period as they may wish to adjust the asset allocations according to updated
information on the market. The strategy which is currently optimal may not be op-
timal any more as the situation changes. Taking this into account, the problem is a
multi-period problem and at the beginning of each period, new decisions are made.

We denote the time horizon by T . At each time stage t, t = 0, . . . , T , a decision
is made on the units of each asset to be invested in and amount of cash held, based
on the state of the total wealth and the forecast of prospective performances of the
assets at that particular time. When the random factors follow discrete distributions,
the resulting decision process can be captured by an event tree, as shown in Figure
3.1. Each node is labelled with (i, j) denoting node j at stage i. Each node represents
a possible future event. Asset returns, liabilities and cash deposits are subject to
uncertain future evolution. Meanwhile, the asset rebalancing is done after knowing
which value the asset returns and liabilities take at each node.

(1,2)

(2,1)

(1,1)

(2,5)

(2,4)

(2,3)

(2,2)

(0,1)

t=3t=2t=1
Figure 3.1: An example of event tree describing different return states of nature.

The notation of the model is given first:
Parameters:
Wi: price of asset i;
G: total initial wealth;
λ: the penalty coefficient of underfunding;
γ: the transaction fee, which is proportional to trading volume (assumed to be equal
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for purchases and sales);
β: upper bound on acceptable risk;
ψ: funding ratio, showing the percentage of liabilities to be satisfied;
Random data:
Rt

i,j : the return of asset i in node j at stage t;
Rt

c,j : the interest rate in node j at stage t;
A0, At

j : the outflow of resources, e.g. liabilities;
D0, Dt

j : the inflow of resources, e.g. contributions;
π: the joint probability distribution of above uncertain factors, i.e. πt

jt
is the probability

of node jt occurring;
Decision variables:
xht

i,j : units of asset i held in node j at the beginning of stage t;
xst

i,j : units of asset i sold in node j at the beginning of stage t;
xbti,j : units of asset i bought in node j at the beginning of stage t;
ctj : units of cash held in node j at stage t;
bTj : the amount of underfunding in node j at the terminal stage that cannot be satisfied;
Indexes and sets:
t: the stage index, with t = 1, . . . , T ;
i: the asset index, with i ∈ I = {1, . . . ,m};
nt: the number of nodes at stage t;
jt: the node index, with jt ∈ Nt = {1, . . . , nt}, t = 1, . . . , T ;
a(t,jt): the ancestor of node (t, j(t));
In this work we will use formulation (1.3), i.e. maximise expected return with acceptable
risk. Then the multi-stage ALM problem concerning the investment strategy can be
represented as:

max
∑

jT∈NT

πT
jT

(
∑
i∈I

(1− γ)Wixh
T
i,jT

+ cTjT
− λbTjT

) (3.1a)

s.t. (1 + γ)
∑
i∈I

Wixh
0
i,0 + c0 = G−A0 +D0 (3.1b)

(1 + γ)
∑
i∈I

Wixb
t
i,jt

+ ctjt
= (1− γ)

∑
i∈I

Wixs
t
i,jt

+ (1 +Rt
c,jt

)ct−1
a(t,jt)

−At
jt

+Dt
jt
, (3.1c)

jt = 1, . . . , nt, t = 1, . . . , T,

(1 +Rt
i,jt

)xht−1
i,a(t,jt)

+ xbti,jt
− xst

i,jt
= xht

i,jt
, (3.1d)

i ∈ I, jt = 1, . . . , nt, t = 1, . . . , T,∑
i∈I

(1− γ)Wixh
T
i,jT

+ cTjT
+ bTjT

≥ ψAT
jT
, (3.1e)

jt = 1, . . . , nt, t = 1, . . . , T,

φ(xht
i,jt
, ctjt

) ≤ β, jt = 1, . . . , nt, t = 1, . . . , T, (3.1f)
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xht
i,jt

≥ 0, xst
i,jt

≥ 0, xbtjt
≥ 0, bTjT

≥ 0, xht
i,jt
, xst

i,jt
, xbti,jt

∈ Rm

i ∈ I = {1, . . . ,m}, jt ∈ Nt = {1, . . . , nt}, t = 1, . . . , T,

where φ(·) gives the risk associated with position (xh, c).
The decision maker does not seek a strategy to strictly satisfy the liability at the

horizon of the problem, but penalises the underfunding. The objective (3.1a) aims to
maximize the final wealth of the fund taking into account the penalties of underfunding.
(3.1b) balances the initial wealth at the first stage while (3.1c) are cash balances for the
following stages, both taking into account transaction cost, proportional to the total
trade volume. The inventories of each asset at each stage are captured in (3.1d). (3.1e)
defines the underfunding level bj at the terminal stage. Risk control is expressed in
(3.1f) with the risk measure function φ(·) and the maximum acceptable level of risk
β. This constraint will be discussed in more detail in the following section. If the risk
constraint is linear, the model (3.1) is a linear program.

Risk control in an ALM problem involves many aspects. Two of the most impor-
tant are overall performance and underfunding. The overall performance is analyzed
considering all possible outcomes of the portfolio, e.g. variance. We will use stochastic
dominance to control the risk of overall performance and discuss the modelling issues
involved in Section 3.2. Underfunding concerns the possibility of unsatisfied liabilities.
To avoid underfunding completely is expensive to implement and in many situations
impossible. We will control underfunding through stochastic dominance constraints
discussed in Section 3.2.5.

3.2 Stochastic Dominance

Stochastic dominance has been considered to be a reference to other risk measures by
Ogryczak and Ruszczyński in [99]. Below we describe how it can be incorporated into
our ALM model. First we briefly recall the definitions of stochastic dominance following
closely the exposition in [99].

3.2.1 Definitions of Stochastic Dominance

Given a random variable ω, we consider the first performance function, which is actually
the probability distribution function, as:

F 1
ω(η) = P (ω ≤ η), η ∈ R.

Definition 2. A random variable Y dominates L by first-order stochastic dominance
(FSD) if and only if:

F 1
Y (η) ≤ F 1

L(η), ∀η ∈ R, (3.2)

denoted as
Y �1 L.
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Next, we define the second performance function as:

F 2
ω(η) =

∫ η

−∞
F 1

ω(ζ)dζ, ∀η ∈ R. (3.3)

This function is continuous, convex, nonnegative, and nondecreasing.

Definition 3. A random variable Y dominates L by second-order stochastic dominance
(SSD) if and only if:

F 2
Y (η) ≤ F 2

L(η), ∀η ∈ R, (3.4)

denoted as
Y �2 L.

Hence, if y and l are returns of two portfolio strategies satisfying (3.2) (or (3.4)),
then Y dominates L and Y is preferable. Furthermore, we can define higher order
performance functions recursively:

F k
ω (η) =

∫ η

−∞
F k−1

ω (ζ)dζ, ∀η ∈ R.

Definition 4. We say that a random variable Y dominates another random variable
L by k-th order stochastic dominance if and only if

F k
Y (η) ≤ F k

L(η), ∀η ∈ R,

denoted as
Y �k L.

It is obvious that the lower order dominance relations guarantee the dominance of
higher orders, see [99, 113]. A small example of this can be found in Section 3.2.5.

Stochastic dominance has been widely used in decision theory [43], economics [60]
and finance [111] due to several advantages it offers for comparing random variables. It
takes the entire probability distribution of random variables into account and provides
partial orderings of those variables. Instead of setting fixed thresholds in portfolio
selection model, it enables the use of random reference outcomes. In addition, it is
consistent with utility theory.

Utility measures a degree of satisfaction. The value of a portfolio depends only on
itself and is equal for every investor; the utility, however, is dependent on the particular
circumstances of the person making the estimate. Investors seek to maximise their
utilities. In general, utility functions are nondecreasing, which means most people
prefer more fortune to less. It is known that X �1 Y if and only if E[U(X)] ≥ E[U(Y )]
for every nondecreasing utility function U for which these expected values are finite.
And, X �2 Y if and only if E[U(X)] ≥ E[U(Y )] for every nondecreasing and concave
utility function U for which these expected values are finite. A nondecreasing and
concave utility function reflects the fact that the investor prefers more fortune but the
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speed of increase in satisfaction decreases. A survey of stochastic dominance and utility
theory can be found in [83]. The proof of the consistency of stochastic dominance with
utility theory and further analysis in this topic can be found in [61], with a modified
version in [121]. Generally, a reasonable risk averse investor has a nondecreasing and
concave utility function. We will incorporate SSD into the ALM models also because of
its computational advantage, as we will show later, while FSD leads to a mixed integer
formulation which can be found in [53, 96].

3.2.2 Literature Review of Stochastic Dominance

In [99], Ogryczak and Ruszczyński pointed out the importance of mean-risk models
being consistent with stochastic dominance relations due to the fundamental role of
the stochastic dominance concept in decision theory. This consistence is defined as
follows in the same paper:

Definition 5. We say the mean-risk model (EX , rX), where EX is the expected value
and rX is the risk, is consistent with second-order stochastic dominance if the following
relation holds:

X �2 Y ⇒ EX ≥ EY rX ≤ rY . (3.5)

The first inequality on the right-hand side is guaranteed by second-order stochastic
dominance: X �2 Y ⇒ EX ≥ EY . The inequality representing the risk term, however,
is not satisfied for some risk measures, like variance for instance. It has been shown in
[99] that, (EX , CV aRX) satisfies (3.5), while the mean-risk model with mean absolute
deviation (MAD) as the risk measure is not consistent with second-order stochastic
dominance. But still,

X �2 Y ⇒ EX −MADX ≥ EY −MADY .

The efficient frontier, where all optimal portfolios are located, is constructed by these
two mean-risk models in [113]. We will give our proof of monotonicity of CVaR with
second-order stochastic dominance in a later section.

An application of the first-order stochastic dominance in the stochastic program-
ming context leads to a non-convex mixed integer programming formulation. In con-
trast, second-order stochastic dominance can be incorporated in the form of a set of
linearised constraints [30] which makes it a more attractive option. In a series of papers
Dentcheva and Ruszczyński analysed several aspects of the use of stochastic dominance.

In [30], it is proved that the second-order stochastic dominance constraints construct
a convex and closed set, i.e. for any Y ∈ L1(Ω,F ,P) which is a probability space,
A2(Y ) = {X ∈ L1(Ω,F ,P) : X �2 Y } is convex and closed. Furthermore, the
optimality and duality conditions in general linear problems were also proved in this
paper. Similar properties hold for the situation with multiple dominance constraints
and for higher order dominance. An alternative approach to mean-risk portfolio models
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was also provided by using stochastic dominance. Moreover, it was shown that the
Lagrange multiplier associated with the dominance constraint can be identified with a
certain concave and nondecreasing utility function. An application to static portfolio
selection with a utility function constructed based on the methodology of Lagrange can
be found in [32]. The objective is to maximise the expected return of the portfolio,
and the stochastic dominance constraint is used to guarantee that the portfolio will
not underperform certain criteria. The use of such a model eliminates the need to
decide on a risk measure, as well as the need to shoose the weight of the risk measure.
Otherwise one needs to consider the entire family of risk measures and the arbitrary
nature of risk measures makes it difficult to make a comparison. In addition, it is
difficult to elicit utility functions from decision makers. When there is a group of
decision-makers who have to come to a consensus, the situation becomes even more
complicated. The requirement in the model with stochastic dominance, however, is
a reasonable benchmark random outcome, e.g. market index, and this saves a lot of
work.

Optimisation problems involving nonlinear stochastic dominance constraints, where
stochastic dominance is used to compare nonlinear functions of random factors, were
considered in [31]. This paper focussed on second-order stochastic dominance. Suffi-
cient and necessary optimality conditions were also analysed. Their newly developed
optimality and duality theory for this special class of problems also allows the creation
of a decomposition approach to the problem, which they illustrated with a portfolio
example.

Linear stochastic programming problems with first-order stochastic dominance are
non-convex due to the non-convexity of the feasible set. The use of first-order stochastic
dominance constraints, which are equivalent to a continuum of probabilistic constraints,
introduces serious complications into the optimisation models and makes their solution
difficult. Relaxations of these constraints were analysed in [96]. Based on second-
order dominance constraints, Noyan, et al. formulated a linear first-order dominance
constraints optimisation model as a mixed 0-1 programming problem with multiple
knapsack constraints. The authors also introduced interval second-order stochastic
dominance which is equivalent to first-order stochastic dominance and generated a
mixed integer problem based on this dominance relation in [96]. Furthermore, in [97],
a cutting plane method was employed to solve the program with first order dominance
constraints. Three heuristic algorithms were generated to construct feasible solutions
to these models, based on second-order dominance, variable fixing, and Conditional
Value-at-Risk.

The conditions of stability and optimality of first-order stochastic dominance with
respect to general perturbation of the underlying probability measures were given in
[28]. The upper bound and lower bound of optimal values were also generated under
certain conditions which illustrated the sensitivity of the optimal value function when
the random variables in the problem are subject to perturbations.
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Roman, et al. [110], proposed a multi-objective portfolio selection model with
second-order stochastic dominance constraints to track or overperform a reference point,
while Fábián et al. [42] developed an efficient method to solve this model based on a
cutting-plane scheme. The cutting-plane method transforms the model from a uni-
form discrete probability distribution through conditional value-at-risk into integrated
chance constraints (ICCs). Then using the Künsi-Bay cutting plane method on ICCs,
the same algorithm can be applied to the second-order stochastic model, which is just
a special case of ICCs. The numerical results demonstrated the effectiveness of the
solution algorithm.

The application of stochastic dominance in dispersed energy planning and decision
problems, where the decision variables are integer, has been illustrated in [51, 52, 53]
in the form of a mixed integer problem, including both first-order and second-order
stochastic dominances. Stability and structural properties of the integer problems with
dominance constraints were analysed in these papers. The authors applied a branch
and bound decomposition algorithm to solve the problems.

The use of multivariate stochastic dominance to measure multiple random variables
jointly was discussed in [33]. Again, the necessary and sufficient conditions for optimal-
ity and duality relations were developed for problems with these constraints in both
convex and non-convex cases.

3.2.3 Monotonicity of CVaR with SSD

It has been proved that the mean-risk model (EX , rX) with rX as the Conditional
Value-at-Risk is consistent with SSD. We could not find the original paper with the
proof and our proof is illustrated in the follows.

Given two portfolios with return as X and Y , for which the probability distribution
functions and probability density functions are FX , FY , and fX , fY , respectively. And
they both have limited expected values. For any probability β ∈ [0, 1], let β-VaRs and
β-CVaRs for the two portfolios be denoted as α(β) and φ(β), respectively. Portfolio X
dominates portfolio Y by SSD is defined as∫ η

−∞
FX(X ≤ ξ)dξ ≤

∫ η

−∞
FY (Y ≤ ξ)dξ ∀η ∈ R,

and the inequality holds strictly for at least one point of η.

Theorem 1. The mean-risk model (EX , CV aRX), where EX is the expected value and
CV aRX is the risk measure, is consistent with second-order stochastic dominance.

Proof. From Definition 5, to prove the consistence of the mean-risk model is to prove
the following:

X �2 Y ⇒ EX ≥ EY CV aRX ≤ CV aRY . (3.6)

Since the first inequality on the right-hand side is guaranteed by second-order stochastic
dominance, we only need to prove the inequality for CVaR.
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We write CVaRs explicitly as follows:

φX(β) =
1

1− β

∫ αX(β)

−∞
ξfX(ξ)dξ,

φY (β) =
1

1− β

∫ αY (β)

−∞
ξfY (ξ)dξ.

In the integrations of CVaRs, both VaRs, i.e. αX(β) and αY (β), are real numbers.
Case 1: αX ≤ αY .

In this case,
FX(αY ) ≥ FX(αX) = β.

Then,∫ αX

−∞
ξfX(ξ)dξ −

∫ αY

−∞
ξfY (ξ)dξ

=
∫ αX

−∞
ξ(fX(ξ)− fY (ξ))dξ −

∫ αY

αX

ξfY (ξ)dξ

= ξ[FX(ξ)− FY (ξ)]|αX
−∞ −

∫ αX

−∞
(FX(ξ)− FY (ξ))dξ −

∫ αY

αX

ξfY (ξ)dξ

= αX [FX(αX)− FY (αX)]− 0−
∫ αX

−∞
(FX(ξ)− FY (ξ))dξ −

∫ αY

αX

ξfY (ξ)dξ

≤ αX(FX(αX)− FY (αX))−
∫ αY

αX

ξfY (ξ)dξ

(accordingto SSD, the integral of
∫ αX

−∞
(FX(ξ)− FY (ξ))dξ

must be nonnegative.)

= αX(FX(αX)− FY (αX))− ξFY (ξ)|αY
αX

+
∫ αY

αX

FY (ξ)dξ

≤ βαX − αXFY (αX)− αY FY (αY ) + αXFY (αX) + β(αY − αX) (Since FY ≤ β on [αX , αY ])

= 0,

This leads that φβ(X) ≤ φβ(Y ).
Case 2: αX ≥ αY .

In this case,
FX(αY ) ≤ FX(αX) = β.
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Then,∫ αX

−∞
ξfX(ξ)dξ −

∫ αY

−∞
ξfY (ξ)dξ

=
∫ αY

−∞
ξ(fX(ξ)− fY (ξ))dξ +

∫ αX

αY

ξfX(ξ)dξ

= ξ[FX(ξ)− FY (ξ)]|αY
−∞ −

∫ αY

−∞
(FX(ξ)− FY (ξ))dξ +

∫ αX

αY

ξfX(ξ)dξ

= αY [FX(αY )− FY (αY )]− 0−
∫ αY

−∞
(FX(ξ)− FY (ξ))dξ +

∫ αX

αY

ξfX(ξ)dξ

≤ αY (FX(αY )− FY (αY ))− 0 +
∫ αX

αY

ξfX(ξ)dξ

= αY (FX(αY )− FY (αY )) + ξFX(ξ)|αX
αY

−
∫ αX

αY

FX(ξ)dξ

≤ −βαY + αY FX(αY ) + βαX − αY FX(αY )− β(αX − αY ) (Since FX ≤ β on [αY , αX ])

= 0.

This also implies φβ(X) ≤ φβ(Y ).
Hence, we have proved that

X �2 Y ⇒ φX(β) ≤ φY (β),∀β ∈ [0, 1],

which implies that the mean-risk model (EX , CV aRX) is consistent with SSD.

3.2.4 Linear Formulation of SSD

For a general probability distribution, the evaluation of the integral in the definition of
SSD can lead to considerable computational difficulty. However, if the distribution is
discrete this term can be simplified as is shown next [30].

Changing the order of integration in (3.3) and using Fubini’s theorem [98], we have

F 2
ω(η) =

∫ η

−∞
P (ω ≤ ζ)dζ

=
∫ η

−∞

∫ ζ

−∞
dpω(ρ)dζ

=
∫ η

−∞

∫ η

ρ
dζdpω(ρ)

=
∫ η

−∞
(η − ρ)dpω(ρ)

= P (ω ≤ η)E[η − ω|ω ≤ η]

= E[(η − ω)+] (3.7)

Hence, the SSD defined in (3.4) can be written as

E[(η − Y )+] ≤ E[(η − L)+], ∀η ∈ R. (3.8)
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Notice that this reformulation of SSD has similarity with CVaR as in (1.5). While a
CVaR value is only concerned with a single real number η (i.e. the corresponding VaR),
a SSD constraint as defined in (3.8) works ∀η ∈ R. This also facilitates the use of SSD
instead of CVaR.

To make the problem easier for modelling and computation, consider a relaxed
formulation of this constraint valid in the interval [a, b] :

E[(η − Y )+] ≤ E[(η − L)+], η ∈ [a, b]. (3.9)

Let v ∈ R denote the shortfall. We can show that (3.9) is equivalent to:
Y + v ≥ η, η ∈ [a, b]
E[v] ≤ E[(η − L)+], η ∈ [a, b]
v ≥ 0.

(3.10)

If L has a discrete probability distribution with realizations lk, for k = 1, . . . ,K and
a ≤ lk ≤ b, then (3.9) can be rewritten as

E[(lk − Y )+] ≤ E[(lk − L)+], ∀k = 1, . . . ,K. (3.11)

Furthermore, if Y has a discrete distribution with realizations ym, for m = 1, . . . ,M
and a ≤ ym ≤ b, with πm denoting the probability of ym occuring, (3.10) becomes

ym + vm,k ≥ lk,∑
m πmvm,k ≤ l̂k,

vm,k ≥ 0,

(3.12)

where l̂k = E[(lk − L)+]. It is easy to see that (3.12) are linear.

3.2.5 Interval Second-order Stochastic Dominance and Chance Con-

straints

The interval SSD was first introduced by Noyan et al. in [96] and proved to be a
sufficient as well as a necessary condition of FSD. Here, we will consider a relaxed
interval SSD in the discrete case as an intermediate stochastic dominance relation
between FSD and SSD, i.e. a weaker condition than FSD, but stronger than SSD. This
relaxed interval SSD can be developed to construct chance constraints for underfunding
control in ALM.

We say that a random variable Y dominates another L by interval second-order
stochastic dominance (ISSD) if and only if:

E[(η2 − Y )+]− E[(η1 − Y )+] ≤ E[(η2 − L)+]− E[(η1 − L)+], (3.13)

for any η1, η2 ∈ R and η1 ≤ η2.
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The proposition below establishes a relation between FSD and ISSD. It was first
proved in [96] in the case of discrete probability distributions. We shall prove it in a
general form.

Proposition 3. Y �1 L if and only if Y dominates L by ISSD.

Proof. The proof of necessity is simple. If Y �1 L, then for any given η1 ≤ η2 and t,
η1 ≤ t ≤ η2,

0 ≤ F 1
Y (t) ≤ F 1

L(t).

Hence, integrating ∫ η2

η1

F 1
Y (t)dt ≤

∫ η2

η1

F 1
L(t)dt. (3.14)

Following Equation (3.7), we observe that Equation (3.14) is equivalent to the definition
of ISSD, i.e. Equation (3.13).

We prove the sufficiency by contradiction. Suppose that there exists t∗ such that

F 1
Y (t∗) > F 1

L(t∗).

Let [a∗, b∗] be an interval such that t∗ ∈ [a∗, b∗] and

a∗ = inf{a : FY (t) > FL(t), t ∈ [a, t∗]}

b∗ = sup{b : FY (t) > FL(t), t ∈ [t∗, b]}.

Since both distribution functions FY and FL are semi-continuous, it follows that a∗ <
b∗. Then, we have ∫ b∗

a∗
F 1

Y (α)dα >
∫ b∗

a∗
F 1

L(α)dα

which violates the definition of ISSD. The sufficiency is proved.

If Y and L both have discrete probability distributions with realisations y1 < y2 <

· · · < yM , and l1 < l2 < · · · < lK , the ISSD condition can be written as:

E[(lk − Y )+]− E[(ym − Y ))+] ≤ E[(lk − L)+]− E[(ym − L))+], (3.15)

for all m ∈ {1, . . . ,M} and k ∈ {1, . . . ,K} such that lk ≥ ym and

{l1, · · · , lK , y1, · · · , yM} ∩ (ym, lk) = ∅,

where (ym, lk) is the open interval with endpoints ym and lk [96].
Incorporating constraints (3.15) into the ALM model (3.1) leads to a mixed integer

formulation, where boolean variables are induced by the conditional expectation in
ISSD equations. Hence, we consider a relaxed form of ISSD in the case of discrete
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probability distributions:

E[(lk−Y )+]−E[(lk−1−Y )+] ≤ E[(lk−L)+]−E[(lk−1−L)+], k ∈ 2, · · · ,K, (3.16)

where lk, k = 2, . . . ,K, are the realisations of L and l0 is any real number such that
l0 < l1, and denote the above relation of Y and L as

Y �1 1
2
L.

It is easy to prove that the relaxed ISSD is weaker than FSD but stronger than SSD,
i.e.

FSD ⇒ Relaxed ISSD ⇒ SSD. (3.17)

The first implication was proved in [96]. We give a full picture of these three dominance
relations in the following proposition.

Proposition 4. If Y dominates L by FSD, then Y �1 1
2

L; If Y �1 1
2

L, then Y domi-
nates L by SSD.

Proof. By Proposition 3, if FSD is true, ISSD is satisfied, which is sufficient for relaxed
ISSD.

If relaxed ISSD is satisfied, we have∫ lk

lk−1

F 1
Y (t)dt ≤

∫ lk

lk−1

F 1
L(t)dt,

for k = 1, . . . ,K. Since F 1
L(t) = 0, for any t such that l0 < t < l1,∫ l1

l0

F 1
Y (t)dt ≤

∫ l1

l0

F 1
L(t)dt = 0

from which we deduce that FY (t) = 0, a.e., for t < l1. Hence, for any real number
η ≤ l1, ∫ η

−∞
F 1

Y (t)dt ≤
∫ η

−∞
F 1

L(t)dt = 0.

Also, for k = 1, . . . ,K,∫ lk

−∞
F 1

Y (t)dt =
∫ l1

−∞
F 1

Y (t)dt+
∑

j=1,...,k−1

∫ lj+1

lj

F 1
Y (t)dt

≤ 0 +
∑

j=1,...,k−1

∫ lj+1

lj

F 1
L(t)dt

=
∫ lk

−∞
F 1

L(t)dt.
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Now suppose that there exists η ∈ [lk, lk+1] such that∫ η

−∞
F 1

Y (t)dt >
∫ η

−∞
F 1

L(t)dt.

Since ∫ lk

−∞
F 1

Y (t)dt ≤
∫ lk

−∞
F 1

L(t)dt,

we have ∫ η

lk

F 1
Y (t)dt >

∫ η

lk

F 1
L(t)dt. (3.18)

In addition, for t ∈ [lk, lk+1), F 1
L(t) = F 1

L(lk). From (3.18), using monotonicity of F 1
Y ,

F 1
Y (η) > F 1

L(lk).

As a result, ∫ lk+1

η
F 1

Y (t)dt >
∫ lk+1

η
F 1

L(t)dt. (3.19)

(3.18) and (3.19) together imply∫ lk+1

lk

F 1
Y (t)dt >

∫ lk+1

lk

F 1
L(t)dt,

which contradicts the relaxed ISSD condition. Therefore, for all η ∈ [l1, lK ], SSD is
satisfied.

For η > lK , ∫ η

−∞
F 1

L(t)dt =
∫ lK

−∞
F 1

L(t)dt+
∫ η

lK

F 1
L(t)dt

=
∫ lK

−∞
F 1

L(t)dt+
∫ η

lK

1dt

≥
∫ lK

−∞
F 1

Y (t)dt+
∫ η

lK

F 1
Y (t)dt.

Hence, Y dominates L by SSD.

An interesting question arises whether any reverse implication to (3.17) holds. Two
examples are given below to illustrate that the other directions of the relations are not
true. The first demonstrates that the relaxed ISSD does not imply FSD and the second
shows that SSD does not imply the relaxed ISSD.

Example 1. Consider two assets L and Y with the following probability distributions
of returns: P (L = 100) = 1

3 , P (L = 200) = 1
3 , P (L = 300) = 1

3 ; P (Y = 150) = 1
2 ,
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P (Y = 300) = 1
2 . For these distributions, we find:

E[(η − L)+] =


0, η ≤ 100
1
3(η − 100), 100 < η ≤ 200
2
3(η − 200) + 1

3(200− 100), 200 < η ≤ 300
(η − 300) + 2

3(300− 200) + 1
3(200− 100), 300 < η

E[(η − Y )+] =


0, η ≤ 150
1
2(η − 150), 150 < η ≤ 300
(η − 300) + 1

2(300− 150), 300 < η

and collect the values of E[(lk −X)+]−E[(lk−1−X)+] for both variables L and Y for
all intervales (lk−1, lk] in the table below:

E[lk −X]+ − E[lk−1 −X]+ [0, 100] (100, 200] (200, 300]
X=L 0 33.3 66.7
X=Y 0 25 50

Table 3.1: The relaxed ISSD values of assets L and Y .

Obviously, inequality (3.16) is always satisfied hence the relaxed ISSD is satisfied,
i.e. Y �1 1

2
L. However, P (L ≤ 150) < P (Y ≤ 150), which means FSD is violated.

Example 2. Consider two assets L and Y , where L is the same as in Example 1. Asset
Y has three possible returns: P (Y = 150) = 1

2 , P (Y = 200) = 1
4 and P (Y = 300) = 1

4 .
Y dominates L by SSD but Y does not dominate L by relaxed ISSD, because

F 2
ω = E[(η − ω)+] =

∫ η

−∞
Fω(ξ)dξ,

F 2
L(η) = E[(η − L)+] =


0, η ≤ 100
1
3(η − 100), 100 < η ≤ 200
2
3(η − 200) + 1

3(200− 100), 200 < η ≤ 300
(η − 300) + 2

3(300− 200) + 1
3(200− 100), 300 < η

F 2
Y (η) = E[(η − Y )+] =


0, η ≤ 150
1
2(η − 150), 150 < η ≤ 200
3
4(η − 200) + 1

2(200− 150), 200 < η ≤ 300
(η − 300) + 3

4(300− 200) + 1
2(200− 150), 300 < η

illustrating that E[(η − L)+] ≥ E[(η − Y )+], while

E[(300− L)+]− E[(200− L)+] =
200
3

≤ E[(300− Y )+]− E[(200− Y )+] = 75.
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Below we prove one more technical result regarding relaxed ISSD which has impor-
tant consequences for a practical way of modelling relaxed ISSD constraints as explained
in the rest of this section.

Proposition 5. Let Y and L be random variables, whose probability distributions are
discrete with realisations y1, · · · , yM and l1, · · · , lK , respectively. Let Y dominate L by
relaxed ISSD. If there exists k ∈ {1, . . . ,K − 1}, such that

{y1, · · · , yM} ∩ (lk, lk+1) = ∅,

then F 1
Y (t) ≤ F 1

L(t) for all t ∈ [lk, lk+1]

Proof. For any k such that

{y1, · · · , yM} ∩ (lk, lk+1) = ∅,

F 1
Y (t) = F 1

Y (lk), t ∈ [lk, lk+1). Then by the relaxed ISSD relation,∫ lk+1

lk

F 1
Y (t)dt = F 1

Y (lk)(lk+1 − lk) ≤
∫ lk+1

lk

F 1
L(t)dt = F 1

L(lk)(lk+1 − lk)

⇒ F 1
Y (lk) ≤ F 1

L(lk).

Remark 3.1. By comparing relaxed ISSD and ISSD which is equivalent to FSD, we can
see the relaxation is at the points of ym. Assume relaxed ISSD is true. From the above
proposition, the FSD is satisfied in any interval [lk, lk+1) which does not contain any ym.
Actually, even if ym appears in this interval, FSD still holds if F 1

Y (ym) ≤ F 1
L(lk). FSD

is violated only in the interval in which the probability of Y jumps over the probability
of the benchmark L. And this violation will not transfer to the next interval because of
relaxed ISSD.

Proposition 5 opens a way to express chance constraints in LP form by imposing
relaxed ISSD constraints. Assume L is a benchmark with discrete distribution and
the portfolio Y dominates L by relaxed ISSD, and let lk < lk+1 be two neighbouring
realisations of the benchmark. If [lk, lk+1] is such that the portfolio will not have any
realization in this interval, then

P (Y ≤ t) ≤ P (L ≤ t), ∀t ∈ [lk, lk+1]

Hence, the probability of the portfolio can be constrained for those values in such
intervals. There is an issue of how to guarantee the existence of such intervals. We
address this problem below.

The risk control in ALM modelling reflects concerns about the underfunding which
is the amount of unsatisfied liability. Bogentoft, et al. [14] applied CVaR to control
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the return of the pension fund with certain percentage to cover the liability. While
it is difficult and costly to avoid any underfunding at all, it seems highly desirable to
limit the probability that any underfunding happens. We will show how to express
such probability constraints in LP form. Suppose the portfolio is expected to satisfy
the following chance constraint:

P (final wealth− liability < 0) ≤ α, (3.20)

where α is a given threshold. We can construct such an interval [θ1, θ2] that the following
two equations

final wealth− liability < θ1 (3.21)

final wealth− liability < θ2 (3.22)

are equivalent to
final wealth− liability < 0. (3.23)

For example, if it is the same to the fund manager in practice to have either no under-
funding or an underfunding of £1, then this interval can be [−1, 0]. We assume that
such an interval always exists. Suppose the return of the portfolio is modelled by M

scenarios. A benchmark L can be constructed satisfying the following conditions:

• The benchmark value has K realizations and K > M + 1;

• Among the K realizations, at least M + 1 are allocated in the interval [θ1, θ2],
with θ1 and θ2 defined as above; and

• Last but most important, P (L− Liability < 0) ≤ α.

If a portfolio outperforms such a benchmark by relaxed ISSD, there must be an interval
[lk, lk+1) ⊂ [θ1, θ2], where the portfolio value has no realization. Then by Proposition 5,
this portfolio has return below lk+1 with probability less than α. While there is no dif-
ference to the fund manager to have an underfunding of lk+1 or 0, the chance constraint
of the underfunding is successfully satisfied. For multiple chance constraints, separate
relaxed ISSD constraints can be applied and the derivation is the same as in the single
case.

3.3 Multi-Stage ALM Model with SSD and Relaxed ISSD

Constraints

Now, we will apply SSD and relaxed ISSD in the multi-stage ALM model to control
risk. Either SSD or relaxed ISSD can be incorporated in the model independently.
Both SSD and relaxed ISSD constraints are set at each stage: overall portfolio returns
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are required to dominate a benchmark by SSD; relaxed ISSD constraint guarantees
that the portfolio value minus liabilities dominates a benchmark by relaxed ISSD.

In addition to the notation listed in Section 3.1, new notation is introduced to con-
struct the stochastic dominance constraints in the model as follows:
New notation

τ l
t : the values of benchmark performance at stage t used for the SSD constraint,
l = 1, . . . , L;
µk

t : the values of benchmark performance at stage t used for the relaxed ISSD con-
straint, k = 1, . . . ,K. If we want the probability of underfunding to be less than or
equal to α, then these values are set such that the probability of this benchmark being
negative is equal to α, ;
τ̂ l
t = E[(τ l

t − τt)+], l = 1, . . . , L;
µ̂k

t = E[(µk
t − µt)+], k = 1, . . . ,K;

zl
j,t: shortfall of the portfolio in node j at stage t compared to lth value of the bench-

mark at stage t in the SSD constraint;
vk

j,t: shortfall of the portfolio in node j at stage t compared to kth value of the bench-
mark at stage t in the relaxed ISSD constraint.
Model (3.24) is obtained by including SSD and ISSD constraints into the model pre-
sented in (3.1), where all scenarios together at each stage are restricted to one SD
constraint. Equations (3.24f) and (3.24g) are SSD constraints that restrict the return
of the portfolio so that it dominates the benchmark τ by SSD; while (3.24h), (3.24i)
and (3.24j) are relaxed ISSD constraints which guarantee that the value of the portfolio
minus the amount of the liability dominates the benchmark µ by relaxed ISSD and so
control the probability of underfunding:

max
∑

jT∈NT

πT
jT

(
∑
i∈I

(1− γ)Wixh
T
i,jT

+ cTjT
− λbTjT

) (3.24a)

s.t. (1 + γ)
∑
i∈I

Wixh
0
i,0 + c0 = G−A0 +D0 (3.24b)

(1 + γ)
∑
i∈I

Wixb
t
i,jt

+ ctjt
= (1− γ)

∑
i∈I

Wixs
t
i,jt

+ (1 +Rt
c,jt

)ct−1
a(t,jt)

−At
jt

+Dt
jt
, (3.24c)

jt = 1, . . . , nt, t = 1, . . . , T,

(1 +Rt
i,jt

)xht−1
i,a(t,jt)

+ xbti,jt
− xst

i,jt
= xht

i,jt
, (3.24d)

i ∈ I, jt = 1, . . . , nt, t = 1, . . . , T,∑
i∈I

(1− γ)Wixh
T
i,jT

+ cTjT
+ bTjT

≥ ψAT
jT
, jT = 1, . . . , nT (3.24e)

∑
i∈I

(1 +Rt
i,jt

)Wixh
t−1
i,a(t,jt)

+ (1 +Rt
c,jt

)ct−1
a(t,jt)

+ zl
jt,t ≥ τ l

t , (3.24f)

jt = 1, . . . , nt, t = 1, . . . , T, l = 1, . . . , L,
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∑
jt∈Nt

πt
jt
zl
jt,t ≤ τ̂ l

t , t = 1, . . . , T, l = 1, . . . , L, (3.24g)

∑
i∈I

(1 +Rt
i,jt

)Wixh
t−1
i,a(t,jt)

+ (1 +Rt
c,jt

)ct−1
a(t,jt)

− ψAjt,t + vk
jt,t ≥ µk

t , (3.24h)

jt = 1, . . . , nt, t = 1, . . . , T, k = 1, . . . ,K,∑
jt∈Nt

πt
jt
vk
j,tt −

∑
jt∈Nt

πt
jt
vk−1
jt,t

≤ µ̂k
t − µ̂k−1

t , t = 1, . . . , T, k = 1, . . . ,K, (3.24i)

∑
jt∈Nt

πt
jt
v1
jt,t ≤ µ̂1

t , t = 1, . . . , T, (3.24j)

xht
i,jt

≥ 0, xst
i,jt

≥ 0, xbtjt
≥ 0, bTjT

≥ 0, zl
jt,t ≥ 0, vk

jt,t ≥ 0

xht
jt
, xst

jt
, xbtjt

, zl
jt,t, v

l
jt,t ∈ Rm

i ∈ I = {1, . . . ,m}, j ∈ Nt = {1, . . . , nt}, t = 1, · · · , T,

l = 1, . . . , L, k = 1, . . . ,K.

The objective (3.24a) is to maximise the final wealth considering the penalty of
underfunding. In addition to the initial budget constraint (3.24b), asset balance con-
straint (3.24c), inventory constraint (3.24d) and underfunding definition in (3.24e), risk
control is modelled by (3.24f)–(3.24j). (3.24f) and (3.24g) require the portfolio domi-
nate benchmark τ by SSD. In (3.24h)–(3.24j) the total value of the portfolio deducted
by the liability dominates benchmark µ by relaxed ISSD, where µ is constructed ac-
cording to chance requirement of underfunding. They are all in discrete case and thus
the equations are linear. Now we can see that, by incorporating SSD in the ALM
model, the risk incurring overall performance is controlled by requesting that our port-
folio outperforms the benchmark by SSD; by incorporating relaxed ISSD, the risk of
underfunding is controlled in terms of chance constraints.

3.4 Numerical Results

The models discussed in this work are applicable in practice. We first demonstrate
the advantages of taking stochastic dominance constraints into account using a small
example, followed with an out-of-sample backtest. Then we will show how real-world
problems can be solved. We use the structure-exploiting interior point solver OOPS [57]
to solve these problems and compare its performance with that of the general-purpose
commercial optimizer CPLEX 10.0 on a number of medium scale test examples.

3.4.1 A Model Example

Consider a small investment problem with 2 stages and 4 stocks (named A, B, C, D)
to be chosen from. One stage corresponds to one day. There are 4 branches at the
first stage and 2 branches from each node of the second stage. Both asset returns and
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liabilities are random. The asset returns are from FTSE100 and the probabilities are
made up. The returns in per cent of the 4 stocks and liabilities in monetary value
are shown in Table 3.2 and Table 3.3 with the probabilities in brackets and the other
parameters are presented in Table 3.4:

Stocks Stocks
1st Stg A B C D 2nd Stg A B C D

1 (0.5) 0.0145 -0.1020 -0.0305 0.2299
1 (0.40) 0.1145 -0.2020 -0.0305 0.0299
2 (0.10) -0.1060 0.2450 0.0341 0.0167

2 (0.2) 0.0056 0.2050 0.1041 -0.0236
3 (0.16) 0.1145 -0.2020 -0.0305 0.0299
4 (0.04) -0.1060 0.2450 0.0341 0.0167

3 (0.2) -0.0113 0.0007 -0.0287 0.1658
5 (0.16) 0.1145 -0.2020 -0.0305 0.0299
6 (0.04) -0.1060 0.2450 0.0341 0.0167

4 (0.1) 0.1573 -0.0286 0.0645 -0.0742
7 (0.08) 0.1145 -0.2020 -0.0305 0.0299
8 (0.02) -0.1060 0.2450 0.0341 0.0167

Table 3.2: Rate of Return of the assets in per cent.

1st Stg 1 (0.5) 2 (0.2) 3 (0.2) 4 (0.1)
10200 10000 10200 10000

2nd Stg 1 (0.4) 2 (0.1) 3 (0.16) 4 (0.04) 5 (0.16) 6 (0.04) 7 (0.08) 8 (0.02)
11220 10000 11000 10000 11220 10000 11000 10000

Table 3.3: Liabilities in value.

Description Parameter Value
number of assets m 4
number of leaf nodes nT 8
number of SSD benchmarks K1 1
number of relaxed ISSD benchmarks K2 1
length of investment horizon T 2
initial budget A0 10000
penalty coefficient for underfunding at horizon λ 2
lower bound of funding ratio ψ 1.01
transaction fee ratio γ 0.03

Table 3.4: Typical parameter values.

We obtain the optimal investment strategy using 3 models. In the first one, (i),
the underfunding is penalized in the objective without any SD constraint, presented
as Equations (3.24a)–(3.24e). In the second one, (ii), an SSD constraint is added to
the first model (i) to restrict the portfolio to outperform a benchmark at the first
stage, presented as Equations (3.24a)–(3.24g). As the third model, (iii), we apply the
full model (3.24) for this problem presented as Equations (3.24a)–(3.24j), where the
probability of underfunding at the final (second) stage is restricted to be less than 5%
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Number 1 2 3
Value -10 0 10

Probabilities 0.2 0.6 0.2
(a) 1st stage benchmark

Number 1 2 3 4 5 6 7 8 9
Value -10 -8 -6 -4 -2 -1 -0.9 -0.8 -0.7

Probabilities 0.01 0.01 0.005 0.005 0.005 0.005 0.001 0.001 0.001
Number 10 11 12 13 14 15 16 17 –
Value -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 10 –

Probabilities 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.95 –
(b) 2nd stage benchmark

Table 3.5: Benchmark values and probability distributions.

by relaxed ISSD constraints, with all other features the same as for the second model.
The benchmarks used for SSD and relaxed ISSD constraints are listed in Table 3.5. As
we can see the probability of the 2nd stage benchmark less or equal to 0 is 5%.

Results are summarised in Table 3.6, where the models are solved by AMPL&CPLEX.
Model (i) suggested investing only in assets A and D, while both models (ii) and (iii)
included also asset B with slight differences in the weights of each asset respectively.
Assets A and D have better performance in terms of expected return compared with
the other two. However, the inclusion of asset B can lead to better diversification.
From the results presented in Table 3.6, we can see that taking SSD constraints into
account can half the probability of underfunding while the expected return is reduced
by 45%. Relaxed ISSD together with SSD can effectively reduce the probability of
underfunding to merely 2% while the return is the same.

Models
Asset Allocation Expected

Portfolio
Return

Prob(underfunding)

A B C D
(i) No SD 26.6% 0 0 73.4% 10.18% 22%
(ii) SSD 39.3% 18.2% 0 42.5% 6.25% 6%
(iii) SSD + rISSD 41.5% 15.6% 0 42.9% 5.70% 2%

Table 3.6: Portfolio properties generated from 3 models: portfolio composition, ex-
pected return and the probability of underfunding.

Figure 3.2 and Figure 3.3 illustrate the second-order stochastic dominance relations
of the portfolios generated by the 3 models compared to the benchmark at the first
stage and the second stage, respectively. The performance compared in the figures are
the value of the portfolio minus the liabilities. Line above is dominated by line entirely
below. We can see from Figure 3.2 that both portfolios by model (ii) and model (iii)
dominate the benchmark by SSD, while the model (i) portfolio does not. In Figure 3.3,
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we specially show the relations in the interval [−10, 10], because such relation is not
clear in the graph with larger x-axis range. For the same reason, model (i) portfolio
which does not dominate the benchmark is not shown in this figure. At the second
stage, only model (iii) portfolio dominates the benchmark.
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Figure 3.2: Stochastic dominance relations of portfolio performances at the first stage.

3.4.2 Backtesting

Assume a fund management project with the initial wealth of £100,000 which can
be invested in the stocks in FTSE100 and as deposits in money market with certain
interest. Benchmarks are constructed as the worst portfolio that can be accepted. All
the parameters in the backtest are the same as in Table 3.4 except the number of assets
and the number of nodes, which are 102 and 80 respectively. We used daily rate of
return as the first stage scenarios and monthly rate of return in the same time period
as the second stage scenarios. The backtest is run with 80 rolling time windows. The
model first learns from 80-day market data to generate the optimal portfolio, then we
apply this portfolio strategy to the next 80 days and compare its performance with
a passive investment strategy only on FTSE100 Index. Then roll this 160-day time
window by one day to the next and repeat above computations. For example in the
first window, we run the model with market data from 09/10/2007 to 16/02/2008 (80
days), to generate an optimal portfolio strategy; then see how this portfolio performs
from 19/02/2008 to 11/06/2008 (the following 80 days, 17/02/2008 and 18/02/2008 are
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Figure 3.3: Stochastic dominance relations of portfolio performances at the second
stage.

weekends). In Fig 3.4, the results are shown with a thick solid line for the portfolio and
a dotted line for FTSE100 Index, where the curve of the portfolio is generally above
the Index.

For each 80-day time window, we count percentage of days that underfunding oc-
curs and use them as an indicator of possibility of underfunding. Fig 3.5 shows, for
the 80 time windows, the percentages of days out of 80 that underfunding over 5%
occurs, and the percentages of days out of 80 that underfunding over 10% occurs are
in Fig 3.6, for both the portfolio and the FTSE100 Index. In Fig 3.5, we can see that,
until 04/04/2008 the underfunding of the portfolio over 5% appeared less frequently
than that of the Index, which is below 10% of 80 days. Then the curve of the portfolio
jumped above the Index. This jump was due to the big recession of the market starting
from 19/05/2008. Fig 3.7 shows the performance of the portfolio, the Index and the
Markowitz strategy over those 80 days from 04/04/2008. The portfolio performs rela-
tively steadily compared to the Index, i.e. the underfunding is below 10%, although the
underfunding exists through the whole period. The worst performance of the portfolio
in both Fig 3.5 and 3.6 appears around 20/05/2008, similarly to the Index, when the
market was at a turning point and started decrease along the way until touching the
21-month-low on 15/07/2008.

Through the whole test, the portfolio generated by the model presents a relative
steady performance compared to FTSE100 Index. For example on 28/04/2008, two
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Figure 3.4: Value of the portfolio and FTSE100 Index in first time window (19/02/2008-
11/06/2008).

lines in Fig 3.5 cross, which means the percentages of days with underfunding over 5%
are the same for both the portfolio and the Index investment. However, the possibility
of the portfolio underfunding over 10% corresponding to that day is 5% as shown in
Fig 3.6, significantly smaller than 37.5% of the Index. That 80-day performance is
illustrated in Fig 3.8. Among the 80 time windows, there are 58 windows (72.5%)
when the percentage of days with portfolio underfunding over 5% is smaller than that
of the Index as illustrated in Fig 3.5, and 75 windows (93.75%) for underfunding over
10% as in Fig 3.6.

3.4.3 Numerical Efficiency

The ALM stochastic programming model (3.24) proposed in the previous section has
the constraint matrix structure shown in Figure 3.9. Each diagonal block composed
of small A and B matrices corresponds to an initial branch in the event tree. It
contains the inventory, cash balance and underfunding definition at the last stage. The
most right column contains the coefficients of the first stage variables and the bottom
diagonal block contains the initial budget constraint. The bottom border corresponds
to the stochastic dominance constraints linking all the nodes of a given stage together.
For multi-stage problems, the small diagonal A-blocks are themselves structured. This
nested bordered block-diagonal structure can be efficiently exploited by OOPS [55,
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Figure 3.5: Percentage of days with underfunding over 5%.

Figure 3.6: Percentage of days with underfunding over 10%.
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Figure 3.7: Value of the portfolio and FTSE100 Index over 04/04/2008-29/07/2008.

Figure 3.8: Value of the portfolio and FTSE100 Index over 28/04/2008-20/08/2008.
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57], while traditional approaches for linear stochastic programming such as Benders
decomposition and progressive hedging [108] will have difficulties with the stochastic
dominance constraints.

C

D D
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D D
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Figure 3.9: The structure of the two-stage ALM stochastic programming model with
SSD constraints.

The computational tests were performed using stocks in the FTSE100 and FTSE250
daily data from 01/01/2003 to 01/10/2008 to construct the scenarios of portfolio return.
Table 3.7 summarises the statistics of ALM problems tested. All the problems are
modelled following the model presented in (3.24) and are linear programs. “Stages”
and “Total Nodes” refer to the geometry of the event tree for these problems. “Blocks”
is the number of second stage nodes. All problems have a different number of branches
in each stage. There are more branches at the second stage than in the following stages,
e.g. 80 branches at the second stage and 2 branches for all later stages. “Assets” is the
number of assets that can be invested in, which are the FTSE stocks. “Bnmk” is the
number of realisations of each benchmark portfolio.

The size of the ALM problems grows exponentially with the number of stages.
There are two sets of SSD constraints as presented in (3.24f), (3.24g) and three sets of
ISSD constraints (3.24h), (3.24i), (3.24j) for each benchmark at each stage. Suppose
there are T stages, N total nodes, A1 and A2 benchmarks in total for SSD and relaxed
ISSD respectively, and each benchmark a1 (or a2) has Ka1 (or Ka2) realisations, a1 =
1, . . . , A1 and a2 = 1, . . . , A2. SSD requirements are captured by (N + T )

∑
a1
Ka1

linear constraints and relaxed ISSD requirements are taken into account by means of
(N + T )

∑
a2
Ka2 linear constraints. The presence of these SD constraints makes the

75



Problem Stages Blocks Assets Bnmk Total Nodes Constraints Variables
T B I L |N | =

∑T−1
t=0 Nt (I+L+2)|N| (3I+L+2)|N|

ALM1a 2 80 64 20 81 6966 17334
ALM1b 2 40 128 20 41 6150 16646
ALM1c 2 80 128 20 81 12150 32886
ALM1d 2 160 128 20 161 24150 65366
ALM2a 2 80 64 40 81 8586 18954
ALM2b 2 40 128 40 41 6970 17466
ALM2c 2 80 128 40 81 13770 34506
ALM2d 2 160 128 40 161 27370 68586
ALM3a 2 80 64 80 81 11826 22194
ALM3b 2 40 128 80 41 8610 19106
ALM3c 2 80 128 80 81 17010 37746
ALM3d 2 160 128 80 161 33810 75026
ALM4a 3 40 128 10 201 28140 79596
ALM4b 3 80 128 10 241 33740 95436
ALM5a 4 40 128 10 1641 229740 649836
ALM5b 4 40 128 10 2921 408940 1156716
ALM5c 4 80 128 10 1681 235340 665676
ALM5d 4 80 128 10 3281 459340 1299276

Table 3.7: Problem dimensions.

problem very difficult for standard optimisation approaches. For example, it makes
impossible the application of Benders decomposition as discussed in Section 2.4.3.

All computations were done on the Intel Core2 Duo PC. This machine features 2
2.66GHz processors and a total of 2GB of memory.

The numerical results are collected in Table 4.3. We report the solution time,
number of iterations and memory requirements for CPLEX 10.0 barrier [66] and OOPS
[55, 56, 57] for each problem. Most of the problems can be solved within reasonable
time and IPM iterations. Both solvers did very well for small problems. However,
CPLEX ran out of memory for problems ALM5b and ALM5d, while OOPS could solve
them within half an hour. For most of the problems, OOPS was faster than CPLEX,
though CPLEX generally took fewer iterations. The solution time of OOPS increases
steadily with the scaling of problems. When the number of assets is doubled, the
solution time of OOPS increases by a factor smaller than three, which can be seen
from the comparison of solution statistics of ALM1a and ALM1c, ALM2a and ALM2c,
ALM3a and ALM3c. By comparing solution statistics of problems ALM1a, ALM2a
and ALM3a, we can observe the influence of the number of benchmark realizations on
the efficiency of both solvers. The solution statistics of ALM1b/c/d, ALM2b/c/d and
ALM3b/c/d demonstrate that the solution time of CPLEX increases with the number
of blocks much faster than that of OOPS. Both CPLEX and OOPS solution times are
badly affected by the increase of the number of benchmark realizations. The memory
requirements of OOPS are generally smaller than those of CPLEX.
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Problem CPLEX 10.0 OOPS
Time(s) Itr MEM(Mb) Time(s) Itr MEM(Mb)

ALM1a 53.47 14 100.3 19.93 24 38.9
ALM1b 26.73 20 55.3 21.05 27 38.9
ALM1c 133.91 19 184.3 41.467 26 75.8
ALM1d 9.72 42 106.5 104.132 33 147.5
ALM2a 95.07 18 114.7 37.59 28 61.4
ALM2b 63.29 18 92.2 51.16 25 59.4
ALM2c 447.85 20 335.9 111.695 27 114.7
ALM2d 5021.74 35 1265.7 316.92 39 223.3
ALM3a 124.23 19 147.5 61.49 25 102.4
ALM3b 138.89 25 143.4 92.99 29 98.3
ALM3c 1072.28 30 421.9 180.91 28 190.5
ALM3d 7709.53 28 1316.9 593.562 47 376.8
ALM4a 96.89 15 196.6 72.179 28 133.1
ALM4b 588.11 15 536.6 160.20 30 262.1
ALM5a 1291.18 29 1357.8 890.44 41 1075.2
ALM5b – – – 1557.15 41 1843.2
ALM5c 1542.12 20 1597.4 589.65 26 1118.2
ALM5d – – – 1140.16 25 1822.7

Table 3.8: Performance Comparison of CPLEX and OOPS: solution times in seconds.

3.4.4 Parallel Solution

We also considered OOPS in parallel mode for solving large scale ALM problems with
relatively symmetric scenario trees, i.e. the number of branches at the first two stages
are the same. The statistics of test problems are summarized in Table 3.9. All compu-
tations were done on dual processor PCs featuring dual 3.0Ghz Intel processors running
with 4GB RAM. Communication between processors is made with MPI.

Problems Stages Blocks Assets Bnmk Total Nodes Constraints Variables
T B I L |N | =

∑T−1
t=0 Nt (I+L+2)|N| (3I+L+2)|N|

sALM6 3 80 64 10 6481 492556 1322124
sALM7 4 20 32 10 8421 370524 909468
sALM8 4 40 32 10 17641 776204 1905228

sALM9* 4 80 32 10 19281 848364 2082348

Table 3.9: Problem statistics of large scale models.
* 40 branches from second stage.

We report the solution statistics in terms of time consumed to solve the problems
with the parallel implementation in Table 3.10. For runs on one processor, number of
IPM iterations and solution times are reported. Note that sALM8 and sALM9 cannot
be solved with single processor due to a lack of memory. For parallel runs with 2 and
4 processors we also report the speed-ups. We believe that the superlinear speed-up in
solving problem sALM9 is due to avoiding the memory paging when more processors
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Problem 1 proc 2 proc 4 proc
Itr Time(s) Time(s) speed-up Time(s) speed-up

sALM6 33 2421.52 1950.51 1.24 1002.68 2.42
sALM7 52 2735.41 2560.84 1.07 1017.56 2.69
sALM8 – – 7007.11 – 3895.60 1.80
sALM9 – – 8077.81 – 2582.66 3.13

Table 3.10: Results of ALM problems solved in parallel mode.

are used.
Therefore, we can see that the ALM model with second-order stochastic dominance

and relaxed interval second-order stochastic dominance as risk control can provide port-
folio strategy with competitive performance and well-controlled underfunding. How-
ever, there exists danger that the first stage optimization is based on behavior which
is not optimal once the second stage is reached, because the risk constraints consider
all scenarios at the same stage together.
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Chapter 4

Qualified Workforce Capacity

Planning in Operational Risk

Management

In the previous chapter, we dealt with allocating assets optimally. The execution of the
portfolio strategy relies on the people in the back office, which involves operational risk.
The human factor is an important consideration in operational risk. How to allocate
labour optimally so as to manage the operational risk from the human resource aspect
is the subject of this chapter. We will take the case of a back office as an example, but
the result can be applied to more areas. The Stochastic Aggregate Planning Model is
the main methodology of this work. The original content of most parts in this chapter
has already appeared in [46], coauthored with Emmanuel Fragnière and Jacek Gondzio.

4.1 Workforce Planning Problem

In the back office of a bank, the main task is to complete the transactions of financial
products and related paperwork and database management that are required. For
example, a trader (front office) “writes” an over-the-counter option with a counterparty.
The back office prepares the contracts, conducts all the exchange of information in due
time and complies at the same time with the very stringent financial regulations. In
the more and more frequent cases where the back office deals with derivative products,
workers have to understand complicated pricing systems because it is part of their
duties to conduct some price settlements, “reconciliations” and verifications. Several
surveys (see [89, 48]) also indicate that operations in the back office are becoming
far more complicated than before. The reasons for this evolution are multiple: IT
harmonisation due to bank consolidation, new stringent norms and regulations affecting
the operations (e.g. IAS-IFRS, Sarbannes-Oxley, Basel II, new taxation system like
Qualified Intermediary), significant increase in service productivity over the last years,
boom of new sophisticated (structured) financial products. So more and more complex
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risks are attached to the activities in the back office and most of them require, above
all, knowledge, experience and expertise to be addressed correctly and in an efficient
manner.

Unfortunately, the risk management of back offices in the banking sector has not
benefited from the modeling advances in other financial risks (market, credit and liq-
uidity risks) promulgated by the Basel Committee. Basel II classifies the risks of a
bank into four categories: strategic; financial; non-financial/operational; reputation
and compliance risks. Regarding the non-financial/operational (risks) category, four
subcategories are used: fraud, political, IT and operations (transactions mistakes, inef-
ficiencies of processes) risks. In operations, risks have two facets: internal and external.
Internal risk is typically linked to operations (hence controllable). External risks are the
consequence of external causes (for instance, a change of some US GAAP accounting
rules for derivatives which will affect the back office procedures as well as the train-
ing of the staff). The modeling of operational risk is rather subjective regarding its
qualitative nature, being related to managerial issues.

An important aspect of the management of back offices is the notion of explicit
and tacit knowledge (expertise), as explained before. Explicit knowledge enables the
employees to deal with most standardised tasks. On the other hand, when a problem
occurs which is not part of explicit (codified) knowledge, only the tacit knowledge (i.e.
the expertise) can help to solve it. In the case of operations, the risk can “materialise”
under different states [34] according to the TEID model: Threat, Event, Ignorance and
Damage. Typically, the qualified worker knows how to act in these different states of
risks through prevention, identification, and protective approaches.

Aggregate Planning Model (APM) is the basic prototype of the model to deal with
this problem. The following extensions will be necessary.

A first improvement of the basic APM which we explore in order to better manage
operational risk, is to deal with the uncertainties of capacities and demand, as will be
shown in Section 4.3. In this context it corresponds to a situation where the risk is
external (like a market risk) and we consider that the quality of work has no influence
whatsoever on it (it is uncontrollable through managerial activities). The solution
simply adapts to the evolution of the different scenarios described by the event tree.

A second improvement, as advocated by Basel II, is to calculate a probability dis-
tribution based on a Bayesian network. This reflects the observation that data related
to operations risks are rarely available. We thus apply this scheme to our basic model
where the demand parameters are assumed to be random. The Bayesian method, which
is similar to our method in the sense of probability calculation based on Bayes rule, has
been applied for example by Morton and Popova [91] to evaluate capacity strategies
for a manufacturing problem.

A third improvement to deal with operational risks, and to our best knowledge
implemented for the first time in a business case, is to establish a relation between the
random variables and decision variables. Demand is set to be dependent on decisions.
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The model becomes then far more complicated (nonlinear). It is worth mentioning that
our approach is in line with the risk management requirements defined by COSO II
(Committee of Sponsoring Organisation, www.coso.org) in the sense that the quality
of Internal Control System affects the residual risks.

By distinguishing between explicit and implicit knowledge in our model, we will
thus assume that, if more capacity of qualified workers is available, this should lead to
better service because mistakes in the operations are reduced; moreover this builds up
the reputation and as a consequence the demand for such service increases. For this
reason, the assumption of variable and parameter independence needs to be relaxed in
our stochastic programming problems.

Finally, for each developed model we use dual solutions to identify in the plan which
scenarios are under stress regarding the availability of qualified workers. This analysis
complements well the one provided by the primal solutions. Indeed it represents a
way to price the risks due to a lack of qualified resources. We focus on the main
inventory constraints of the Aggregate Planning Model, which are equality constraints
with variables on both sides of the equations. In consequence, the dual solutions do
not correspond to marginal values of resources. Nevertheless, dual variables (Lagrange
multipliers associated with the constraints) give a relevant indication of the constraints
that would need to be relaxed. For instance, they can show when liquidity should be
available in addition to being able to hire additional qualified workforce capacity.

4.2 Aggregate Planning Model

In this section, we start with a general discussion of the of Aggregate Planning Model as
well as its several applications. Then, how this methodology can be applied in workforce
planning in operational risk management is illustrated, from the deterministic case to
the stochastic case.

4.2.1 Generic Aggregate Planning Model

The Aggregate Planning Model is used to model the process of aggregation of quantities.
These quantities can be products, human resources or other resources. The model aims
to satisfy certain demand with the lowest cost arising from production, employment and
inventories. Two existing applications of the Aggregate Planning Model are production
planning and labour allocation problems.

A list of papers on production scheduling can be found in the review paper [58] which
highlights the status of work in this area until 1980s, and identifies some prospective
topics. The author proposed three aspects to categorise production scheduling prob-
lems. The first is by requirements generation and the problem is either open shop or
closed shop, depending upon whether the requirements are generated directly by cus-
tomers’ orders or indirectly by inventory replenishment decisions. Although it is rare
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to have a pure open or pure closed shop system, most production environments are pri-
marily either open or closed. The second dimension refers to the number of processing
steps associated with each production task or item. The processing may involve one
stage or multiple stages; there may be one facility or parallel facilities which provide
alternative means of processing. The third aspect indicates the measures upon which
schedules are to be evaluated. One method of measurement is the scheduling cost,
including production setups, overtime costs, inventory holding costs and shortage costs
for not meeting deadlines or for stocking out, as well as the costs involved in generating
the schedule and monitoring progress, etc. The other method of measurement is the
scheduling performance, for example, utilisation level of the production resources, the
percentage of late tasks, the average or maximum flow time for a set of tasks and so
on.

Self-sufficiency in all activities is commonly unsatisfied in modern business enter-
prise, although there is high integration. There appears to be dependence between
companies so that at least some work or service is provided, and subcontracting is
extensively used in industry, which is “the procurement of an item or service which is
normally capable of economic production in the prime contractor’s own facilities and
which requires the prime contractor to make specifications available to the supplier”
[72]. A subcontracting mechanism was considered as a production planning strategy
in Aggregate Planning Model in [72], and a dynamic programming approach was pro-
posed.

When a production system is composed of multiple plants, multiple products and
seasonal demands, the Aggregate Planning Model with hierarchical structure may serve
better, as illustrated in [63]. According to this method, the decisions are made in a
sequence of four levels:

1. assignment of products to plants, using mixed-integer programming;

2. preparation of seasonal accumulation plan and, for each type of products with
similar inventory costs, allocation of capacity in each plant, using linear program-
ming;

3. detailed schedules for each product family within which products share a ma-
jor setup, and allocation of capacities for families in the type, using standard
inventory control methods;

4. individual planning for each item in each family, using standard inventory meth-
ods.

Extensions and modifications of this method were proposed in [114], where the model
consists of three stages as the top-level plant/product-type assignment model, the fam-
ily disaggregation subsystem and the item disaggregation subsystem.

Productivity change is also an important issue to be taken into account in the
Aggregate Planning Model, as in [39, 78]. A learning curve is used to describe the
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process of productivity changes, and this is incorporated into the Aggregate Planning
Model.

An example showing how the Aggregate Planning Model could be applied to man-
power planning and scheduling in the service sector is discussed in [1]. This example
represents the problems occurring in most general service organisations like acute hos-
pitals, where the demand is highly variable and must be provided in a timely manner,
and where in addition, service cannot be inventoried: for instance police departments,
ambulance services and fire departments. Unlike goods production which relies heav-
ily upon the inventory capacities and backorder capacities, the service sector has to
consider several important aspects. Specific labour skills should be matched with job
requirements at individual work centres; the training requirements and losses in man-
power efficiency that can arise from reallocation of staff; uncontrollable attrition affects
the staff planning process. This work proposed a model making decisions in three levels:
policy decision, staff allocation and short-term scheduling, and the model was solved
using an iterative approach.

Another example of the Aggregate Planning Model applied to employment strategy
is that of a telephone company [75]. The characteristic of this kind of problem is the
seasonal demand for services and varying productivities of workforce which can produce
various group of services. The model was formulated as a linear program, considering
employment inventory constraints, production inventory constraints, the upper limit
on the amount of overtime, and the upper limit on the maximum days of delay.

4.2.2 Deterministic Work Force Planning Model

Suppose we know with certainty all the parameters that are essential to make our
planning decisions. In the objective function, we aim to minimise the costs resulting
from employment and losses while maximising the profit. The cost function includes
three elements: hiring cost, firing cost and salaries paid to employees. Qualified people
have higher firing cost and salaries than non-qualified people while hiring costs are
assumed to be the same for both groups. We pay only salaries to temporary employees
without hiring or firing costs.

Profit is related to the volume of transactions successfully completed and hence
defined as a multiple of this volume. Since we require the satisfaction of all demands on
time, and since there is no inventory of transactions, this volume is actually equivalent
to the demand. Finally, profit is proportional to demand. It is worth mentioning that
when demand does not change in the model, i.e., it is a parameter not a variable, profit
is constant and does not need to be optimised in the objective. We have the following
objective function:

min
∑

t

((xQ
h )t + (xN

h )t)h+ (xQ
f )tfQ + (xN

f )tfN + (xQ)twQ + (xN )twN + (xP )twP

where t = 1, . . . , T , is the time stage (a stage corresponds to a year); xh, xf , x are the
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numbers of people hired, fired and kept. −Q, −N and −P stand for the quantities of
Qualified people, Non − qualified people and temporary employees, and h, fQ, fN ,
wQ, wN and wP denote hiring cost, firing cost for qualified and non-qualified people,
salaries per person for qualified, non-qualified and temporary employees, respectively.
xP is the number of temporary person-days, e.g. xP = 1 means a temporary employee
working one day. In this model, we assume that both qualified and non-qualified
people are kept at work at least a full year. Hence, wQ and wN are both yearly salaries.
Temporary people are hired daily, which means wP is the payment to one temporary
employee for working one day.

While we try to achieve the optimal value, there are two categories of constraints to
be satisfied. The first group of constraints corresponds to the inventory of employees.
Except for the first stage, we can hire and fire at each stage. Thus the number of
employees we hold in a given period represents the number in the previous stage,
minus the number fired, plus the number of newly hired employees. This is presented
as follows:

(xQ)t−1 + (xQ
h )t − (xQ

f )t = (xQ)t, ∀t
(xN )t−1 + (xN

h )t − (xN
f )t = (xN )t, ∀t.

The second one is the capacity constraint, which requires each demand to be com-
pleted on time at that stage. The capacities ηt at stage t are calculated in the following
way:

(xQ)tαQ × 260 + (xN )tαN × 260 + (xP )tαP = ηt, ∀t

where αQ, αN and αP are work capacities for qualified, non-qualified and temporary
employees, respectively. These are the numbers of transactions that one person in the
corresponding group can complete per day. We assume that αQ > αP > αN .

We suppose that there are 260 working days per year. The capacity represents the
sum of transactions processed by qualified people, non-qualified people and temporary
employees in a year. The capacity must be larger than or equal to the demand βt.

To sum up, the full mathematical programming model can be written in the follow-
ing way:

min
∑

t

((xQ
h )t +(xN

h )t)h+(xQ
f )tfQ +(xN

f )tfN +(xQ)twQ +(xN )twN +(xP )twP (4.1a)

subject to
(xQ)t−1 + (xQ

h )t − (xQ
f )t = (xQ)t, ∀t = 2, . . . , T

(xN )t−1 + (xN
h )t − (xN

f )t = (xN )t, ∀t = 2, . . . , T
(4.1b)

(xQ)tαQ × 260 + (xN )tαN × 260 + (xP )tαP = ηt, ∀t = 1, . . . , T (4.1c)

ηt ≥ βt, ∀t = 1, . . . , T (4.1d)

(xQ
h )t, (xN

h )t, (xQ
f )t, (xN

f )t, (xQ)t, (xN )t, (xP )t ∈ N0, (4.1e)
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t=1 t=2 t=3 t=4 t=5

Figure 4.1: A deterministic multistage model representation: circles stand for state
nodes and rectangles stand for decisions.

where t = 1, . . . , T is the planning horizon and N0 = {0, 1, 2, 3 · · · }. The model above
presents the standard form of the Aggregate Planning Model, with (4.1a) as the cost
objective function to be minimised, (4.1b) corresponding to the dynamic constraints
and (4.1c), (4.1d) being the local constraints.

Figure 4.1 reflects a 5-period instance (T=5) [45]. Decision variables are the number
of people to be employed. Consequently they are defined as integers, which means that
the model is an integer programming problem. In reality, however, uncertainty needs
to be taken into account when planning. We will develop the stochastic Aggregate
Planning Model in the following section.

4.3 Multi-stage Stochastic Agregate Planning Model of

Workforce Planning Problem

In this section, we develop stochastic programs with randomness in demand and ca-
pacities.

4.3.1 Random Demand Parameters

We can assume that the demands are random parameters and can thus take several
possible values. This is usually modelled as an event tree (see for instance Figure 4.2).
As a result, we obtain a multistage stochastic program.

The deterministic equivalent formulation of our Aggregate Planning Model with
uncertain demands becomes:

min
∑
t,jt

P t
jt

(((xQ
h )t

jt
+(xN

h )t
jt

)h+(xQ
f )t

jt
fQ+(xN

f )t
jt
fN +(xQ)t

jt
wQ+(xN )t

jt
wN +(xP )t

jt
wP )

(4.2a)
subject to

(xQ)t−1
a(t,jt)

+ (xQ
h )t

jt
− (xQ

f )t
jt

= (xQ)t
jt
, ∀t = 2, . . . , T, ∀jt ∈ Nt (4.2b)

(xN )t−1
a(t,jt)

+ (xN
h )t

jt
− (xN

f )t
jt

= (xN )t
jt
, ∀t = 2, . . . , T, ∀jt ∈ Nt, (4.2c)

(xQ)t
jt
αQ × 260 + (xN )t

jt
αN × 260 + (xP )t

jt
αP = ηt

jt
, ∀t = 1, . . . , T, ∀jt ∈ Nt, (4.2d)

ηt
jt
≥ βt

jt
, ∀t = 1, . . . , T, ∀jt ∈ Nt, (4.2e)
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(1,2)

(2,1)

(1,1)

(2,5)

(2,4)

(2,3)

(2,2)

(0,1)

t=3t=2t=1
Figure 4.2: An example of an event tree describing different demand states of nature.

(xQ
h )t

jt
, (xN

h )t
jt
, (xQ

f )t
jt
, (xN

f )t
jt
, (xQ)t

jt
, (xN )t

jt
, (xP )t

jt
∈ N0,

where jt ∈ Nt = {1, . . . , nt}, is the set of demand states, and P is the probability
distribution of demand, which defines (partial) path probabilities: P t

jt
is the probability

(at the start) that a path goes through node jt at time t and a(t, jt) denotes the ancestor
of node jt in the event tree. This formulation remains an integer programming problem.

4.3.2 Random Capacity Parameters

Due to some unpredictable events, like illness, holiday, or some unexpected accidents,
constant capacity of employees cannot be guaranteed. Hence, we introduce uncer-
tain capacity parameters into the model, α̃Q and α̃N . Temporary employees are just
employed in cases where we need more people. Consequently, we assume that they
only take a small part of the total demand and thus we neglect the variation of their
capacities. The corresponding capacity constraints become:

(xQ)t
jt
αQ

jt
× 260 + (xN )t

jt
αN

jt
× 260 + (xP )t

jt
αP = ηt

jt
, (4.3)

ηt
jt
≥ βt

jt
, (4.4)

where t = 1, . . . , T , jt = 1, . . . , nt.
The other concern about capacity is new employees’ capability. There is always

a certain period needed for a person who is newly employed to get used to the work
environment and to become familiar with their responsibility. We cannot expect a new
employee to be as efficient as an experienced one. Hence, their capabilities have to be
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valued separately. This is reflected in the following capacity constraint:

((xQ)t
jt
− (1− δjt)(x

Q
h )t

jt
)αQ

jt
× 260 +((xN )t

jt
− (1− δjt)(xN

h )t
jt

)αN
jt
× 260

+(xP )t
jt
αP = ηt

jt
,

(4.5)

where t = 1, . . . , T , jt = 1, . . . , nt, and 0 < δ < 1 is the ratio of a new employee’s
capability to an experienced employee’s capability, i.e., when an experienced employee
completes one transaction, the new employee can do only δ transactions. For a new
hired employee, we have to subtract the lack of capacity (1 − δjt) × (xQ

h )t
jt

and (1 −
δjt) × (xN

h )t
jt

from the total capacity. After one year, the new employee can work as
efficiently as other employees.

The randomness in demand and capacity in the present model are both external
risks which are not controlled by the decisions in the model. In Section 4.5, we will
introduce the internal risk from the uncertain demand that depends on the decisions.

4.4 Revising Operation Efficiency Probability Distribu-

tions

Operation efficiency is a way to measure the work done by employees, which is how many
transactions an employee completes per unit time (labour cost) and how many errors
an employee makes per transaction (error rate). In banking, a mistake in operations
could bring big losses to the company and also decrease the demand in subsequent
stages. Limiting the number of mistakes to the strict minimum is essential. This
notion of operational efficiency is thus intimately linked to operational risk management
[27, 47], and is related to people’s knowledge and skills. Even if we know whether people
are qualified or not, errors can still happen unexpectedly. Hence it is necessary to
consider randomness of operation efficiency in the model. And we need the probability
distribution describing the behaviour of the random variable. However, in operational
risk management, this kind of data is hard to collect. Firstly, long-term data is lacking,
which means only the data for a few recent years is available. Secondly, a company
never publishes its errors and operational losses and this makes the data unavailable. It
is indeed extremely difficult to collect sufficient years of statistics describing operational
risks, so as to be then able to assume any theoretical behaviour. Because of this, we
will use a Bayesian Network.

Bayesian Networks (BN) have emerged as a method of choice to deal with opera-
tional risks, especially in the banking sector, because their use does not necessitate the
gathering of huge amounts of past data. BN is in fact grounded upon classical decision
theory and also adopts computing schemes of Artificial Intelligence [67]. Typically with
a Bayesian approach we start with a subjective probability associated with a particular
event. The a priori probability (also called subjective probability as opposed to objec-
tive probability) is assessed by the manager and corresponds to their own intuition and
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expertise. Along the way, obtaining new imperfect information and depending upon
the quality of past imperfect information provided by the issuer, the manager will be
more or less inclined to modify his initial judgement. In a formal model this would
be called the a posteriori analysis where a priori probabilities are modified using the
Bayes formula. The Bayesian Network can be presented as a quantitative approach
to handling qualitative dynamic choices. On the other hand, through the modelling
of decision trees this approach should enable the manager to structure the dynamic
dimension of the decision process.

4.4.1 Bayesian Network

The Bayesian method is a statistical inductive way to update the probability distri-
bution using Bayes’ theorem which was first stated by Bayes in the 18th century. It
makes full use of the available information and data to achieve a more reliable prob-
ability distribution of the uncertainties. This theory [10] has been widely applied in
several areas including economics, informatics, biostatistics, educational and psycholog-
ical research, social science, decision theory and optimisation, etc. The application of
Bayesian method to Weibull process can be found in [118], which induced the posterior
distribution from the prior distribution, where both the shape parameter and the scale
parameter are unknown, and are given a discrete distribution and a gamma distribu-
tion, respectively. Two examples, namely the reliability of communication satellites,
and also the replacement of fuel pumps, were explained using the Bayesian method. The
Weibull process as a natural conjugate prior is quite popular in the Bayesian method.
In [8] the author discussed how to achieve the minimal cost with the optimal overhaul
interval when the restoration is Weibull distributed. It was also proved experimentally
that the Bayesian method is superior to the Naive T model, and that its performance
can be significantly improved by eliminating the bias in the prior estimates. Another
research in this topic [19] described the maintenance policies in both the deterministic
case and the stochastic case with the number of minimal repairs modelled as a Weibull
process during the warranty period. In the stochastic case, two Bayesian policies are
provided when the failure parameters of the Weibull process are unknown. While one
updates the policy at each renewal point, the other one does so at both failure and
renewal time. The simulation results have shown that, if either the failure is overesti-
mated or underestimated, Bayesian policies could decrease the costs. Again, improved
knowledge of the prior can lead to better results.

In [131], the Bayesian method was proved to be one of the most efficient ways in
terms of information processing, which means that the new data is 100% transformed
into the prior distribution to get the posterior distribution. While more contributions
were made to the Bayesian analysis, in [70] it was chosen to develop the technology for
implementations used by experimenters in multiple normal linear regression models. In
this paper, the interactive elicitation was explored to build up the prior distribution
rather than the experimental data.
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Due to the nature of Bayesian method, it is widely used in stochastic scheduling.
The dynamic allocation index theorem can provide the generalised optimal strategy
for a family of alternative bandit processes, where the parameters of the random ele-
ments have a prior distribution, in terms of lowest cost or least time [49]. The problem
of job allocation with a single machine was discussed in [59]. All the jobs in differ-
ent families have random processing time whose parameters are random as well. The
Bayesian method was applied to update the distribution of these random parameters.
The paper started with the simplified situations, i.e. where jobs in the same family are
processed successively, and in which there are two classes of jobs, one of which has a
known parameter. The author then solved the problem as a general m-class problem.
Besides the job allocation problem, another scheduling problem is concerned with man-
power. Papers [91, 105] by Morton and Popova researched the manpower scheduling
problem when the machine downtime and working hours are randomly distributed with
unknown parameters. Mathematical programming is the main methodology to solve
this problem. The model aimed to minimise the penalties from both late deliveries and
exceeding target budget in the objective under the condition that the working cannot
be larger than the machine available hours. The demand was allowed to be unsatisfied
with penalty and the production cost was equal to wages paid for regular-time working
hours and overtime. In the deterministic model, Bayesian estimation provides the point
forecasts for the up-hours and production per shift for each shaft type, while in the
stochastic situation, the distributions of the up-hours and production rate are estimated
by the Bayesian method. The computational results show that, compared to empirical
distributions, the expected costs of the schedule are much lower when generated by the
Bayesian predictive distribution.

The Bayesian Network (BN) has been widely applied as a successful description of
causalities in several areas such as diagnosis, heuristic search, ecology, data mining and
intelligent trouble shooting systems. It is defined as follows [67]:

Definition A Bayesian network consists of the following:

• A set of variables and a set of directed edges between variables.

• Each variable has a finite set of mutually exclusive states.

• The variables together with the directed edges form a Directed Acyclic Graph(DAG).
(A directed graph is acyclic if there is no directed path A1 → · · · → An such that
A1 = An, where Ai are variables.)

• To each variable A with parents B1, · · · , Bn, there is attached the potential table
P (A|B1, · · · , Bn). A is a child of B and B is a parent of A, if there is a link
directed from B to A. And, always, the parent(s) are set to be cause(s) of the
child.

P (A|B1, · · · , Bn) is the conditional probability of A given (B1, · · · , Bn). Note that if
A has no parents then the conditional probability reduces to unconditional probabilities
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P (A). Causal relations also have a quantitative side, namely their strength. This is
expressed by attaching numbers to the relation links. In BN, it is natural to set the
conditional probability to be the strength of the link. Let B be a parent of A, then
P (A|B) is the strength of their link.

The two fundamental rules for probability calculus are

P (A|B)P (B) = P (A,B),

P (A|B) =
P (B|A)P (A)

P (B)
,

where P (A,B) is the probability of the joint event that both A and B happen. Some-
times P (A|B) is called the likelihood of B given A. Assume A has n outcomes a1 · · · an,
with an effect on the event B, where B is known. Then, P (ai|B) is a measure of how
likely it is that ai is the cause. In particular, if all ai’s have prior probabilities, Bayes’
rule yields

P (ai|B) =
P (B|ai)P (ai)

P (B)
.

How to calculate the probabilities in a Bayesian network is given in the following
theorem:

Theorem 2 (The chain rule, [67]). Let U = (A1, · · · , An) be a universe of variables
and define a Bayesian network over this set. Then the joint probability distribution
P (U) is the product of all conditional probabilities specified in the Bayesian network:

P (U) =
∏

i

P (Ai|pa(Ai)),

where pa(Ai) is the parent set of Ai.

Let A be a variable in a Bayesian network, with prior probability distribution
P (A) = (p1, · · · , pn). Assume we get the information (or evidence) e that A only has
two possible states i and j, i.e. the belief becomes P (A, e) = (0, . . . , 0, pi, 0, . . . , 0, pj , 0, . . . , 0).
Note that the prior probability of this information is P (e) = pi + pj , the sum of the
probabilities of the possible states. Using the fundamental rule, we have:

P (A|e) =
P (A, e)
P (e)

=
P (A, e)∑
A P (A, e)

.

Here, we can interpret P (A, e) as a multiplication of the prior probability distribution
P (A) with the vector e = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0). This n−dimensional binary
vector is called a finding on A.

Now, we extend this probability update to the whole variable universe. Given U as
a universe of variables, we have a finding as above, which results in the belief P (U, e)
from the prior probability distribution P (U). Similarly, P (e) is the sum of all entries
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in P (U, e), P (U, e) is the product of P (U) with the finding e and

P (U |e) =
P (U, e)
P (e)

=
P (U, e)∑
U P (U, e)

.

If e consists of m findings f1, · · · , fm which are m binary vectors, then the probability
can be updated according to the theorem below:

Theorem 3 ([67]). Let U be a universe of variables and let e = {f1, · · · , fm}. Then

P (U, e) = P (U)× f1 × · · · × fm and P (U |e) =
P (U, e)
P (e)

where
P (e) =

∑
U

P (U, e).

An example of a Bayesian network is shown in Figure 4.3, assuming probability
distribution P (U) and that a (corresponding) conditional probability distribution for
each arrow is defined. The dotted lines with e indicate insertion of evidence, which can
be used to update the probability distribution.

A

C

F

B D

E G

e

e

e

Figure 4.3: An example of a Bayesian Network.

An example from operational risk management. Consider the settlement pro-
cess of trades in a bank. The trade volume (TC) could influence the trade capture
(TC) in front office and the payment input in back office. Those two together will
influence the settlement (S) result. Meanwhile, the trade type (TT) which could be
simple or complicated has an effect on trade match confirmation (CM). And this match
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can also affect the settlement (S) result. A Bayesian network presenting these cause-
effect relations is show in Fig 4.4. The probability distribution of the nodes without any
parent and conditional probability distribution of other nodes are given in Table 4.4.1

Figure 4.4: A Bayesian network presenting settlement process in a bank.

Thus, the universe of variables is U = (TV, TT, TC, PI, CM, S). Following
Theorem 2, we can calculate the probability distribution of U , e.g.

P (U = (high, complex, correct, correct, correct, succeed))

= P (TV = high)× P (TT = complex)× P (TC = correct|TV = high)

×P (PI = correct|TV = high)× P (CM = correct|TT = complex)

×P (S = succeed|TC = correct)× P (S = succeed|PI = correct)

×P (S = succeed|CM = correct)

= 0.4× 0.3× 0.9× 0.9× 0.9× 0.95× 0.95× 0.95

= 0.075,

which is the probability of the case that the trade volume is high, trades are in simple
type and captured correctly, no error is in the payment input, match confirmation is
correct, and the final settlement succeeds; similarly,

P (U = (low, simple, correct, correct, correct, succeed))

= P (TV = low)× P (TT = simple)× P (TC = correct|TV = low)

×P (PI = correct|TV = low)× P (CM = correct|TT = simple)

×P (S = succeed|TC = correct)× P (S = succeed|PI = correct)

×P (S = succeed|CM = correct)

= 0.6× 0.7× 0.99× 0.99× 0.99× 0.95× 0.95× 0.95

= 0.349.
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TV P(TV)
high 0.4
low 0.6

(a) trade volume

TT P(TT)
simple 0.7

complex 0.3
(b) trade type

TC P(TC|TV=high) P(TC|TV=low)
correct 0.9 0.99
error 0.1 0.01

(c) trade capture

PI P(PI|TV=high) P(PI|TV=low)
correct 0.9 0.99
error 0.1 0.01

(d) payment input

CM P(CM|TT=simple) P(CM|TT=complex)
correct 0.9 0.99
error 0.9 0.99

(e) confirm match

S P(S|TC=c) P(S|TC=e) P(S|PI=c) P(S|PI=e) P(S|CM=c) P(S|CM=e)
succeed 0.95 0.01 0.95 0.01 0.95 0.01

fail 0.05 0.99 0.05 0.99 0.05 0.99
(f) settlement

Table 4.1: Probability distribution and conditional probability distribution of the op-
erational risk management Bayesian Network.
”c” for ”correct”; ”e” for ”error”.

Suppose now we know that the trade is captured correctly (i.e. TC=c), which is an
evidence . By Theorem 3, the probability distribution of U can be revised, e.g.

P (U = (high, complex, correct, correct, correct, succeed)|TC = c)

=
P ((high, complex, correct, correct, correct, succeed), TC = c)

P (TC = c)

=
0.075
0.954

= 0.079

P (U = (low, simple, correct, correct, correct, succeed)|TC = c)

=
P ((low, simple, correct, correct, correct, succeed), TC = c)

P (TC = c)

=
0.349
0.954

= 0.366

The tree presented in Figure 4.5 shows how the probability of this Bayesian network
is revised. Initially the priori probabilities are assigned to the root nodes and conditional
probabilities are assigned to each edge. By collecting information (or evidence) of the
variables, which are observable, the probability of the whole network can be updated.

93



P(U)
P(U|TC=c)

P(U|TC=e)

TC=c

TC=e

CM=e

CM=c

CM=c

CM=e

P(U|PI=c)

PI=c

PI=e

Figure 4.5: Probability revision tree of the Bayesian network.

4.4.2 Probability Distribution Revision

In operational risk, unexpected variability in operation efficiency has a significant effect
on losses. Applying BN in this context means using the information on losses presently
available to revise the probability distribution of operation efficiency. We illustrate the
use of BN in an example below.

Let ErQ be the operation efficiency of qualified people, which is the expected num-
ber of errors made by qualified people in one transaction, and similarly, let ErN be
the operation efficiency of non-qualified employees. One error will lead to a failure
of the current transaction. We assume that 0 ≤ ErQ ≤ ErN ≤ 1. Firstly we need to
know an a priori probability of the operation efficiency from experts’ knowledge. For
example, we denote A as ErQ ≥ φ which means qualified employees have shown (a)
minimal (standard of) efficiency and A as ErQ < φ, where φ is a benchmark set to
judge the operation efficiency. Suppose that the experts give the following estimates:
P (A) = 0.2, P (A) = 0.8. In addition, denote B as Loss > 0 which is the loss resulted
from the activity of qualified people, and B as Loss = 0. Again, suppose that experts
also determine that P (B|A) = 0.7 and P (B|A) = 0.1. We can calculate

P (B) = P (B|A)P (A) + P (B|A)P (A) = 0.22. (4.6)

Now suppose that after one year, we know that a loss has occurred, which is the
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event B. We get new confidence about the operation efficiency by BN as

P (A|B) =
P (B|A)P (A)

P (B)
= 0.64. (4.7)

In this simple example we notice that the probability of poor operation efficiency in-
creases from 0.2 to 0.64. For the random variables with more than 2 possible values, we
still need to revise all the probabilities in the same way with (4.7). In addition, after
revising the probabilities of A, we also need to update B′s probabilities following the
same approach as (4.6).

We can check that the revision process corresponds to our intuition. The condi-
tional probability of positive loss given poor operation efficiency is higher than the
unconditional probability when we know nothing about the operation efficiency, which
is

P (B|A) ≥ P (B). (4.8)

Then, when loss happens, we revise A′s probability as follows:

P (A|B) =
P (A)P (B|A)

P (B)
≥ P (A). (4.9)

The inequality (4.9) follows easily from (4.8). This revision tells us that incurring
loss increases the probability of poor operation efficiency, which agrees with people’s
intuitive judgement.

Finally, integrating the BN framework to revise the probability distribution of op-
eration efficiency, in the Aggregate Planning Model, we obtain the following equations:

min
∑

t,jt
P t

jt
(((xQ

h )t
jt

+ (xN
h )t

jt
)h+ (xQ

f )t
jt
fQ + (xN

f )t
jt
fN

+(xQ)t
jt
wQ + (xN )t

jt
wN + (xP )t

jt
wP

+((xQ)t
jt
αQ

jt
ErQ

jt
+ (xN )t

jt
αN

jt
ErN

jt
)× 260× θ)

(4.10a)

subject to

(xQ)t−1
a(t,jt)

+ (xQ
h )jt − (xQ

f )t
jt

= (xQ)t
jt
, jt = 1, . . . , Nt, ∀t = 2, . . . , T,

(xN )t−1
a(t,jt)

+ (xN
h )t

jt
− (xN

f )t
jt

= (xN )t
jt
, jt = 1, . . . , Nt, ∀t = 2, . . . , T,

(4.10b)

((xQ)t
jt
− (1− δv)(x

Q
h )t

jt
)αQ

jt
× 260 +((xN )t

jt
− (1− δv)(xN

h )t
jt

)αN
jt
× 260

+(xP )t
jt
αP = ηt

jt
,

(4.10c)

jt = 1, . . . , Nt, ∀t = 1, . . . , T,

ηt
jt
≥ βt

jt
, (4.10d)

jt = 1, . . . , Nt, ∀t = 1, . . . , T,

(xQ
h )t

jt
, (xN

h )t
jt
, (xQ

f )t
jt
, (xN

f )t
jt
, (xQ)t

jt
, (xN )t

jt
, (xP )t

jt
∈ N0,
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where the probability distributions are calculated according to the following equations:

P t
jt

=
P t−1

a(t,jt)
Ploss(Loss > 0|jt)

P t−1
loss (Loss > 0)

, if loss happens, (4.11a)

jt = 1, . . . , nt, ∀t = 2, . . . , T,

P t
jt

=
P t−1

a(t,jt)
(1− Ploss(Loss > 0|jt))

1− P t−1
loss (Loss > 0)

, if no loss happens, (4.11b)

jt = 1, . . . , nt, ∀t = 2, . . . , T,

P t
loss(Loss > 0) =

∑
jt

Ploss(Loss > 0|jt)P t−1
a(t,jt)

, (4.11c)

jt = 1, . . . , nt, ∀t = 2, . . . , T.

θ is the loss in capital per error. (4.11a), (4.11b) and (4.11c), impose the Bayesian
Network, where P t

jt
denotes the probability distribution of operation efficiency, Ploss

is the probability distribution of the loss while Ploss(|) is the conditional probability
distribution of loss conditioned on the operation efficiency. (4.11a) and (4.11b) are the
probability revisions of operation efficiency. At each stage t, we revise the probabilities
from previous stage t− 1 by collecting the loss information. The probability distribu-
tion revised at each stage is essential in the objective function and clearly influences
the decision-making accordingly. (4.11c) calculates the new probability of loss after
operation efficiency probability revision at each stage. See Figure 4.6. The probability
is revised at every node after knowing loss state of the corresponding stage, e.g. at
(t− 1, a(jt)) loss state of stage t is unknown; after collecting the state information at t,
the probability is revised at (t, jt). As time progresses, we continuously collect the loss
state information to update the probability distributions. The optimisation problem
(4.10) is a linear integer program.

4.5 Random Parameters Dependent on Decisions

Demand can be dependent upon several factors, such as the trend of the market or
the management of the company. One of the most important factors is the reputation
acquired based on the quality of transactions processed so far, which is essentially
related to individual employee expertise. When customers receive products or services
of high quality, they are more likely to continue the business and even increase the
volume and bring more business to the company, which will increase the demand at
the next stage. Conversely, if customers are not satisfied with what they have got, they
may change to other companies.

The operational risk in this case has two issues. Firstly, demand may decrease due
to the low quality of service provided and this would result in revenue drop. According
to COSO philosophy (www.coso.org), the crude risk is reduced as a function of the
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(t-1,a(t,jt))

(t,jt)

(t,jt+1)

Loss>0

Loss=0

Loss=0

Loss=0

Loss>0

Loss>0

Figure 4.6: The process of probability distribution revision, where a(t, jt) is the ancestor
node of jt.

level of quality of the internal control system. As an example, we can imagine that
a bank’s main activity is in the development and trading of structured products (the
crude risk is thus huge in terms of financial and operational risks). However, if highly
qualified people are dealing with these activities, the internal control system presents
a high level of quality, due to the fact that the qualitative skills like information search
style, level of education and training on risk, influence the capability of risk managers to
identify risks. Consequently, the residual risk is minimised. The managerial treatment
of risk becomes thus crucial in regard to the COSO philosophy. Another element that
has to be taken into account in the management of back offices is the distinction of
explicit and tacit knowledge, as discussed before. Explicit knowledge is easy to learn
and follow. They can be used to deal with the routine tasks which obey standards
and can be documented in working procedures. In contrast, tacit knowledge needs
much more effort to express, formalise or convey, resulting in difficulties to master this
knowledge and to make good use of it. However, tacit knowledge is necessary to tackle
the unexpected problems affecting the service production that cannot be documented,
when explicit knowledge can rarely make a contribution. In such situation, qualified
employees with both tacit and explicit knowledge are expected to drive it back to
normal. Hence, we assume that if more qualified workers are available, this should lead
to better service.

Our modified Aggregate Planning Model will indicate how many of the qualified and
non-qualified people should be employed, which leads to the second issue concerning
the risk. If demand increases because of excellent services received by customers and
good reputations built up, the lack of workforce becomes a risk. Such demand growth
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is largely determined by the decisions of the model, i.e. volume of qualified people,
and cannot be captured by statistical behaviour prediction. It is thus essential to take
into account the relations of demand and decisions in the model in order to properly
manage the risk of lack of expertise. This also illustrates the problem that operational
risk in this perspective cannot be treated in the same way as market risk. Indeed,
market risks result from market fluctuations which are by definition non-controllable.
This is not the case for operational risks whose origins are human and can, to a certain
extent, often be controlled internally.

Operation efficiency is used to measure the work done by employees. Qualified peo-
ple have additional professional knowledge and skills enabling them to achieve a higher
throughput with a lower rate of error than their non-qualified colleagues. However, on
the other hand, non-qualified employees are much cheaper to employ in both salary and
firing terms. We attempt to determine the number of qualified people required to min-
imise losses due to employee error, hence not only directly impacting profits, but also
growing demand in subsequent stages as a result of better customer experience. We are
therefore trading off the additional cost of qualified employees against the reduction in
error-based losses and the growth in demand they produce.

To measure employees’ work in a macro view, we use the total number of errors
that employees make in a year, denoted by ]E:

]E = ((xQ)αQErQ + (xN )αNErN )× 260.

Since the reputation could be ruined by errors, one error would lead to a reduction of
more than one unit of demand. The decrease of demand due to errors can be:

βdec = (]E)τ ,

where 1 ≤ τ ≤ 2. Meanwhile, those transactions done correctly, denoted by ]C, can
bring more business, which means the demand can increase by the following amount:

βinc = λ]C,

where 0 < λ < 1. Demand increase that is induced by transactions completed correctly
is less than the decrease due to the same amount of transactions with errors. This is
consistent with the fact that the reputation is much easier destroyed than built up.

When operation efficiency is not considered, demand can be estimated according to
the market and other conditions, denoted by β̃. Due to operation efficiency, the value
of demand could differ from β̃ in the following way:

β = β̃ + βinc − βdec = β̃ + λ]C − ]Eτ ,

where 0 < λ < 1, 1 ≤ τ ≤ 2. Nonlinearity is introduced by this function. This
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polynomial function, however, can approximately be linearised by a Special Order Set
2 (SOS2) [124] as described below.

For a pair of variables (βdec, E) where βdec = Eτ , τ is a real number and E ∈ R+,
we can calculate m pairs of values as (βi

dec, Ei), for i = 1, . . . ,m. Then, given a value
of E denoted as Ep, the corresponding value of βdec can be approximated as

βp
dec =

∑m
i=1 ρiβ

i
dec,

Ep =
∑m

i=1 ρiEi,

1 =
∑m

i=1 ρi

The nonlinear function now becomes a series of linear functions.
Demand changes with decisions, which makes the profit dependent on decisions too,

and therefore we take it into account in the objective function: it contributes a term
βt · γ, where γ is the income per transaction completed. Based on the model (4.10),
by adding the demand changing function as (4.12e), (4.12f) and (4.12g), the model is
presented as follows:

min
∑

t,jt
P t

jt
(((xQ

h )t
jt

+ (xN
h )t

jt
)h+ (xQ

f )t
jt
fQ + (xN

f )t
jt
fN

+(xQ)t
jt
wQ + (xN )t

jt
wN + (xP )t

jt
wP

+((xQ)t
jt
αQ

jt
ErQ

jt
+ (xN )t

jt
αN

jt
ErN

jt
)× 260× θ − βt

jt
γ)

(4.12a)

subject to

(xQ)t−1
a(t,jt)

+ (xQ
h )jt − (xQ

f )t
jt

= (xQ)t
jt
, jt = 1, . . . , Nt, ∀t = 2, . . . , T,

(xN )t−1
a(t,jt)

+ (xN
h )t

jt
− (xN

f )t
jt

= (xN )t
jt
, jt = 1, . . . , Nt, ∀t = 2, . . . , T,

(4.12b)
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jt
− (1− δjt)(x

Q
h )t

jt
)αQ

jt
× 260 +((xN )t

jt
− (1− δjt)(xN

h )t
jt

)αN
jt
× 260

+(xP )t
jt
αP = ηt

jt
,

(4.12c)

jt = 1, . . . , Nt, ∀t = 1, . . . , T,

ηt
jt
≥ βt

jt
, jt = 1, . . . , Nt, ∀t = 1, . . . , T, (4.12d)

]Et
jt

= ((xQ)t
jt
αQ

jt
ErQ

jt
+ (xN )t

jt
αN

jt
ErN

jt
)× 260 , jt = 1, . . . , Nt, ∀t = 1, . . . , T, (4.12e)

]Ct
jt

= βt
jt
− ]Et

jt
, jt = 1, . . . , Nt, ∀t = 1, . . . , T, (4.12f)

βt+1
jt+1

= β̃t+1
jt+1

+ λ]Ct
a(t,jt)

− (]Et
a(t,jt)

)τ , jt = 1, . . . , Nt, ∀t = 1, . . . , T − 1, (4.12g)
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, (xN
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jt
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jt
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where the probability distributions are revised in the following way:

P t
jt

=
P t−1

a(t,jt)
Ploss(Loss > 0|jt)

P t−1
loss (Loss > 0)

, if loss happens, (4.13a)

jt = 1, . . . , nt, ∀t = 2, . . . , T,
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P t
jt

=
P t−1

a(t,jt)
(1− Ploss(Loss > 0|jt))

1− P t−1
loss (Loss > 0)

, if no loss happens, (4.13b)

jt = 1, . . . , nt, ∀t = 2, . . . , T,

P t
loss(Loss > 0) =

∑
jt

Ploss(Loss > 0|jt)P t−1
a(t,jt)

, (4.13c)

jt = 1, . . . , nt, ∀t = 2, . . . , T.

Since the nonlinear demand function (4.12g) can be linearised, this model still can be
solved by integer solvers.

It is worth mentioning that while demand is influenced by previous decisions, there
exists also an influence in the opposite direction. βt is one of the main factors affecting
the decision at stage t. Conversely the decision at stage t affects those at stage t − 1.
Hence the influence of βt on t-stage-decisions is spread to t−1-stage-decisions, as shown
in Figure 4.7.

Demand_t

Decision_t−1 Decision_t
Figure 4.7: Influence Chart

4.6 Implementations of the Models

All models discussed in this chapter are written in AMPL [44] and solved by CPLEX,
including the linearised form of model (4.12). Consider a 3-stage-problem, suppose each
random variable has 2 possible values and there are 4 random variable sets, i.e., demand,
capacities, initial capability and operation efficiency. Hence, there are 4369 nodes in
total for this 3-stage-problem. At each node there are 7 integer decision variables and
one continuous demand variable. Overall, there are 30583 decision variables in the
model. In addition, 2 inventory constraints, one capacity constraint and 1 demand
constraint at each node sum up to 17476 constraints. The data for the experiment
can be found in the Appendix. They are generated according to our knowledge about
banks without comprehensive scenario generation techniques.

This Aggregate Planning Model attempts to help decision makers to obtain the
optimal decisions while satisfying the demand and controlling the risk. Our effort is
focussed on risk management. As discussed above, qualified people armed with better
knowledge and skills are considered to be safer for the company than non-qualified
people. We test four different models: a basic model, a model with random capacity, a
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model with BN revision, and a model with a demand function dependent on decisions.
The basic model refers to the stochastic programming model assuming only randomness
in the demand and no dependence between decisions and random variables, as given
by (4.2) in Section 4.3. The model with random capacity corresponds to (4.3) - (4.5).
The BN revision is governed by (4.11a), (4.11b) and (4.11c). The demand function
depends on decisions through (4.12e), (4.12f) and (4.12g). The solution of the basic
model excluding risk factors suggests employing more non-qualified people than the
more elaborate models which aim for highest profit. The decisions provided by the
basic model are questionable since they expose the company to the risk of failing to
satisfy demand and operational errors. In the other models, we can see an average
increase of employment of qualified people. Tables 4.2, 4.3 and 4.4 show the summary
of results of each model. We report in them the numbers of qualified and non-qualified
people to be employed as determined by an appropriate optimisation model. We solve
a 3-stage problem but we are really concerned with the decisions at first stage and only
these numbers are reported in the tables. In results presented in Tables 4.2 and 4.3, the
risk is from random demand, random capacities and probability distributions, which
are all principally resulting from market risks and consequently cannot be controlled.
The analysis of results collected in Table 4.4, by considering the dependence between
the decisions and variables, suggests that the controllable risks require more qualified
people. By taking into account the operational risk in random capacity and the demand
depending on decisions, and by constructing more reliable probability distribution, the
model makes the decision to employ more qualified people than the basic model, so that
the operation is more secure. Meanwhile, the cost, profit and loss are well balanced. In
addition, the model with demand function depending on decisions reflects an average
increase in demand of 5.48%.

Models Basic Model Random Capacity
Qualified People 2 4

Non-Qualified People 51 43

Table 4.2: Comparison between the basic model and the model with random capacity.

Models Basic Model BN Revision
Qualified People 2 6

Non-Qualified People 51 35

Table 4.3: Comparison between the basic model and the model with BN revision.

It is natural that the number of employees decreases when the corresponding cost
(e.g. hiring, firing cost or salaries) increases. On the other hand, if people improve their
skills, which means they can deal with more transactions or make fewer errors than
before, they are more valuable to their employers. In our case study the parameter θ has
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Models Basic Model Demand Function
Qualified People 2 9

Non-Qualified People 51 23

Table 4.4: Comparison between the basic model and the model with demand function
depending on decisions.

more influence on decisions made than γ, i.e. a decrease in θ pushed down the number
of qualified people employed. We have also looked at the evolution of employment over
the planning period (3 stages) and we have observed that the number of non-qualified
people does not change a lot. When demand varies from stage to stage, qualified people
are more frequently fired or hired.

In the Appendix, we present some details of an approximated solution associated
with the nonlinear model described by model (4.12).

4.7 The Pricing of Operational Risk

In the case of a convex nonlinear programming problem with equality and inequality
constraints, the dual prices correspond to the Lagrange multipliers. Under certain con-
dition, their interpretation is similar to that of the shadow prices in linear programming
as explained in Chapter 2. For an additional unit of the right hand side parameter of
a given constraint, the associated Lagrange multiplier indicates by how many units the
objective function will vary, while other quantities remain the same.

In our context, the dual price of the constraint describing the availability of quali-
fied workers gives the value of an additional hour of expertise provided by a qualified
employee. In terms of risk management, we obtain pricing information to set up a kind
of “strategic reserve” (terms from the military science designing a supplementary force
available and ready to act in the case of urgent need).

Nowadays, in business this notion of strategic reserve for dealing with operational
risk is not generally accepted. Generating a significant cost to hire expertise just to
be able to solve difficult operations problems in case they might arise is not considered
to be viable. However we believe that our model enables the risk budget planner to
address the necessity to plan sufficient expertise in order to deal with unexpected oper-
ational problems. Moreover the dual solution represents a relevant way to quantify the
expertise dedicated to risk management. The shadow price in the context of stochastic
programming to produce a uniform CO2 tax was first applied in a result analysis by
Bahn et al. in [7].

The theory of shadow prices in linear programming was explained in Section 2.4.1.
Before we apply this concept in a nonlinear model, it would be useful to carry out the
sensitivity analysis of nonlinear programming in the following section.
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4.7.1 The Sensitivity Analysis of Nonlinear Programming

Consider a nonlinear program of the form

min f(x)

s.t. hi(x) = 0, i = 1, . . . ,m, (4.14)

gj(x) ≤ 0, j = 1, . . . , r,

where f , hi, gj are continuously differentiable functions from Rn to R. A more succinct
form could be

min f(x)

s.t. h(x) = 0, (4.15)

g(x) ≤ 0,

where h = (h1, · · · , hm) : Rn 7→ Rm, g = (g1, · · · , gr) : Rn 7→ Rr. The corresponding
Lagrangian function, with Lagrangian multipliers λ and µ, can be written as

L(x, λ, µ) = f(x) +
m∑

i=1

λihi(x) +
r∑

j=1

µj(x)gj(x).

A feasible point x is called regular if the constraint gradients ∇h1(x), · · · ,∇hm(x),
∇g1, · · · ,∇gr(x) are linearly independent. If a local minimum of the problem x̂ is
regular, and f , hi, gj are continuously differentiable, following [12], there exist unique
Lagrange multiplier vectors λ̂ = (λ̂1, . . . , λ̂m), µ̂ = (µ̂1, . . . , µ̂r), such that

∇xL(x̂, λ̂, µ̂) = 0,

µ̂j ≥ 0, j = 1, . . . , r,

µ̂j = 0, ∀j /∈ A(x̂) = {j|gj(x̂) = 0},

where A(x̂) is in fact the set of active inequality constraints at x̂. In addition, if f , hi,
gj are twice continuously differentiable, there holds

y′∇2
xxL(x̂, λ̂, µ̂)y ≥ 0,

for all y ∈ Rn such that

∇hi(x̂)′y = 0, i = 1, . . . ,m, ∇gj(x̂)′y = 0, j ∈ A(x̂). (4.16)

Conversely, we can have the sufficiency condition for (4.16) in Prop 6, called Second
Order Sufficiency Conditions.

Proposition 6 ([12], Proposition 3.3.2, page 320). Assume that f , h, g are twice
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continuously differentiable, and let x̂ ∈ Rn, λ̂ ∈ Rm, and µ̂ ∈ Rr satisfy

∇xL(x̂, λ̂, µ̂) = 0,

h(x̂) = 0, g(x̂) ≤ 0,

µ̂j ≥ 0, j = 1, . . . , r,

µ̂j = 0, ∀j /∈ A(x̂)

y′∇2
xxL(x̂, λ̂, µ̂)y ≥ 0,

for all y 6= 0 such that

∇hi(x̂)′y = 0, i = 1, . . . ,m, ∇gj(x̂)′y = 0, j ∈ A(x̂). (4.17)

Assume also that
µ̂j > 0, ∀j ∈ A(x̂).

Then x̂ is strict local minimum of f subject to h(x) = 0, g(x) ≤ 0.

Similar to the linear program, Lagrange multipliers indicate the shadow prices of
the constraints, e.g. resources, and provide sensitivity analysis as well. For nonlinear
program, the sensitivity analysis is illustrated in the following proposition:

Proposition 7 ([12], Proposition 3.3.3, page 321). Let x̂, λ̂, and µ̂ be a local minimum
and Lagrange multipliers of (4.16), respectively, satisfying the second order sufficiency
conditions of Prop 6, and assume that x̂ is a regular point. Consider the family of
problems

min f(x)

s.t. h(x) = u, (4.18)

g(x) ≤ v,

parameterised by the vectors u ∈ Rm and v ∈ Rr. Then there exists an open sphere
S centered at (u, v) = (0, 0) such that for every (u, v) ∈ S there is an x(u, v) ∈ Rn

and λ(u, v) ∈ Rm, µ(u, v) ∈ Rr, which are a local minimum and associated Lagrange
multiplier vectors of problem (4.18). Furthermore, x(·), λ(·), and µ(·) are continuously
differentiable in S and we have x(0, 0) = x̂, λ(0, 0) = λ̂, µ(0, 0) = µ̂. In addition, for
all (u, v) ∈ S, there holds

∇up(u, v) = −λ(u, v),

∇vp(u, v) = −µ(u, v),

where p(u, v) is the optimal cost parameterised by (u, v),

p(u, v) = f(x(u, v)).
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We can see that one unit change of ui (or vj) contributes λi (or µj) units change
of the objective function value in the opposite direction. The Lagrange multiplier λi

associated with the equality constraint indeed measures the “force” of this equality
constraint. For inequality constraint, if µj is a relatively large value compared to
others, to improve the optimal objective value, the corresponding resource will be a
higher priority to be increased than others.

Assume we relax the integer requirements of variables in model (4.2) in Section 4.3,
model (4.2) combined with (4.3) and (4.5), model (4.10), and model (4.12) to be con-
tinuous. Then, all the models are linear except (4.12) which is nonlinear because of
the dependence of random factor on decision variables in (4.12g). The general shadow
prices theory can be applied to the first three models. For problem (4.12), the only
nonlinear function appears in (4.12g) which involves an exponential function. It is easy
to see that all feasible points of this problem are regular. And the objective function
and constraint functions are twice continuously differentiable. Therefore, Proposition 7
can be applied to this model.

However, observe that in general Lagrange multipliers depend on the scaling of
constraints. Hence, the same problem after scaling has a different Lagrange multiplier.
In our case, all constraints have similar scaling and we can compare the associated
Lagrange multipliers, or at the least we can use them to provide us with a qualitative
insight.

The model is approximated to make it convex and smooth (though nonlinear).
Keeping the continuity property enables us to produce shadow prices (Lagrange multi-
pliers in the case of convex nonlinear models) which gives the implicit value of resources.
In that case we obtain information related to value of expertise of qualified workers.
To our knowledge this is the first time that shadow prices have been used to assess the
cost of loss of workers in an operations risk management context.

4.7.2 Exploiting the Shadow Pricing Approach

In this section, we exploit the shadow prices of inventory constraints in four models,
i.e. (4.2), (4.2) with (4.3) and (4.5), (4.10), and (4.12), in relaxed form that decision
variables can take values from a continuous set. The inventory constraints (4.2b) and
(4.2c), (4.10b), and (4.12b) express the balance between employees hired, fired and held
at each stage for both qualified and non-qualified people. By keeping the original scaling
of these constraints, we can compare the magnitude of the absolute values of Lagrange
multipliers associated with these constraints and deduce from such a comparison which
constraints are tight.

Tables 4.5, 4.6, 4.7 and 4.8 show the shadow prices of constraints in the four dif-
ferent models explained in Section 4.6. In each table, the absolute values of Lagrange
multipliers associated with qualified people inventory constraints are in general greater
than those of non-qualified people. In terms of risk management we interpret this fact
as a warning that more attention should be paid to the availability of qualified workers

105



than that of non-qualified workers. For each node in every time period we identify the
greatest danger to lose a qualified person. This can also be illustrated in the following
shadow prices comparison tables. As we can see from Tables 4.6, 4.7 and 4.8 corre-
sponding to the model with random capacity, the model with BN and the model with
demand function depending on decisions, respectively, there is a general decrease in
all absolute values of Lagrange multipliers in these three models, while the risk also
shrinks.

Shadow Prices Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Inventory Constraint, Q People 7500 -2000 -7500 3000 -5000 2000

Inventory Constraint, NQ People 570 -1445 -1800 1650 -1075 1100
Capacity Constraints 30.5769 27.1154 14.5385 15 9.9808 10

Table 4.5: Shadow prices of inventory constraints and capacity constraints in the basic
model.

Shadow Prices Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Qualified People 1645 810 -458 840 -146 560

Non-Qualified People -81 -121 -75 372 36 248

Table 4.6: Shadow prices of inventory constraints in the model with random capacity.

Shadow Prices Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Qualified People 2028 -541 575 -230 383 -153

Non-Qualified People 136 -375 88 -109 62 -72

Table 4.7: Shadow prices of inventory constraints in the model with BN.

Shadow Prices Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Qualified People 7500 -2000 -3000 2000 -3000 2000

Non-Qualified People 430 -1304 -1650 1100 -1650 1100

Table 4.8: Shadow prices of inventory constraints in the model with demand function
depending on decisions.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarise the work and results presented so far. The prospective
research directions are discussed in the second part.

5.1 Research Outcomes

Risk management is essential to the financial market and a risk measure that can
efficiently demonstrate the risks embedded in the financial products and instruments
is always desirable. By the sources risks originates from, financial risk is divided into
three categories: market risk, credit risk and operational risk. This research developed
ways to measure and manage two of them, market risk and operational risk, under the
discipline of stochastic programming.

Market risk dealt with in this work is that involved in ALM problems. In addition
to the operational constraints, i.e. inventory and cash balance, ALM models require
sophisticated risk control to ensure that liabilities are met. As a consequence, un-
derfunding, which measures the amount of non-satisfied liabilities, is expected to be
zero. Stochastic dominance as a standard of efficient risk control can manage the risk
in ALM problems effectively and is consistent with utility theory. Furthermore, the
concept of relaxed interval second-order stochastic dominance is developed and used
to model chance constraints in linear form, which can manage underfunding in line
with other stochastic dominance constraints. The object-oriented parallel solver OOPS
[55, 57] can handle such problems efficiently in terms of both memory requirements and
solution time.

In contrast to the simple structure of market risk, operational risk covers a wide
range of risky events and has a variety of aspects. Consequently, complex modelling
techniques are needed. The human factor in operational risk was analyzed and modelled
following the methodology of the Aggregate Planning Model. Aggregate Planning
Models are a category of mathematical programming model dealing with the basic
productions or the operation management problems. In this thesis the focus is on the
labour allocation management problem. By satisfying the demand constraints at each
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stage, optimal staff allocation is determined while minimising costs (including salaries,
hiring and firing costs) and losses, resulting from erroneous operations.

In the context of real enterprise risk management, decisions must be made that will
affect future choices and outcomes. Hence when considering future events in business
activity planning, it is pertinent to take into account uncertain parameters within the
planning model. This is often done using a multistage stochastic programming model.

Although stochastic programming is a planning tool that simultaneously takes into
account cause-and-effect relations and random variables, most applications in financial
risks have been limited to the case where random variables are assumed to follow some
theoretical probability distribution function. In order to add more relevance to the risk
planning process of banking operations, we have combined the methodology of Bayesian
networks with Aggregate Planning Models.

In general, the demand (a parameter of the model) is assumed to be independent
of decisions. However, in reality, this is often not the case. If we consider for example
the reputation of companies – the demand could be dependent upon the success of
previous decisions; when customers receive products or services of high quality, they
are more likely to continue the business and even increase its volume, which will increase
the demand at next stage. Conversely, if customers are not satisfied with the service
provided, they may change to other companies. This problem has been addressed in
our stochastic Aggregate Planning Model by establishing a link between the random
parameters and the decision variables. In particular, our model is in line with the
COSO risk management philosophy which assumes that the quality of the Internal
Control Systems affects the residual risks. Simply said, operations risks are controllable
through good management, and it is an aspect that we take into account in our model
for the first time.

This latter model results in a mixed integer problem that we have solved with
CPLEX. Finally, we interpret interesting results obtained with this methodology that
confirm that our modelling concept is relevant. Additionally, shadow prices of inventory
constraints are used to price the risks of operations. Our model indicates at which
period money should be set aside to be able to hire sufficient qualified workforce if
needed.

This model of operational risk management is intended to support decision-making
processes regarding employment strategies in order to manage operational risk from
a human perspective. After studying the work efficiency and other kinds of skills of
existing and potential employees, the management can input these coefficients into the
model along with demand predictions. Then the model will generate an optimal strat-
egy involving the proper workforce categories, repartitioning and minimising the risk of
inadequate expertise. It must also be added that the tractability of the model presented
means that it can be implemented and solved by most commercial optimisation codes.
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5.2 Research Prospects

To further address the issue with work efficiency in operational risk management, we
propose the application of learning curves to the model that describes the employees’
learning process more precisely. In addition, the notion of service delay will also be
worth incorporating into the model, which means we relax the assumption that there
is enough temporary employees as back-up.

A significant research step will be the integration of the risk management, namely
enclosing market risk, credit risk and operational risk management within a single
model. This will require much more work, but the appealing ultimate objective of de-
veloping an integrated risk management model justifies such effort. Such an integrated
system of risk management will facilitate risk management for industries and will help
businesses better control their risks.
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Appendix A

Parameters and results of Model

(4.12) in Chapter 4

This Appendix shows the data set and solutions to the model given by Equations (4.12).
Parameters set:

wageQ = 60000,

wageNQ = 13500,

wageX = 300,

F irecostQ = 12500,

F irecostNQ = 3000,

Hirecost = 5000.

There are two possible values of the work capacities, operation efficiency and initial
capabilities for both qualified and non-qualified people. They are given in Table A.1.

Employees Work Capacities Operation Efficiency Initial Capabilities
Qualified People 5.0 2.5 0.001 0.0015 0.75 0.55

Non-Qualified People 1.25 0.625 0.002 0.0025 0.75 0.55
Temporary 3.0 – – – – –

Table A.1: Work ability parameters.

The results are as follows:

Employees Qualified Non-Qualified Temporary
No. Held 14 3 0

Table A.2: Decisions at first stage: numbers of people held.
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node j node l node v node s Qualified Non-qualified Temp
1 1 1 1 11 3 0
1 1 1 2 11 2 17
1 1 2 1 11 3 0
1 1 2 2 11 2 17
1 2 1 1 14 3 1805
1 2 1 2 14 3 1805
1 2 2 1 14 3 1805
1 2 2 2 14 3 1805
2 1 1 1 12 1 25
2 1 1 2 12 1 25
2 1 2 1 12 1 25
2 1 2 2 12 1 25
2 2 1 1 14 3 2138
2 2 1 2 14 3 2138
2 2 2 1 14 3 2138
2 2 2 2 14 2 2192

Table A.3: Decisions at second stage: numbers of people held. Node j corresponds to
demand state, l is the work capability, v is the initial capability and s is the operation
efficiency.

node j node l node v node s Qualified Non-qualified Temp Demand
1 1 1 1 8 3 34 11474
1 2 1 1 14 4 11 18474
1 3 1 1 8 3 33 11474
1 4 1 1 14 4 11 18474
2 1 1 1 8 3 37 11483
2 2 1 1 14 1 0 15575
2 3 1 1 12 0 0 15574
2 4 1 1 17 4 15 21574
3 1 1 1 12 0 0 15575
3 2 1 1 18 1 0 21575
3 2 1 3 17 4 10 21561

Table A.4: Part results at third stage: numbers of people held. Node j corresponds to
demand state, l is the work capability, v is the initial capability and s is the operation
efficiency.
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